5,751 research outputs found

    The Euler-Poincaré Equations in Geophysical Fluid Dynamics

    Get PDF
    Recent theoretical work has developed the Hamilton's-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler-Poincaré equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d'Alembert type in which variations are constrained; 2. an abstract Kelvin-Noether theorem is derived for such systems. By imposing suitable constraints on the variations and by using invariance properties of the Lagrangian, as one does for the Euler equations for the rigid body and ideal fluids, we cast several standard Eulerian models of geophysical fluid dynamics (GFD) at various levels of approximation into Euler-Poincaré form and discuss their corresponding Kelvin-Noether theorems and potential vorticity conservation laws. The various levels of GFD approximation are related by substituting a sequence of velocity decompositions and asymptotic expansions into Hamilton's principle for the Euler equations of a rotating stratified ideal incompressible fluid. We emphasize that the shared properties of this sequence of approximate ideal GFD models follow directly from their Euler-Poincaré formulations. New modifications of the Euler-Boussinesq equations and primitive equations are also proposed in which nonlinear dispersion adaptively filters high wavenumbers and thereby enhances stability and regularity without compromising either low wavenumber behavior or geophysical balances

    Brane Inflation, Solitons and Cosmological Solutions: I

    Full text link
    In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we incorporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. This new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane-antibrane annihilation, to name a few. We also discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that could occur in a slightly different regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realise these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic Kahler manifolds.Comment: Harvmac, 115 pages, 9 .eps figures; v2: typos corrected, references added and the last section expanded; v3: Few minor typos corrected and references added. Final version to appear in JHE

    A landscape of non-supersymmetric AdS vacua on coset manifolds

    Full text link
    We construct new families of non-supersymmetric sourceless type IIA AdS4 vacua on those coset manifolds that also admit supersymmetric solutions. We investigate the spectrum of left-invariant modes and find that most, but not all, of the vacua are stable under these fluctuations. Generically, there are also no massless moduli.Comment: 20 pages, 11 figures, v2: added some clarifications, references, v3: corrections addressing comments refere

    Universal de Sitter solutions at tree-level

    Full text link
    Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference

    A short proof of chaos in an atmospheric system

    Get PDF
    We will prove the presence of chaotic motion in the Lorenz five-component atmospheric system model using the Melnikov function method developed by Holmes and Marsden for Hamiltonian systems on Lie Groups.Comment: PACS: 02.20.Sv; 02.30.Hg; 02.40.-k; 92.60.-e. 5 page
    corecore