1,180 research outputs found

    Numerical solution of linear time delay systems using Chebyshev-tau spectral method

    Get PDF
    In this paper, a hybrid method based on method of steps and a Chebyshev-tau spectral method for solving linear time delay systems of differential equations is proposed. The method first converts the time delay system to a system of ordinary dierential equations by the method of steps and then employs Chebyshev polynomials to construct an approx- imate solution for the system. In fact, the solution of the system is expanded in terms of orthogonal Chebyshev polynomials which reduces the solution of the system to the solution of a system of algebraic equations. Also, we transform the coefficient matrix of the algebraic system to a block quasi upper triangular matrix and the latter system can be solved more efficiently than the first one. Furthermore, using orthogonal Chebyshev polynomials enables us to apply fast Fourier transform for calculating matrix-vector multiplications which makes the proposed method to be more efficient. Consistency, stability and convergence analysis of the method are provided. Numerous numerical examples are given to demonstrate efficiency and accuracy of the method. Comparisons are made with available literature

    Open issues in devising software for the numerical solution of implicit delay differential equations

    Get PDF
    AbstractWe consider initial value problems for systems of implicit delay differential equations of the formMy′(t)=f(t,y(t),y(α1(t,y(t))),…,y(αm(t,y(t)))),where M is a constant square matrix (with arbitrary rank) and αi(t,y(t))⩽t for all t and i.For a numerical treatment of this kind of problems, a software tool has been recently developed [6]; this code is called RADAR5 and is based on a suitable extension to delay equations of the 3-stage Radau IIA Runge–Kutta method.The aim of this work is that of illustrating some important topics which are being investigated in order to increase the efficiency of the code. They are mainly relevant to(i)the error control strategies in relation to derivative discontinuities arising in the solutions of delay equations;(ii)the integration of problems with unbounded delays (like the pantograph equation);(iii)the applications to problems with special structure (as those arising from spatial discretization of evolutions PDEs with delays).Several numerical examples will also be shown in order to illustrate some of the topics discussed in the paper

    Errors of linear multistep methods and Runge-Kutta methods for singular perturbation problems with delays

    Get PDF
    AbstractThis paper is concerned with the error analysis of linear multistep methods and Runge-Kutta methods applied to some classes of one-parameter stiff singularly perturbed problems with delays. We derive the global error estimates of A(α)-stable linear multistep methods and algebraically and diagonally stable Runge-Kutta methods with Lagrange interpolation procedure. Numerical experiments confirm our theoretical analysis

    Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Get PDF
    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances

    A numerical integration code for general linear delay differential-algebraic equations

    Get PDF
    A new numerical integration code (COLDDAE) for general linear differential-algebraic equations (DDAEs) of retarded and neutral type is discussed. The implementation is based on the regularization technique introduced in [13]. In the single delay case, the code can handle noncausal systems, i.e., systems, where the solution at the current time does not only depend on the system at the past and current time, but also future time points
    • …
    corecore