metadata, citation and similar papers at core.ac.uk brought to you by, CQ

provided by Infoscience - Ecole polytechnique fédérale de La

@E PHYSICS LETTERS A

ELSEVIER Physics Letters A 300 (2002) 189-191

www.elsevier.com/locate/pla

A short proof of chaos in an atmospheric system

Petre Birte&*, Mircea Put&, Tudor S. Ratid, Razvan Tudorap

2 Institut Bernoulli, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
b Departamentul de Matematic Universitatea de Vest, 1900 Tsoara, Romania

Received 12 March 2002; received in revised form 12 March 2002; accepted 18 June 2002
Communicated by A.P. Fordy

Abstract

We will prove the presence of chaotic motion in the Lorenz five-component atmospheric system model using the Melnikov
function method developed by Holmes and Marsden for Hamiltonian systems on Lie Gro2@32 Elsevier Science B.V. All
rights reserved.
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1. Introduction first factor is endowed with the Lie—Poisson structure
and the second with the standard symplectic struc-

The first model equations for the atmosphere are ture. Using this diffeomorphism, the five-component

the so-called primitive equations (PE). This model al- Lorenz model takes on a form appropriate for the

lows wave-like motions on different time scales. The application of the Melnikov function method on Lie

slow motions which have a period of order of days groups developed by Holmes and Marsden [4] in or-

are called Rossby waves and the fast motions which der to study the presence of chaotic motion. The pres-

have a period of hours are called gravity waves. The ence of chaos for the five-component Lorenz model

question of how to balance these two time scales lead Was first proved by Camassa in [3], see also [2].

Lorenz [5] to introduce a simplified version of the (PE)

model, the so-called five-component model. This is a

system of five differential equations which couples the 2. The geometry of Lorenz simplified model of

Rossbhy waves and gravity waves. This system turns Rossby gravity-waveinteraction

out to have a Poisson formulation ®&? first discov-

ered by Bokhove [1]. We shall find a Poisson diffeo- The model introduced by Lorenz in [5] is described

morphism between the Poisson structure of Bokhove by the following set of differential equations:

and the product structure a*(2) x R2, where the

X1 = —x2x3 + €x2X5, X2 = X1X3 — €X1X5,
rE . X3 = —Xx1X2, X4 = —Xxs,
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where the variablesy, x5 represent the fast gravity
wave oscillations andj, x2, x3 are the slow Rossby
wave oscillations, with the paramete(related to the
Rossby number) coupling the two sets of variables.

In [1], Bokhove wrote the system (2.1) in the
following Hamiltonian form:

x={x, H},
where the Hamiltonian function is given by
H (x1, x2, X3, X4, X5)

1 2 2 2 2 2
= E(xl—i—sz + x5 + x5 + x5),

and the Poisson brackgt -}1 is defined by
of o of 0
{f, g}l :xl[(_f_g _ _f_g)

0x2 0x3  dx3 dx2

of g 9f og
4+ —————
0x50x2  Jdx2 dxs

af dg  of dg
+x\ s
0x30x1 0x10x3
af dg  of 9g
+el ——————
0x1 0x5  Jdx5 0x1
af dg  df 9g

x5 0x4  O0x4 x5
On the spacee*(2) x R® consider the Poisson bracket
given by the product bracket of the Lie—Poisson
bracket onse*(2) and the Poisson bracket di?
induced by the standard symplectic form @&f.
Denoting by(u1, 2, n3) the variables ose*(2) and
by (u1,u2) the variables oiR?, the product Poisson
bracket is given by

of o0g of og
{f’ g}2 =X1 -
0203 Ou3 du2

( of 9g  9f og )
| e —
Ouzour  Op1 ous
df d9g  9f dg
duo duy  duq dun
The Casimir function for this Poisson bracket is given
by

Cp1, 2, 143) = 12 + u3.

It is easy to verify that the linear transformatidn:
Rs — se*(2) x R?Z given by

D (x1, x2, X3, X4, X5) = (X1, X2, X3, X4, EX3 + X5)
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is a Poisson diffeomorphism betwe€k®, {-, -}1) and
(5¢*(2) X R?, {-, -}2).

In the new variables the system (2.1) becomes
11 = — o3 + epauz — £2juous,
[i2 = pips — epaup + 2 paus, 3 = —[L1je2,
1= —uz+eus, (2.2)

which is an Hamiltonian system with respect to the
Poisson brackdt, -}» and the Hamiltonian function is
given by

1’22 = —uia,

H® (1, w2, u3, ut, u2)
1
=5 (13 + 23+ u3 + uf + u3 — 2ep3uz + £2113).
(2.3)

3. Chaos by the Menikov method

We will prove the occurrence of chaotic motion in
the system (2.2) by showing the existence of transverse
heteroclinic orbits. In [6] Melnikov (see also [7]) gave
an effective method to prove the existence of trans-
verse heteroclinic (homoclinic) orbits in the Poincaré
map for a perturbed one-degree of freedom Hamil-
tonian system by measuring the “distance” between
the stable and unstable manifolds associated with
the saddle points. This method was generalized by
Holmes and Marsden to the case of perturbed two-
degree of freedom Hamiltonian systems when the
phase space is a product of the dual of a Lie alge-
bra and a set of action-angle variables. We briefly re-
call below this result; see Holmes and Marsden [4] for
proofs.

The setting is the following. The phase space is the
product of the dual of a Lie algeb@andR?. The
Hamiltonian has the form

H®(w,6,1) = F(u) + G +eHw, 6, 1) + 0(£?)

= HOu, ) + e H (11,6, 1) + O(£?)

(3.1)
wherep = (@1, ..., um) € g* and (0, I) are coordi-
nates orR?, with 6 a 2r-periodic variable. It is also
assumed that the Lie—Poisson system whose Hamil-
tonian is F has a heteroclinic (or homoclinic) orbit
(1) € g*. The oscillator frequency

Q)=+
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is assumed to be positive. The result is the following: HO=h=M?+k,

L whereM? = ;2 + 12 andk is a constant, as
Theorem 3.1 (Holmes—Marsden)Supposgi(z) is a H1t M2

heteroclinic(or homoclinig orbit for the Lie—Poisson u1(t) = £M sechiMy),
system whose Hamiltonian 15, which lies in a two- u2(t) = M tanh(Mt),
dimensional coadjoint orbitig*. Leth = F(j1) be the u3(t) = +M sechiMr),
energy of the heteroclinic orbit and let> 4 and® = I =k, 6=1+69.

G~Y(h — h) be constants. LetF, H}(t,6°% denote  The Melnikov function is:
the Lie—Poisson bracket @f(x) and H (i, 2 (%7 +

69 1% evaluated afi(7). Let v
) oy M(6°) = —/@Mzsect(Mz)tan}‘(Mt)
o0

o0
M(6°) = ﬁ / (F,HY)(1.6%) di x sint + 6%) dr
—00 0
and assume/ (6°) has simple zeros. Then fer> 0 = —@M2< / sinh(M1) cosh 2(M1)
sufficiently small, the Hamiltonian syste@11) con- —o0
tains transverse heteroclinic orbits and hence Smale x sin(r) dz) coss®
horseshoes on the energy surfdgéé = h.

= /2 seck(l) cos’,

Now we will prove that the system (2.2) verifies M

the conditions of the above theorem. The unperturbed ] .
system of (2.2) ome*(2) has unstable critical points ~ Which has simple zeros as a function 6f and
(0, £M, 0) lying on the 2-dimensional coadjoint orbit  therefore the Hamiltonian system (2.2) fer> 0

given by the cylinder sufficiently small, has transverse heteroclinic orbits
and hence Smale horseshoes in a suitably chosen cross
{(w1, 2, 13) € 5¢*(2) : 12 + u3 = M?}. section of the constant energy surface with 0.
On this coadjoint orbit we have the heteroclinic orbits
given by Acknowledgements
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pletely integrable and in action—angle coordinates
(1,0),u1 =21 cosf, uz = +/21I sind, takes the form
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