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Abstract—This paper is concerned with the error analysis of linear multistep methods and Runge-
Kutta methods applied to some classes of one-parameter stiff singularly perturbed problems with de-
lays. We derive the global error estimates of A(a)-stable linear multistep methods and algebraically
and diagonally stable Runge-Kutta methods with Lagrange interpolation procedure. Numerical ex-
periments confirm our theoretical analysis. (© 2002 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Let (, ) be the standard inner product on R" and || - || the corresponding norm. Consider the
singular perturbation problems (SPPs) with delays

z'(t) = f(z(t),z(t — 7),y(t), y(t - 7)), t€[0,T),
ey’ (t) = g(z(t),z(t — 7),y(t), y(t — 7)), 0<exl, (1.1)

z(t) = ¢(t), y(t)=¥(t), <0,

where 7 and € are constants, and 7 > 0. > and ¥ are given continuous functions. f: RM x RM x
RN x RN — RM and g: RM x RM x RN x RN — RY are given mappings, which are sufficiently
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smooth. In order to make the error analysis feasible, we always assume that problem (1.1) has a
unique solution (z(t), y(¢)) which is sufficiently differentiable and satisfies

‘ diz(t) ” <M, }}M]I <N,

dtt dt?
where A; and N; are constants which are independent of the stiffness of the problem.

The numerical solution of delay differential equations (DDEs) has been the object of interesting
research in recent years. Many papers investigated the local and global error behaviour of DDE
solvers (cf. [1-6]). However, they are only suitable for nonstiff DDEs. In 1997, the concept of
D-convergence for stiff DDEs was introduced (cf. [7]). Subsequently, D-convergence theory was
further developed [8,9].

Now we briefly recall the concept of D-convergence (cf. [7-9]). Consider the following nonlinear
problem:

'(t) = f(t,z(t),z(t — 7)), t=0,
l‘(t) = Lr‘:(t)s t <90,

where £ : [0, +00) x CM x CM — C* is a given mapping which satisfies the following conditions:

1.2)

Re(f(tsl'lfz) - f(t,fl:‘z,l),l'l - 1:2) < !6”1'1 - x2"2s t > 0, (133)
[£(t, 2, 21) — f(t,z, 22)|l < 7vllz1 — z2lls t>0, (1.3b)

with moderately-sized constants 3 and v, here z, z1, 22, 2, 23, and z2 € CM | here {,)isan
inner product on C* | and || - || the corresponding norm.

Let (A, b,c) denote a given Runge-Kutta method with s x s matrix A = (a;;) and vectors
b=(by,...,bs)7, c=(c1,...,¢s)7T. A Runge-Kutta method applied to (1.2) gives

1

s
X.(") = Ip + hzaijf (tn +th’X;n)’)‘('J(_n)) , i=12,...,s

=1

&

j=1

The argument X’; ") denotes an approximation to z(t, +c;h — 7), which is obtained by a specific
interpolation procedure at the point ¢t =t, +¢;h — 7.

DEFINITION 1.1. A Runge-Kutta method (A,b,¢) with an interpolation procedure is called
D-convergent of order p for problem (1.2) satisfyving (1.3), if the global error admits an esti-
mate

lz(tn) — znll € C(ta)h?, n>1, he(0,he],

where the function C(t) and the maximum stepsize hg depend only on the method, the parame-
ters /3, v, and 7, and bounds for certain derivatives of the exact solution.

Zhang and Zhou [7] gave a sufficient condition which guarantees D-convergence of the Runge-
Kutta method. Huang et al. {8,9] further discussed D-convergence of Runge-Kutta methods,
one-leg methods, and general linear methods.

Convergence of numerical methods for SPPs is also an important issue. Many papers analyzed
the error behaviour of numerical methods for single and multiple stiff SPPs (cf. [10-17]).

But up to now, there existed no results of numerical methods for SPPs with delays. Although
stiff SPPs with delays are considered as a special class of stiff initial value problems of delay
differential equations, they cannot be covered by D-theory because their parameters 8 and - cor-
responding to (1.3) are in general O(e¢™!). Therefore, it is meaningful to investigate convergence
of numerical methods for SPPs with delays. This paper is concerned with the error analysis of
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linear multistep methods and Runge-Kutta methods applied to some classes of one-parameter
stiff SPPs with delays.

This paper is organized as follows. In Section 2, for some classes of stiff singularly perturbed
problems with delays, we derive the global error estimate of A(a)-stable multistep method with
Lagrange interpolation procedure. In fact, the result (Theorem 2.1) can be considered as an
extension of that obtained by Lubich (cf. [13]) for the case of singular perturbation problems
without delay. In Section 3, for some classes of multiple stiff singularly perturbed problems with
delays, we obtain the global error estimate of algebraically and diagonally stable Runge-Kutta
methods with Lagrange interpolation procedure. The result (Theorem 3.3) can be considered
an extension of that obtained by Xiao (cf. [16]) for the case of singular perturbation problems
without delay. In Section 4, we illustrate our main results by numerical experiments.

2. ERROR OF LINEAR MULTISTEP
METHODS FOR SPPS WITH DELAYS

In this section, we assume that (cf. [12])
the eigenvalues A of gy (x,u,y,v) lie in |argh — 7| < @, (2.1)

for (z,u,y,v) in a neighbourhood of the considered solution. A linear multistep method applied
to system (1.1) gives

k k
Zaixn+,~ = hZﬂif (TntisTntis Yntis Tnti) » (2.2a)
i=0 i=0

k b

Z QiYnti = = Z Big (Tn+is TntisYntis Un+i) s (2.2b)
i=0 i=0

where h > 0 is the stepsize, t, = nh, n = 0,1,...,I, (I + k)h < T, and z, and y, are an
approximation to the exact solution x(t,) and y(t,), respectively. «;,5; (i = 0,1,...,k) are
given constants, agf; # 0. The arguments Z, and 7, denote an approximation to z(t, — 7)
and y(t, — 7), respectively, which are obtained by a specific interpolation procedure at the point
t =t, — 7 using z; and y;, respectively, with [ <n - 1.

Process (2.2) is defined completely by the linear multistep method and the interpolation pro-
cedure for Z,, and ¥,.

Let g, v > 0 be integers, 7 = (1 — 6)h with integer m > k+ v + 1 and § € [0,1). We consider
the following interpolation procedure:

Z Li(a)rn—m-}-iw tn =7 > 01

Tn=1Q i==u (2.3a)
k,’:(tn—’r), tn—TSO,

_ Z Li(‘s)yn—m-H-, th -7>0,

Yn = i=—pu (23b)
l//}(tn - T)v tn -7 S 07

where z; = @(t;) and y; = ¥(t;) for 7 <0, and

Li(6) = f[ f:; 6 €0,1). (2.4)
J=—p
J#i

Here we assume m > k + v + 1 not only so as to guarantee that, in the interpolation procedure,
no unknown values z; and y; with [l > n+ &k — 1 are used, but also for simplicity in the discussion
of Part (c) in this section. In this section, the constants h;, C, C;, é’, C~',-, and x used later are
independent of stiffness of the considered problem.
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THEOREM 2.1. Suppose that a multistep method is of order p, A(a)-stable, and strictly stable
at infinity. If problem (1.1) satisfies (2.1}, then the global error is bounded for h > e and nh < T

by

‘Il
S - . : P (p+1)
[ 2n = 2(tn)ll + llyn — y(ta)ll $C<Orgja§ck lz; = 2(t;)ll + h /0 I]x (t)H dt

. ; P (p+1) w1
+ g Iy = (el + o mae [yO+ 00|+ et )

This estimate holds for h < hgy (he sufficiently small, but independent of €}, and provided that

the starting values are in a sufficiently small, h- and e-independent neighbourhood of the exact

solution.

ProoF. The basic idea of the following proof comes from that of Theorem 1.3 in {12, p. 412].
{a) First we derive recursive estimates for the global error. We insert the exact solution of (1.1)

into method (2.2) and so obtain

k k
Z Qix(tny:) = h Z Bif (x(tnei)s T(tnsi = 7), Y(tnai), Y(tnti — 7)) + dnss, (2.5a)
i=0 i=0

k L
Z ay(tnyi) = " Zﬁsg (z(tn+i)s T(tnsi = 7)s Y(tnti)s Y(tnsi — 7)) + €ntis (2.5b)
i=0 i=0

where the perturbations dp4x, €n+k can be estimated (for n > 0) as

[ 7NN
"

MHMS&W[ et c0)]| a, (2.68)

entkll < CohP*!  max
llen+ill < Co tn <t<tnsk

y(”“)(t)H . (2.6b)

We then denote the global errors by Az, = x, — z(tn), Ayn = Yn — y(tn), and introduce the
differences

k
Afpgr = Z Bi (f (Tn+is Entis Yntis Insi)
i=0

= f(@(tnsi) Z(tnsi — 7) Y(tnsi)s Y(tnai — 7)), n >0,

k
Agnik = Zﬁi (9(Tntis Tntis Yntis Unti)
i=0
-9 (a"(tn-f-i)!w(tn-{*‘i - T)v y(tn-l-i)s y(tn+i - T)) - 'JAyTH-i) B n 2 Oa

where Af; = 0 and Ag; = 0 for j < k, J = gy(z(0), z(—7),y(0),y(—7)). Subtraction of (2.5a)
from (2.2a} yields, for n > 0,

k
Z 0;iATny; = hAfugk — dnyi (2.7
i=0

We take the difference of (2.2b) and (2.5b) and then subtract from both sides the quantity
(h/€) Y% B:J Ayny:. This yields, for n >0,

A

h h
z (Oif - Bi;J) Aypyi = ‘e“Agn-l-k - entk- (2.8)
=0
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We define dy,...,dk-1, €o,...,er~1 such that (2.7) and (2.8) also hold for negative n. Using
equations (2.7), (2.8), and a similar technique in {12, p. 413}, we obtain

1Azal S BY (Mo Az + Mo l|AZ; | + My Ay + M AT + C3 Y _lldsll. (2.9)
J=0 j=0

mn n
g = _ - _ € -
1ayall < 3 "7 (L Az + LIAZ ] + LAy | +TIAGH ) + Cag D w7yl (210)
- =
where the constants AL, A, A, M, L, L. 1, and | are independent of € and A, and
AZj=ZF;—z(t; — 1),  AF =7 —yt; — 7).

On the other hand, it follows from (2.3) that

Iz —2@t; -l <

Z Li(®)z(tj—msi) — zlt; — 1)

i==pu

Z L:‘((S)(xj—m-}-i _x(tj~1n+i)) +

i=—p

From the remainder estimate of the Lagrange interpolation formula, we have

v

< Myrvs1 prtvEl H 16 — il < M,y h#HerL,

Z Li(a)x(tj—m-}—é) “x(tj -7 < (p+v+1)

i=—p

=g

Let Ly = max_,<i<, SUPgc(o.1y |L:(#)]- Therefore, from the Cauchy inequality, we further obtain

iz=—p

125 -2 (t; - 7)) < 2 ((ﬂ+V+1)Lo Y AT i+ M, hz“‘*”“’) ;

which gives

v
IZ; —2(t; =) < Cs ( Z NAZ;—mill + h“+u+1) ; (2.11a)
=g
where Cy = \/§max(\/u Fv 1L, M, o1, Nygus1). Similarly,
17 —y(t; =) < Cs ( > A el + h‘”’”“) : (2.11b)
i=—p
A combination of {2.9)-(2.11) leads to
n . - n N
ISR (1\1 Az || + N || Ay, n) + Cﬁz “de, n>k, (2.12a)
j 0 j

| Ayall < Zh I (L Azl + 1] Ay;] )+C4—Zn“'3[ie}{+C7Zfe" Jwj, n>k, (2.12b)

=0
where
M =AM, + (p+v+1)CsM,, N =N, + (g +v +1)CsAL,,
Co = max(Cs, Cs M, + CsM,), |d5]| < eyl + mte2,
Cs(u+v+1)max(L, l)
Cr =
Y
{ 0. ji<m-—uy,
w; =
! IAT;—maull + 1AYj—mioll + 2REFVHL, jzm-v
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(b) In order to solve inequalities (2.12a) and (2.12b), we define sequences {u,} and {v,}
(n>k) by

Uy = hi (AYUJ' + N'l)j) + C(; zn: HJJH , (2133.)
Zn" T (Luj + lvj) +C4th" ]I|€J“+C'72h" Tw;. (2.13b)

Let u; = ||Az;|| and v; = ||Ay;l} for j < k, an induction argument shows that, for n > 0,
|AZ, |l < un, lAynll < vn,

provided | < 1 and h < h;. It is important to remark that the Lipschitz constant { can be made
arbitrarily small by shrinking the considered interval, compact interval [0,T] can be covered by
repeated application of the below estimates (cf. [12]).

By a similar process of Part (b) in the proof of Theorem 1.3 in [12, p. 414], we easily show
from (2.13) that there exists ho > 0 such that, for ¢ < h < hyg,

Un+va SCs | D di+ Y (R+QY7)¢é |, (2.14)

j=0 Jj=0

where 0 < Q@ = k/(1 - 1) < 1, and

(-

)’ |€n] SCw( i,

€
+ Zleall +wn),
which gives

(”dn“ + €”en“ + hw, + h#+"+2) )

6 £ ; utv+2
éal < Cro (Idall + 7 llenll +wn + h#++2)..

(c) Our next aim is to investigate the global error in successive subintervals.

For n € [k,m — v — 1}, w, = 0. Since dy, ... ,di_; are a linear combination of the values Az;
(j < k), and eg,...,ex—1 are a linear combination of the Ay; and (h/e)Ay; (j < k), it follows
from |Azy| € un, ||Aynll € va, and (2.14) that

tn
e — 2t + llyn =yt < €y ( max Iz, = 2 )]+ # [ 00| a
(2.15)
+ (h+ Q) max fly; =y (1)l +eh” max [0 + h“*"“) :

For n € [m — v,2(m —v) — 1}, wp = |AZnomiv]l + | AUn—m4vll + 2h#T¥*1 Using (2.14)
and (2.15), we obtain

tn
o = 2t + lga = y(ta)ll < s ( max |z, - = (t))] + k" / =] e
(2.16)
+ o, lly; — y (&) + eh" JJax Hy(p“)(t)“ + h‘”""“) .
Generally, for n € [j(m —v), (i + 1)(m — v) — 1]. by induction, inequality (2.16) is also valid
with C; replaced by Ciy;.
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Because of mh > 7 and m > k + v + 1, we have

k+1
m o— > e T
(m U)h_k+v+1T

T
mo = [((k T/ k+o+ 1))7} +1,

where [a] is an integer with a — 1 < [a] < a. Repeating the above process ng (ng < mg) times,
we can obtain the global error estimate ||z, — z(t,)l| + llyn — y(¢n)|| for all n (nh < T). Let

Let

C = max ((1 + ho)él,ég, .. .,C’no) .

The proof is completed.

REMARK 2.2. It is well known that the k-step (k < 6) backward differentiation formulas (BDF)
is of order k, A(a)-stable, and strictly stable at infinity. Therefore, the methods satisfy the
assumptions in Theorem 2.1.

REMARK 2.3. System (2.2a),(2.2b) constitutes a nonlinear system with respect to x4 and y, 4.
The Jacobian of the system is of the form

(I}\[ + O(h) O(h) )

€ (}

_ _ 17
O(1) EB_kIN — 9y (Tntk, Tntks Yntk> Intk) (2.17)

Since condition (2.1) and the fact that the method is A(a)-stable and strictly stable at infinity,
it follows from formula (VI.1.52) in [12] (there is a typing error in the formula, where o(¢~%)
should be ¢(¢~1)) that

Consequently, also the inverse of (2.17) is uniformly bounded for ¢ > 0 and k < hy. Hence, the
nonlinear system (2.2a),(2.2b) possesses a locally unique solution.

€ Qy

-1
('“—IN — 9y ($n+ksg_«'n+k»yn+ksgn+k)) <Cu.
h By

REMARK 2.4. The result (Theorem 2.1) can be considered as an extension of that obtained by
Lubich (cf. [13]) for the case of singular perturbation problems without delay.

3. ERROR OF RUNGE-KUTTA
METHODS FOR MSPPS WITH DELAYS

In this section, we assume problem (1.1) satisfies the following conditions:

(f@1,u,9,v) = (2,8, 9,0), 21 = T2) < wiflz1 = 2o, (3.1a)

<g(lv u, Y1, U) - g(l', ’U.,y2,'l,'), Y1 — y2> S _U.)Q”yl - y2||27 (31b)

with moderately-sized constant w; and —wq, where z,z;,29,u € RM, y,y1,y2,v € RN, and
flx,u,y,v) and g(zx, u, y, v) satisfy Lipschitz conditions with respect to other arguments. Without
loss of generality, we assume wq = 1 (cf. {12]).

We note that the one-sided Lipschitz condition (3.1a) is weaker than the conventional Lipschitz
condition

||f(‘7:17 uvyvv) - f(.’L‘Q,U, Y, 'L‘)H < L“.’L‘1 - 1"2“7 (32)

since (3.2) implies (3.1a) with w; = L for moderately-sized L. If problem (1.1) satisfies (3.2) with
moderately-sized L. it is called a single stiff singularly perturbed problem (SSPP) with delays.
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If L > 1, it is called a multiple stiff singularly perturbed problem (MSPP) with delays whose
stiffness is caused by the small parameter ¢ and other factors. In 1988, Hairer et al. [10] obtained
the sharp error bounds of Runge-Kutta methods for SPPs. However, it is restricted within the
limits of SSPPs. In 1999, Xiao [16] investigated the error of Runge-Kutta methods for MSPPs.
In this section, we extend the study of Xiao to MSPPs with delays.

A Runge-Kutta method (A4, b, ¢) applied to system (1.1) gives

x™ =xn+h§3:aijf (XM xM W EM), =120, (3.32)
i=1

¥V = ey, + hzs:a;jg (X XMy =12, (3.3b)
j=1

Tnyl =2Zn + hzs: bif (Xj"’,)‘(}”’, VAR Y;‘"’) , (3.3c)
i==]

€Unsl = €Un + hibig (Xﬁ"),X,F”’, x‘"’,?,.‘“)) , (3.3d)

i=1

where z, and y, are an approximation to the exact solutions z(t,) and y{t,), respectively.
The arguments X’;") and Y’j(“) denote an approximation to z(t, + ¢;h — 1) and y(t, + c;h — 1),
respectively, which are obtained by a specific interpolation procedure at the point t = t, +c;h—7
using values x;. and yx, respectively, with &k < n.

We always assume that 0 <¢; <1 (i=1,...,s).

Process (3.3) is defined completely by the Runge-Kutta method (A, b,¢) and the interpolation
procedure for X ](-") and YJ-(").

Let 7 = (m — d)h with integer m and é € [0,1), ¢; + § = [; + 6; with integer [; and 6; € [0,1)
for 1 < j <s,then 0 <![; £1. Let u,v > 0 be integers. We consider the following interpolation
procedure:

v
Z Li(0;)Tn-mst,+i» tat+ch—7>0, v+2<m,

Xyl} = § imep (3.4a)
@(tp +cjh —7), th+ch—-7Z0,
i
_ Li(0)yn—m+t;+i» ta+ch—7>0, v+2<m,
Yj(n) - lg;“ Vi ln—m+l;+is tn +Cj (3.4b)
Y(tn +cjh —7), tn +cjh -7 <0,

where 1 = @(tx) and yg = ¥(ty) for £ < 0, L;(0) is defined by (2.4), and we assume m > v + 2
not only so as to guarantee that, in the interpolation procedure, no unknown values x4 and yx
with & > n are used, but for simplicity in discussion of Part (c) in this section.

For any matrix H, let H=HglI a1, H = H® In, where ® denotes Kronecker product of
two matrices, and I; denotes an { x [ unit matrix. Then process {3.3) can be written in the more
compact form

X" = e@z, +hAF (X"",X""’,Y‘"’,Y‘”)), (3.5a)
Y™ = e @y, + RAG (X‘"),X'(“), Yy, }'f(")) , (3.5b)
Zng1 = Tn + hOTF (X<"),)‘<<"),Y(").?(">) : (3.5¢)

Yns1 = €Y + RETG (X“”, X yin), Yf‘“’) , (3.5d)
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with the following notational conventions:

(n) - wi{n) (n) o (n)
Xlﬁ X}‘I’l }/112 Yln
(n) i (n) (n) r(n)
x) — X , X - X X yn) = Y ’ v - Y ,
grz) —gn) Ys(n) Ys(n)

Ff (X§n)*)?{n)’yl(n)7?l(n)) 1
()} w{n) yr(n) y(n)
X5 LY
F (X, X0,y (™, gm) = (% 2o ")

E A R 7R d)

[ (XM, XMy, 7))

X(n),X’(n).Y("),Y(")
G(x(n),X(n)’Y(n)’?(n))z 9( 2 142 2 oY ) ’

-g( én)v "én),n(ﬂ),)?s(n))-

and e =[1,1,...,1]T € R*.
It is well known that a method (A, b, ¢} is said to be algebraically stable if B = diag(b;, bs,. ..,
bs), b; > 0, and the matrix
BA+ATB-bb"

is nonnegative definite (cf. [18]). A method is said to be diagonally stable if there exists an s x s
diagonal matrix Q > 0 such that the matrix QA+ AT Q is positive definite (cf. (19]). A method is
said to have stage order ¢ if q is the largest integer such that the following simplifying conditions
(cf. {20]) hold:

B(g) : chj‘1=§, i=1.2...,q,
: o
C(q)‘ Acy_l:;"' j:1721..-9q3

with ¢/ = (c{,cﬁ,cg)T

In this section, the constants h;, D, D;, D;, and D;; used later are independent of the stiffness
of the considered problem, and so are constants symbolized in the O(---) terms.

In order to prove our results, we need the following lemmas [21], and suppose that £ in the
lemmas is a given real constant.

LEMMA 3.1. Assume the method (A,b,c) is diagonally stable. Then there exist the positive
constants g, dy, and dy such that for any given h > 0, z € E¢, with h€ <+, the matrix I, — hAz
is invertible and

where E¢ = {z : z = blockdiag(z1, z2,...,2,) € RMs¥Ms 5, e RMXM (7)< £}, Yo, dy, and do
depend only on the method. Here u(H) denotes the logarithmic norm of H.

(is - hfiz)_l hbT 2 (is - hAz)'l < ds, (3.6)

Sdlv l
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LEMMA 3.2. Assume the method (A, b, ¢} is algebraically and diagonally stable. Then there exist
the positive constants -y, dy such that for any given h > 0, z € E¢, with h§ < v, the matrix
I, — hAz is invertible and

" n N -1
Ing + hbT 2 (Is - hAz) el <1+ dshed(e), (3.7)

where 6(€} =1 for € > 0 and §(£) =0 for £ <0, v, and d3 depend only on the method.

THEOREM 3.3. Suppose that an algebraically and diagonally stable Runge-Kutta method (A, b, ¢}
is of stage order ¢ > 1 and satisfies |n| < 1; the eigenvalues of A have positive real part. If
problem (1.1) satisfies (3.1), then the global error of the method with interpolation procedure (3.4)
satisfies, for € < Dgh®, h < hg, and nh < T,

2w = 2(ta)ll + flyn = y(ta)ll < D (llzo — 2(to)ll + lyo — y(to)ll + A7 + RH+H1), (3.8)

where
n=1-b"4""
PRroor.
{(a) First we derive recursive estimates for the global error. Let Az, = z(t,) - zn, Ay, =

y(tn) — Yn,

X(t) = (2t + )Tzt +coh)T.. .zt + e h)T)

H

(u(t +erh) T y(t + ezh) ,.‘.,y(wcsh)T)T
F(X(t), X(t- T) Y(t).,Y(t—7))
Flalt +ch),z(t +ch = 1)yt +crh),y(t +cth—7)" ...,
F@(t + coh), 2t + csh — 7). y(t + csh), y(t + csh — T))T)T ,
GIX (), X(t — 7)Y (£),Y(t — 7))
= (g (2t + c1h), z(t + eth — 1), y(t + c1h), y(t + erh — )7
g (z(t + csh), 2(t + csh — 7). y(t + csh), y(t + coh — T))T)T ,
AXM = X(t,) - X, AY'™ =Y (t,) - Y™,
AXMW =Xty —7)-X™, AV =Y(t, - 1) - 7V™),
AF®™ = F(X(t2), X (tn = 7)Y (t0). ¥ (ta = 7)) = F (X, X,y ™, p(0)

AG™ = G(X(ta), X (tn = ), Y (ta), ¥ (tn = 7)) = G (X, X (0, ym, pim)

Conditions B{q) and C{g¢) imply

X(tn) = e@x(tn) + hAF (X(tn), X(tr — 7). Y (t2). Y (tn — 7)) + O (RI*1), (3.9a)
Y(t,) = e y(ty) + %AG( X(tn), X(tn = 1), Y (t0), Y (tn — 7)) + O (h9+1) (3.9b)
2(tns1) = 2(ta) + hbT F (X (ta), X(tn — 7). Y (tn), Y (tn — 7)) + O (R9*Y), (3.9¢)

y(tne1) = y(tn) + SETG (X(tn), X(tn = 7),Y(tn), Y (tn — 7)) + O (RIT1) . (3.9d)
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Subtractions of (3.5a) from (3.9a), (3.5b) from (3.9b), (3.5¢) from (3.9¢), and (3.5d) from (3.9d)
yield, for n > 0,

AX™ = e® Az, + RAAF™ + O (h911), (3.10a)
AY™ = e® Ay, + %AAG("’ +O (R, (3.10b)
Azpiy = Azy + hbTAF™ 4 O (R9H1), (3.10¢)
Aynsr = Dyn + %IBTAG("’ +0 (k7). (3.10d)

Since diagonal stability of the method implies that A is invertible (cf. [19]), we can compute AF (™)
and AG', from (3.10a) and (3.10b),

AF = 117 A1 (AX™ — e g Az, + O (A7), (3.11a)
AG™ =~ A7 (AY™ — e 2 Ay, + 0 (). (3.11b)

It follows from (3.10) and (3.11) that

AZpyr = 1Az, +5TATIAXM 4 O (R9FY), (3.12a)
Ayni1 = 1Ay, +bTATIAY ™ 4 O (A7), (3.12b)
On the other hand,
AF™ = FyAX™ + FeAX™ + Fr AY™ + Fp AY ™, (3.13a)
AG™ = GxAX™ + G AX™ + Gy AY™ + GpAY™, (3.13b)

where
1
Fy = blockdiag (/ I (XY‘) +6 (I(tn +cih) - X§n)) ,
0

B(tn +c1h = 7),y(tn + 1h), Y(tn + csh = 7)) d6,
1
- / fe (Xgn? +8 (m(tn +esh) — X§“>) ,
1]
z(t, +csh — 1), y(tn + ch), y(tn + csh - 7‘)) d@) ,
1 — -
Fyg = blockdiag ( /0 Fu (X0 XM 48 (2t + erh - 7) = X)),
Yltn + c1h),y(tn + cth ~ 7)) d8,
1
/ I (Xén)’Xin) +8 (x(tn +csh~7) ~ X’y)) JY(tn + csh), y(t, + csh — 'r)) de) ,
0
l —
Fy = blockdiag ( /0 £ (X§’”, Xyl e (y(tn +eih) — Yl(“}) y(tn + c1h — f)) d9,
1 -
/ fy (Xﬁ""Xf,"),Ys(") +6 (y(tn +¢gh) ~ Ys(")) Yty + csh — T)) d9> .
0
i
Fy = blockdiag ( /0 fu (X{’”. XMy oy 1g (y(tn +eth—T1) — 71‘"’)) de,

1
N / Fo (XX, YD T 46 (y(tn +esh = 1) = ) d6) ,
0
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and likewise for Gx, G ¢, Gy, and Gy, here

_ 8f($’u7y7 U) f — af(fz,u,y,v) f —
- oz o Ou A

Of(x,u,y,v)
y ’
and similarly for g, gy, gy, and g.. From (3.10b) and (3.13b}, we can obtain
-1
Ay =B (is - hAGy)

€

_ 0f(z,u,y,v)

fe dv

fe

€ (3.14)
x (%e ® Ayn + AGXAX™ + AG AX™ + AG AY™ + O (fh")) .
Inserting (3.13a) and (3.14) into (3.10a) gives
(fs - h;in) AX™
-1
= hAFy’-‘ (1; - Efxc;y) AGxAX'™ e Az, + hA (FX—A)-(‘") + F}—»AY"”’)
€ € (3.15)

—1
+ hAFy% (is - feffic:y> (%e ® Ay, + AG¢AX™ + AGe AT ™ + O(eh"))
+0O (R
Using (3.1b), diagonal stability, and the fact the eigenvalues of A have positive real part, by
means of the technique in [21], we have, for any given h > 0,

£ (-tac) |

} < D, (3.16)
It follows from (3.14)-(3.16) and Lemma 3.1 that, for h < hq,

o

< Ds (| Azl + ellAya] + h||aX

+h Hm‘ﬂ")

+eht+ 4 h"“) ., (3.17a)

o

< Dy (|| Aza] + & Agall + [|aX

+ “AY‘")

+ehd + h"“) , (3.17b)
where € = ¢(1 + 1/h). By (3.10c) and (3.13a), we have
Azniy = Azy + hbTFxAX™ + o, (3.18)

where

lonll < Ds (h HAY‘”)” +h HAX"”’ +h HA?(") + th) .
From (3.15)-(3.18) and Lemmas 3.1 and 3.2, we easily obtain, for A < ho,
[Aznsill < (14 O(R))[|Azy|l
+ Ds (eHAynH +h [ AXO| 4 h HA?‘”) 4 ehtHl 4 prtt)

(3.19a)

By (3.17b) and (3.12b), we estimate

1AYas1ll < 1+ O (@) Ayl + D (|1Aza + [ 4X

+ “A?‘")}] +eh? + h‘““) - (3.19b)

On the other hand, for the interpolation procedure {3.4), we have

Z Li (65) (Thomat;+i — T (tkmmat, +i))

i=—p

”)—(J(-k) -z (tx +cjh — T)“ <

D" Li(6)) T (tkemet,+i) — (i + cjh = T)

i=—pn

+
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In analogy to (2.11), we have the following estimate:

|ax®| < Dy (i Azt —mi]| + BEF ) (3.20a)
i=—p

la7®| < by ( i | Ayest, —msi]] + h“*"“) : (3.20b)
i=—p

It follows from (3.19) and (3.20) that

n—1 n-—-1 n-1
1Azl < 1Azo] + Do Y (Rl Az +€llAyill) + Do > di + Do Y _ di,
i=0 i=0 i=0 (3.21a)
n-1
1Ayl < ™ 180l + Do S~ ™= (1Az| + & | Apil)
i=0
nel | - | (3.21b)
+ Dy Z n""1ie; + Dy Z Tl
e —rd
where
d; = O (h?*! + eh*!), e; = O (h7*! + eh?),
- {0, t<m—-v-—1,
B h ”Ayi—m+u+1” + hu+u+2’ 1 Z m-—v -1,
R {0, i<m-v-1,
e, = X
NAZi w1l + 1 AYicmpwsal] + A#TVFL tzm-—v-—1
{b) We define sequences {u,} and {v,} (n > 1) by
n—1 n—1 n-1 -
un = |Azol| + Do Y _(hu; +ev;) + Do »_di+ Dy >_ d;.
=0 i=0 i=0
n—1 . n—1 ‘ -1 ‘ (322)
vy =n"||Ayoll + Dy Z I]nﬁl-' (u; + €vi) + Dy Z T]n‘ltlei + Dy Z I]n_l_té,-.
i=0 i=0 i=0

By a similar process of Part (b) in the previous section, and noting the fact (n + O(&))™ =
O@") + O(€) for € < Doh? and nh < T, we easily show from (3.22)

n—1
un < Dyg (Uo + €vg + Z (d, + éé,’)) s

=0 (3.23)

n—1
tn < Dy (Uo + (" +€) v + Z ((ii +(@" 1+ E) éi)) ;

i=0

for n > 1 and h < hy, where d; = O(d; +d;), é; = Ole; + €;).
(¢} Our next aim is to obtain the global error estimate in successive subintervals.
Forn € [lom—v—1],dy-1 = 0.€,-1 =0, it follows from ||Az,|| € un, ||Ayn|| < v,, and (3.23)
that .
lzn — 2(ta)ll € Dy (llzo — z(to)ll + €llyo — y(to)ll + A7 + €h?),

- N (3.24)
lyn — y(@Ea)ll < D1 (llzo — 2(to)ll + (0" + €) llyo — y(to)l| + hY + €h?).
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Forn € [m—v,2m—2v—1], dno1 = hl| Ayn—mao | +h42 60 1 = |AZn—man | H | AUn—man |+
hatvtl by (3.23) and (3.24), we get
lzn = 2(ta)l € D2 (2o — z(to)l + llyo = y(to)ll + A + eh? + h#¥H1) | (3.25)
< .

lyn = y(ta)l < D2 (llzo = z(to)ll + g — y(to)l| + h? + €h? + h#++1) .

Generally, for n € [i(m ~ v), (i + 1)(m — v) — 1], by induction, (3.25) is also valid with D,
replaced by Diy .

Similar to the process of Part (c) in the previous section, repeating the above process n; times,
where n; is independent of h, we can obtain the global error |z, — 2(tn)|| + ljyn — y(tn)| for all n
(nh <T). Let

D = 2max ((1 + Doho + Doh3) Dy, Dy, ... Dn, )

The proof is completed.

REMARK 3.4. It is well known that s-stage Radau IA and Radau IIA methods are all alge-
braically and diagonally stable and satisfy 1 —bT A~ le = 0 (cf. [12,19]). We have verified that
the eigenvalues of A of the methods have positive real part for s < 5. We note that s-stage
Radau IA method is of stage order p = s — 1 and Radau IIA method p = s. Hence, Radau IA
and Radau IIA methods all satisfy the assumptions in Theorem 3.3, and p = s — 1, s (s < 5),
respectively.

We also can verify that the two-stage Lobatto IIIC method satisfies the assumptions in Theo-
rem 3.3.

REMARK 3.5. System (3.5a),(3.5b) constitutes a nonlinear system with respect to X ) and Y (»),
The Jacobian of the system is of the form

(fs —hAZy O(h) ) (3.26)

o1y I, - Azy
h
where

Zyx = blockdiag ( fe (XY”,X}"’,}Q("’,?f")) s fo (Xgm,)“(g"),}g("),ff;"’)) ,
Zy = blockdiag (gy (Xf"),an),Yl("),Yl(")) " (Xgn),j(s(n),ys(n),ys(n))) .

By Lemma 3.1 and condition (3.1a), we have, for h < hs,

. . -1
H (I, -rdzx) | <du.
We can show as (3.16), for any given h > 0,
f, - Azy)
il S . < dy.
l (h : ! ) Sd

Hence, the nonlinear system (3.5a),(3.5b) possesses a locally unique solution.
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REMARK 3.6. The result (Theorem 3.3) can be considered as an extension of that obtained by
Xiao (cf. [16]) for the case of singular perturbation problems without delay.

4. NUMERICAL EXAMPLES

In order to illustrate the results obtained in Sections 2 and 3, we consider the following linear
and nonlinear problems (4.1) and (4.2) whose exact solutions are given. Though (4.1) and (4.2)
are all nonautonomous, we can transform them into autonomous form (1.1) by adding ¢ to the
variable x as

[i] B (f(m(t),m(t - :),y(t),y(t - v-))) '

For the following given a; and ag, we can easily verify conditions {2.1) and (3.1). We apply
the two-step BDF (BDF2) and the two-stage Radau IIA method (RadaullA2) to the problems,
respectively. Noting that the BDF2 is of order p = 2 and the Radau IIA2 is of stage order ¢ = 2,
according to Theorems 2.1 and 3.3, we select linear interpolation procedure (i.e., 4 =0, v = 1)
for BDF2 and RadaullA2. Moreover, in order to observe whether the order of convergence of the
adapting RadaullA2 increases when the order of the interpolation procedure increases, we also
consider quadratic interpolation procedure {(ie., u=-1, v =1for0<8; <050rp=0,v =2
for 0.5 < 8; < 1) for RadaullA2. We denote BDF2 and RadaullA2 with linear interpolation
procedure by BDF2-1 and RadaullA2-1, respectively, RadaullA2 with quadratic interpolation
procedure by RadaulIA2-2. Let err, and erry be the global errors of z- and y-components at
T = 10, respectively, err = err; + err,. Let ¢ = 10-%. The numerical results (i.e., err) are listed
in Tables 1 and 2. For a; = —5 in problem (4.1), the result of RadaullA2-2 is better than that
of RadaullA2-1, but for a; = —1000, the results are not improved apparently for RadaullA2-2.
For aa = —1 in problem (4.2), the result of RadaullA2-2 is better than that of RadauilA2-1,
hut for ap = —1000, no accuracy increase is observed for RadaullA2-2. Therefore, for multiple
stiff problems, it is sufficient to require that the order of the interpolation procedure matches the
stage order of the method in Theorem 3.3; i.e., higher order of the interpolation is not necessary.
It is clear that the results given by Tables 1 and 2 confirm Theorems 2.1 and 3.3.

Table 1. Numerical results for problem (4.1).

BDF2-1 RadaullA2-1 RadaullA2-2

ay —~5 -5 —1000 -5 —1000

h =02 1.7E-1 21E-1| 3.0E-6| 14E-2| 2.5E-6
h=0.1 4.5E-2 | 5.5E-2| 83E-7| 1.7E-3| 6.0E-7
h =005 1.2E-2 | 14E-2| 25E-7] 22E~4] 14E-7

Table 2. Numerical results for problem (4.2).

BDF2-1 RadaullA2-1 RadaullA2-2

az -1 -1 —1000 -1 —1000

h =02 70E-4 | 25E-4| 18E-8 1.6E~5| 2.0E-8

h=0.1 1.8E—4 | 6.5E-5| 4.0E-9 20E~-6| 4.7E-9

h =005 4.5E-5 17E-5| 79E-10| 26E~-7] 1.1E-9
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EXAMPLE 4.1. Consider the linear problem

'8y = 2z(¢t — 1) + y(t — 1) + ayz(t) + y(t) + (), t>0,

ey’ (t) =x(t — 1) — y(t — 1) + 3z(t) — y(t) + ry(2), t>0,
z(t) =1+ 10e~(1/2UHD) 4 5=/ (t+1) t <0, (1)
y(t) = -1 ge~ (M/D+1) | gp=(1/e)(t+1) t <0,

where a; is a parameter, and
T‘L‘(t) =(4- 10a1)e—(1/2)(t+1) - (_i_ + 5a; + 4) e~ (1/O+1) _ 11— (1/2)t _ 1de— {1/t _ ar,

ry(t) = (ge - 39) e~/ _15e=(1/at+l) _ 19e=(1/Dt _ o=(1/e)t _ ¢,

Problem (4.1) has the exact solution z(t) = 1 + 10e=(}/2{t+]) 4 5e—(/0t+D) 4y = 1 —
9e~(1/AU+D) 4 ge=(1/t+Y) 1t 5 0, 2(10) = 1.040867714384641, y(10) = —1.036780942946177.

ExAMPLE 4.2. Consider the nonlinear problem

2'(t) = 2(t — Dylt — 1) + a2z(t) + 25%(t) + Re(t), t>0,
ey (t) =x(t — 1) —y(t — 1) — (L + z(t))y(t) + Ry(t), t>0,
z(t) = e 0% 4 702, t <0,
y(t) — _e—O.at + 6—0'%, ¢t < 0’

(4.2)

where as is a parameter, and

R.r(t) — _(05 “+ a2)€—0.5t _ (02 + a2)€—0.2t + e~(t—1) _ e-—~0.4(t—-l) _ 28—! _ 26—~0.4t + 48_0'7t,
R, (t) = (0.5¢ — 1)e™%% + (1 — 0.2¢)e7 02 — 270-5(=1) _ o=t 4 o=0.dt,

Problem (4.2) has the exact solution z(t) = €705 4 e 02t y(t) = —e= 05t 4 o-02t 5 g
2(10) = 0.1420732302356982, y(10) = 0.1285973362375272.
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