5,866 research outputs found

    The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    Get PDF
    Background: Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. Methods: We tested 10 able-bodied participants walking on a treadmill at 1.25 m.s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. Results: When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Conclusions: Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing

    A Comparison of Cleated Footwear Conditions and the Effects on Ground Reaction Forces During the Phases of a Side-Cut Task

    Get PDF
    Within sports and athletics, one area of interest is finding methods to increase the performance of athletes while simultaneously minimizing their risk for injury. In two of today’s most popular sports (soccer and American football), cleated footwear is common equipment used to increase performance during sport-specific tasks. The interaction between cleated footwear and sport-specific tasks is one area of interest researchers are beginning to investigate and analyze the concerns of performance and safety. Therefore, the purpose of this study was to determine the effects of American football cleats, soccer cleats, and running shoes have on ground reaction forces (GRF’s) in the y and z directions for the braking and propulsion phases of a side-cut task (SCT). Twelve male recreationally and collegiately trained American football and/or soccer players (Age: 21.82 ± 1.47 years; Height: 180.63 ± 4.73 cm; Mass: 87.77 ± 14.83 kg) participated in this study. Participants conducted three SCT trails for each footwear condition (football cleat, soccer cleat, and running shoes), for a total of nine SCT trials. GRF’s produced during the SCT trials were measured and recorded using a 0.4m x 0.4m AMTI OR6-6 (AMTI, Watertown, MA) force plate. Results showed no significant differences (p >.05) between footwear conditions and the variables of interest in the y and z direction during the braking or propulsion phases of the SCT. For athletes and coaches, this indicates neither football nor soccer cleats provided a greater advantage in the performance of a SCT during its braking and propulsion phases

    Studie zur neuromuskulären Stabilisierung des Sprunggelenkkomplexes anhand ausgewählter Muskeln

    Get PDF
    Das erfolgreiche Interagieren mit der Umwelt ist bezüglich der motorischen Kontrolle des Bewegungsapparates eine komplexe Aufgabe. Bei sich ändernden äußeren Anforderungen muss eine situationsadäquate Regulation der involvierten motorischen Strukturen erfolgen. Dazu müssen neuromuskuläre Prozesse im Sinne der Aufgabenerfüllung aufeinander abgestimmt werden, um beispielsweise ein externes Objekt sicher kontrollieren zu können. Wird die Stabilität während der Aufgabenerfüllung nicht durch die Umwelt (bzw. das Interaktionsobjekt) gesichert, muss das neuromuskuläre System diese Ausgabe übernehmen

    A Review of the Treatment and Prevention Options for Medial Tibial Stress Syndrome

    Get PDF
    Medial Tibial Stress Syndrome (MTSS) is a chronic lower-limb injury that effects a large population of athletes and exercisers. There is no definitive knowledge on what causes this injury, making prevention and treatment difficult. The purpose of this thesis is to identify the prevention and treatment methods for MTSS that seem the most promising. The risk factors of MTSS and possible preventative methods are first presented. Following this is an overview of both traditional and cutting-edge treatment options. One of the major conclusions reached in this thesis is that prevention of MTSS is often easier than treating it after onset. This thesis therefore highlights the need for a shift in emphasis from treatment to prevention of MTSS and presents practical ways to do so. This thesis also points to the need for continuing research, especially into less conventional treatment methods

    Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses

    Get PDF
    Stride-to-stride fluctuations of joint kinematics during walking reflect a highly structured organization that is characteristic of healthy gait. The organization of stride-to-stride fluctuations is disturbed in lower-limb prosthesis users, yet the factors contributing to this difference are unclear. One potential contributor to the changes in stride-to-stride fluctuations is the altered push-off mechanics experienced by passive prosthesis users. The purpose of our study was to determine if changes in push-off mechanics affect stride-to-stride fluctuations in transtibial amputees. Twenty-two unilateral transtibial amputees were enrolled in the 6- week cross-over study, where High and Low Activity (based on the Medicare Functional Classification System) prostheses were worn for three weeks each. Data collection took place at the end of the third week. Participants walked on a treadmill in a motion capture laboratory to quantify stride-to-stride fluctuations of the lower extremity joint angle trajectories using the largest Lyapunov Exponent, and over floor-embedded force platforms to enable calculating push-off work from the prosthesis and the sound limb. Push-off work was 140% greater in the High Activity prosthesis compared to the Low Activity prosthesis (p \u3c 0.001), however no significant change was observed in stride-to-stride fluctuations of the ankle between the two prosthesis types (p = 0.576). There was no significant correlation between changes in prosthesis push-off work and the largest Lyapunov exponent. Though differences in push-off work were observed between the two prosthesis types, stride-to-stride fluctuations remained similar, indicating that prosthesis propulsion mechanics may not be a strong determinant of stride-to-stride fluctuations in unpowered transtibial prosthesis users

    Impact of Increased Load Carriage Magnitude on the Dynamic Postural Stability of Men and Women

    Get PDF
    The impact of load carriage on dynamic postural stability affects the survivability of the Warfighter by influencing performance capabilities and injury incidence. Further, sex may interact with the relationship between load carriage and dynamic postural stability to further compromise survivability. PURPOSE: To investigate the effect of load carriage magnitude on dynamic postural stability of men and women and its relationship to jumping ability. METHODS: 32 subjects (16 men, 16 women) were investigated for maximum jump height and dynamic postural stability. Dynamic postural stability was assessed by subjects jumping a horizontal distance of 40% their height over a 30cm hurdle, landing on one leg on a force plate (sample rate = 1200 Hz). 3 trials were completed for 3 load conditions: +0, +20 and +30% body weight (BW). Dynamic postural stability was determined from ground reaction force data during landings, by calculation of the dynamic postural stability index (DPSI). Maximum jump height was assessed by subjects performing 3 countermovement jumps (sample rate = 1000 Hz). Two-way repeated measures ANOVA were used to compare mean DPSI scores between sexes and conditions (α = 0.05). Pearson’s Correlation Coefficients were used to determine the relationship between jump height and change in DPSI scores between conditions (α = 0.05). RESULTS: Load condition significantly affected DPSI (F = 100.304, p = 0.001). DPSI scores increased between the 0% (0.359 ± 0.041), 20% (0.396 ± 0.034) and 30% (0.420 ± 0.028) BW load conditions. No significant effect of sex on DPSI was found (F = 0.131). No significant sex by load interaction on DPSI was found (F = 0.393). No significant correlations were found between jump height and change in DPSI scores between conditions. CONCLUSION: Increased load was found to negatively affect dynamic postural stability, most likely as a result of modifying the demands of the task. Therefore, the dynamic postural stability of men and women changes comparably in response to increased load carriage magnitude. Future research should focus on the effects of load on dynamic postural stability under higher loads and during more military-specific tasks

    Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb

    Get PDF
    In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion
    • …
    corecore