273 research outputs found

    Nonlinear Discrete Observer for Flexibility Compensation of Industrial Robots

    Get PDF
    This paper demonstrates the solutions of digital observer implementation for industrial applications. A nonlinear high-gain discrete observer is proposed to compensate the tracking error due to the flexibility of robot manipulators. The proposed discrete observer is obtained by using Euler approximate discretization of the continuous observer. A series of experimental validations have been carried out on a 6 DOF industrial manipulator during a Friction Stir Welding process. The results showed good performance of discrete observer and the observer based compensation has succeed to correct the positioning error in real-time implementation.ANR COROUSS

    Regulation Theory

    Full text link
    This paper reviews the design of regulation loops for power converters. Power converter control being a vast domain, it does not aim to be exhaustive. The objective is to give a rapid overview of the main synthesis methods in both continuous- and discrete-time domains.Comment: 23 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    A Method for the Design of Multirate Sampled-Data Digital Flight Control Systems of Piloted Aircraft

    Get PDF
    The initial flight-test operations of piloted aircraft, in which Digital Flight Control (DFC) systems were first employed, exposed handling qualities problems that were not predicted during the design stage. Subsequent studies attributed the cause of these problems to the techniques used in the design of the digital control systems. The particular feature which unites the reported difficulties is that, an infinite-resolution sampled-data model is assumed for the design process but the practical DFC implementation is realised as an amplitude-quantised sampled-data system

    Robust Output Regulation: Optimization-Based Synthesis and Event-Triggered Implementation

    Full text link
    We investigate the problem of practical output regulation, i.e., to design a controller that brings the system output in the vicinity of a desired target value while keeping the other variables bounded. We consider uncertain systems that are possibly nonlinear and the uncertainty of their linear parts is modeled element-wise through a parametric family of matrix boxes. An optimization-based design procedure is proposed that delivers a continuous-time control and estimates the maximal regulation error. We also analyze an event-triggered emulation of this controller, which can be implemented on a digital platform, along with an explicit estimates of the regulation error

    Tutorial on arbitrary and state-dependent sampling

    Get PDF
    International audienceThis tutorial, presents basic concepts and recent research directions about sampled-data systems. We focus mainly on the stability of systems with time-varying sampling intervals. Without being exhaustive, which would be neither possible nor useful, we try to give a structural survey of what we think to be the main results and issues in this domain

    Event-triggered control for rational and Lur’e type nonlinear systems

    Get PDF
    In the present work, the design of event-triggered controllers for two classes of nonlinear systems is addressed: rational systems and Lur’e type systems. Lyapunov theory techniques are used in both cases to derive asymptotic stability conditions in the form of linear matrix inequalities that are then used in convex optimization problems as means of computing the control system parameters aiming at a reduction of the number of events generated. In the context of rational systems, state-feedback control is considered and differentialalgebraic representations are used as means to obtain tractable stability conditions. An event-triggering strategy which uses weighting matrices to strive for less events is proposed and then it is proven that this strategy does not lead to Zeno behavior. In the case of Lur’e systems, observer-based state-feedback is addressed with event generators that have access only to the system output and observed state, but it imposes the need of a dwell-time, i.e. a time interval after each event where the trigger condition is not evaluated, to cope with Zeno behavior. Two distinct approaches, exact time-discretization and looped-functional techniques, are considered to ensure asymptotic stability in the presence of the dwell-time. For both system classes, emulation design and co-design are addressed. In the emulation design context, the control law (and the observer gains, when appropriate) are given and the task is to compute the event generator parameters. In the co-design context, the event generator and the control law or the observer can be simultaneously designed. Numerical examples are presented to illustrate the application of the proposed methods.Neste trabalho é abordado o projeto de controladores baseados em eventos para duas classes de sistemas não lineares: sistemas racionais e sistemas tipo Lur’e. Técnicas da teoria de Lyapunov são usadas em ambos os casos para derivar condições de estabilidade assintótica na forma de inequações matriciais lineares. Tais condições são então utilizadas em problemas de otimização convexa como meio de calcular os parâmetros do sistema de controle, visando uma redução no número de eventos gerados. No contexto de sistemas racionais, realimentação de estados é considerada e representações algébrico-diferenciais são usadas como meio de obter condições de estabilidade tratáveis computacionalmente. Uma estratégia de disparo de eventos que usa uma medida de erro ponderado através de matrizes definidas positivas é proposta e é demonstrado que tal estratégia não gera comportamento de Zenão. No caso de sistemas tipo Lur’e, considera-se o caso de controladores com restrições de informações, a saber, com acesso apenas às saídas do sistema. Um observador de estados é então utilizado para recuperar a informação faltante. Neste contexto, é necessária a introdução de um tempo de espera (dwell time, em inglês) para garantir a inexistência de comportamento de Zenão. Todavia, a introdução do tempo de espera apresenta um desafio adicional na garantia de estabilidade que é tratado neste trabalho considerando duas técnicas possíveis: a discretização exata do sistema e o uso de looped-functionals (funcionais em laço, em uma tradução livre). Para ambas classes de sistemas, são tratados os problemas de projeto por emulação e co-design (projeto simultâneo, em uma tradução livre). No projeto por emulação, a lei de controle (e os ganhos do observador, quando apropriado) são dados a priori e a tarefa é projetar os parâmetros do gerador de eventos. No caso do co-design, o gerador de eventos e a lei de controle ou o observador são projetados simultaneamente. Exemplos numéricos são usados para ilustrar a aplicação dos métodos propostos

    High performance DSP-based servo drive control for a limited-angle torque motor

    Get PDF
    This thesis describes the analysis, design and implementation of a high performance DSP-based servo drive for a limited-angle torque motor used in thermal imaging applications. A limited-angle torque motor is an electromagnetic actuator based on the Laws' relay principle, and in the present application the rotation required was from - 10° to + 10° in 16 ms, with a flyback period of 4 ms. To ensure good quality picture reproduction, an exceptionally high linearity of ±0.02 ° was necessary throughout the forward sweep. In addition, the drive voltage to the exciting winding of the motor should be less than the +35 V ceiling of the drive amplifier. A research survey shows that little literature was available, probably due to the commercial sensitivity of many of the applications for torque motors. A detailed mathematical model of the motor drive, including high-order linear dynamics and the significant nonlinear characteristics, was developed to provide an insight into the overall system behaviour. The proposed control scheme uses a multicompensator, multi-loop linear controller, to reshape substantially the motor response characteristic, with a non-linear adaptive gain-scheduled controller to compensate effectively for the nonlinear variations of the motor parameters. The scheme demonstrates that a demanding nonlinear control system may be conveniently analysed and synthesised using frequency-domain methods, and that the design techniques may be reliably applied to similar electro-mechanical systems required to track a repetitive waveform. A prototype drive system was designed, constructed and tested during the course of the research. The drive system comprises a DSP-based digital controller, a linear power amplifier and the feedback signal conditioning circuit necessary for the closed-loop control. A switch-mode amplifier was also built, evaluated and compared with the linear amplifier. It was shown that the overall performance of the linear amplifier was superior to that of the switch-mode amplifier for the present application. The control software was developed using the structured programming method, with the continuous controller converted to digital form using the bilinear transform. The 6- operator was used rather than the z-operator, since it is more advantageous for high speed sampling systems. The gain-scheduled control was implemented by developing a schedule table, which is controlled by the DSP program to update continuously the controller parameters in synchronism with the periodic scanning of the motor. The experimental results show excellent agreement with the simulated results, with linearity of ±0.05 ° achieved throughout the forward sweep. Although this did not quite meet the very demanding specifications due to the limitations of the experimental drive system, it clearly demonstrates the effectiveness of the proposed control scheme. The discrepancies between simulated and experimental results are analyzed and discussed, the control design method is reviewed, and detailed suggestions are presented for further work which may improve the drive performance

    Investigation into digital audio equaliser systems and the effects of arithmetic and transform errors on performance

    Get PDF
    Merged with duplicate record 10026.1/2685 on 07.20.2017 by CS (TIS)Discrete-time audio equalisers introduce a variety of undesirable artefacts into audio mixing systems, namely, distortions caused by finite wordlength constraints, frequency response distortion due to coefficient calculation and signal disturbances that arise from real-time coefficient update. An understanding of these artefacts is important in the design of computationally affordable, good quality equalisers. A detailed investigation into these artefacts using various forms of arithmetic, filter frequency response, input excitation and sampling frequencies is described in this thesis. Novel coefficient calculation techniques, based on the matched z-transform (MZT) were developed to minimise filter response distortion and computation for on-line implementation. It was found that MZT-based filter responses can approximate more closely to s-plane filters, than BZTbased filters, with an affordable increase in computation load. Frequency response distortions and prewarping/correction schemes at higher sampling frequencies (96 and 192 kHz) were also assessed. An environment for emulating fractional quantisation in fixed and floating point arithmetic was developed. Various key filter topologies were emulated in fixed and floating point arithmetic using various input stimuli and frequency responses. The work provides detailed objective information and an understanding of the behaviour of key topologies in fixed and floating point arithmetic and the effects of input excitation and sampling frequency. Signal disturbance behaviour in key filter topologies during coefficient update was investigated through the implementation of various coefficient update scenarios. Input stimuli and specific frequency response changes that produce worst-case disturbances were identified, providing an analytical understanding of disturbance behaviour in various topologies. Existing parameter and coefficient interpolation algorithms were implemented and assessed under fihite wordlength arithmetic. The disturbance behaviour of various topologies at higher sampling frequencies was examined. The work contributes to the understanding of artefacts in audio equaliser implementation. The study of artefacts at the sampling frequencies of 48,96 and 192 kHz has implications in the assessment of equaliser performance at higher sampling frequencies.Allen & Heath Limite
    corecore