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Abstract

We will prove the presence of chaotic motion in the Lorenz five-component atmospheric system model using the Melnikov
function method developed by Holmes and Marsden for Hamiltonian systems on Lie Groups. 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The first model equations for the atmosphere are
the so-called primitive equations (PE). This model al-
lows wave-like motions on different time scales. The
slow motions which have a period of order of days
are called Rossby waves and the fast motions which
have a period of hours are called gravity waves. The
question of how to balance these two time scales lead
Lorenz [5] to introduce a simplified version of the (PE)
model, the so-called five-component model. This is a
system of five differential equations which couples the
Rossby waves and gravity waves. This system turns
out to have a Poisson formulation onR

5 first discov-
ered by Bokhove [1]. We shall find a Poisson diffeo-
morphism between the Poisson structure of Bokhove
and the product structure onse∗(2) × R

2, where the
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first factor is endowed with the Lie–Poisson structure
and the second with the standard symplectic struc-
ture. Using this diffeomorphism, the five-component
Lorenz model takes on a form appropriate for the
application of the Melnikov function method on Lie
groups developed by Holmes and Marsden [4] in or-
der to study the presence of chaotic motion. The pres-
ence of chaos for the five-component Lorenz model
was first proved by Camassa in [3], see also [2].

2. The geometry of Lorenz simplified model of
Rossby gravity-wave interaction

The model introduced by Lorenz in [5] is described
by the following set of differential equations:

ẋ1 = −x2x3 + εx2x5, ẋ2 = x1x3 − εx1x5,

ẋ3 = −x1x2, ẋ4 = −x5,

(2.1)ẋ5 = −x4 + εx1x2,
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where the variablesx4, x5 represent the fast gravity
wave oscillations andx1, x2, x3 are the slow Rossby
wave oscillations, with the parameterε (related to the
Rossby number) coupling the two sets of variables.

In [1], Bokhove wrote the system (2.1) in the
following Hamiltonian form:

ẋ = {x,H }1,

where the Hamiltonian function is given by

H(x1, x2, x3, x4, x5)

= 1

2

(
x2

1 + 2x2
2 + x2

3 + x2
4 + x2

5

)
,

and the Poisson bracket{·, ·}1 is defined by

{f,g}1 = x1

[(
∂f

∂x2

∂g

∂x3
− ∂f

∂x3

∂g

∂x2

)

+ ε

(
∂f

∂x5

∂g

∂x2
− ∂f

∂x2

∂g

∂x5

)]

+ x2

[(
∂f

∂x3

∂g

∂x1
− ∂f

∂x1

∂g

∂x3

)

+ ε

(
∂f

∂x1

∂g

∂x5
− ∂f

∂x5

∂g

∂x1

)]

+ ∂f

∂x5

∂g

∂x4
− ∂f

∂x4

∂g

∂x5
.

On the spacese∗(2)×R
5 consider the Poisson bracket

given by the product bracket of the Lie–Poisson
bracket onse∗(2) and the Poisson bracket onR2

induced by the standard symplectic form onR2.
Denoting by(µ1,µ2,µ3) the variables onse∗(2) and
by (u1, u2) the variables onR2, the product Poisson
bracket is given by

{f,g}2 = x1

(
∂f

∂µ2

∂g

∂µ3
− ∂f

∂µ3

∂g

∂µ2

)

+ µ2

(
∂f

∂µ3

∂g

∂µ1
− ∂f

∂µ1

∂g

∂µ3

)

+ ∂f

∂u2

∂g

∂u1
− ∂f

∂u1

∂g

∂u2
.

The Casimir function for this Poisson bracket is given
by

C(µ1,µ2,µ3) = µ2
1 + µ2

2.

It is easy to verify that the linear transformationΦ :
R5 → se∗(2) × R

2 given by

Φ(x1, x2, x3, x4, x5) = (x1, x2, x3, x4, εx3 + x5)

is a Poisson diffeomorphism between(R5, {·, ·}1) and
(se∗(2) × R

2, {·, ·}2).
In the new variables the system (2.1) becomes

µ̇1 = −µ2µ3 + εµ2u2 − ε2µ2µ3,

µ̇2 = µ1µ3 − εµ1u2 + ε2µ1µ3, µ̇3 = −µ1µ2,

(2.2)u̇1 = −u2 + εµ3, u̇2 = −u1,

which is an Hamiltonian system with respect to the
Poisson bracket{·, ·}2 and the Hamiltonian function is
given by

Hε(µ1,µ2,µ3, u1, u2)

(2.3)

= 1

2

(
µ2

1 + 2µ2
2 + µ2

3 + u2
1 + u2

2 − 2εµ3u2 + ε2µ
2
3

)
.

3. Chaos by the Melnikov method

We will prove the occurrence of chaotic motion in
the system (2.2) by showing the existence of transverse
heteroclinic orbits. In [6] Melnikov (see also [7]) gave
an effective method to prove the existence of trans-
verse heteroclinic (homoclinic) orbits in the Poincaré
map for a perturbed one-degree of freedom Hamil-
tonian system by measuring the “distance” between
the stable and unstable manifolds associated with
the saddle points. This method was generalized by
Holmes and Marsden to the case of perturbed two-
degree of freedom Hamiltonian systems when the
phase space is a product of the dual of a Lie alge-
bra and a set of action-angle variables. We briefly re-
call below this result; see Holmes and Marsden [4] for
proofs.

The setting is the following. The phase space is the
product of the dual of a Lie algebrag and R

2. The
Hamiltonian has the form

Hε(µ, θ, I) = F(µ) + G(I) + εH 1(µ, θ, I) + O
(
ε2)

(3.1)
= H 0(µ, I) + εH 1(µ, θ, I) + O

(
ε2)

whereµ = (µ1, . . . ,µm) ∈ g∗ and (θ, I ) are coordi-
nates onR2, with θ a 2π -periodic variable. It is also
assumed that the Lie–Poisson system whose Hamil-
tonian isF has a heteroclinic (or homoclinic) orbit
µ̃(t) ∈ g∗. The oscillator frequency

Ω(I) := ∂G

∂I
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is assumed to be positive. The result is the following:

Theorem 3.1 (Holmes–Marsden).Supposeµ̃(t) is a
heteroclinic(or homoclinic) orbit for the Lie–Poisson
system whose Hamiltonian isF , which lies in a two-
dimensional coadjoint orbit ing∗. Leth̃ = F(µ̃) be the
energy of the heteroclinic orbit and leth > h̃ andl0 =
G−1(h − h̃) be constants. Let{F,H 1}(t, θ0) denote
the Lie–Poisson bracket ofF(µ) andH 1(µ,Ω(l0)t +
θ0, l0) evaluated at̃µ(t). Let

M
(
θ0)= 1

Ω(l0)

∞∫
−∞

{
F,H 1}(t, θ0)dt

and assumeM(θ0) has simple zeros. Then forε > 0
sufficiently small, the Hamiltonian system(3.1) con-
tains transverse heteroclinic orbits and hence Smale
horseshoes on the energy surfaceHε = h.

Now we will prove that the system (2.2) verifies
the conditions of the above theorem. The unperturbed
system of (2.2) onse∗(2) has unstable critical points
(0,±M,0) lying on the 2-dimensional coadjoint orbit
given by the cylinder{
(µ1,µ2,µ3) ∈ se∗(2) : µ2

1 + µ2
2 = M2}.

On this coadjoint orbit we have the heteroclinic orbits
given by{

µ1(t) = ±M sech(Mt),

µ2(t) = ±M tanh(Mt),

µ3(t) = ±M sech(Mt),

that link the unstable critical points(0,M,0) and
(0,−M,0).

On R
2 the unperturbed system of (2.2) is com-

pletely integrable and in action–angle coordinates
(I, θ), u1 = √

2I cosθ , u2 = √
2I sinθ , takes the form

İ = 0, θ̇ = 1.

Now writing the Hamiltonian (2.3) in the form

Hε(µ1,µ2,µ3, I, θ) = 1

2

(
µ2

1 + 2µ2
2 + µ2

3

)+ I

− εµ3
√

2I sinθ + O
(
ε2),

we are in the setting of the Holmes–Marsden theorem
and we can write the heteroclinic orbits for an energy
level

H 0 = h = M2 + k,

whereM2 = µ2
1 + µ2

2 andk is a constant, as


µ1(t) = ±M sech(Mt),

µ2(t) = ±M tanh(Mt),

µ3(t) = ±M sech(Mt),

I = k, θ = t + θ0.

The Melnikov function is:

M
(
θ0)= −

∞∫
∞

√
2k M2 sech(Mt) tanh(Mt)

× sin
(
t + θ0)dt

= −√
2k M2

( ∞∫
−∞

sinh(Mt)cosh−2(Mt)

× sin(t) dt

)
cosθ0

= −π
√

2k sech

(
π

2M

)
cosθ0,

which has simple zeros as a function ofθ0 and
therefore the Hamiltonian system (2.2) forε > 0
sufficiently small, has transverse heteroclinic orbits
and hence Smale horseshoes in a suitably chosen cross
section of the constant energy surface withk > 0.
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