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ABSTRACT

In the present work, the design of event-triggered controllers for two classes of non-
linear systems is addressed: rational systems and Lur’e type systems. Lyapunov theory
techniques are used in both cases to derive asymptotic stability conditions in the form of
linear matrix inequalities that are then used in convex optimization problems as means of
computing the control system parameters aiming at a reduction of the number of events
generated.

In the context of rational systems, state-feedback control is considered and differential-
algebraic representations are used as means to obtain tractable stability conditions. An
event-triggering strategy which uses weighting matrices to strive for less events is pro-
posed and then it is proven that this strategy does not lead to Zeno behavior.

In the case of Lur’e systems, observer-based state-feedback is addressed with event
generators that have access only to the system output and observed state, but it imposes the
need of a dwell-time, i.e. a time interval after each event where the trigger condition is not
evaluated, to cope with Zeno behavior. Two distinct approaches, exact time-discretization
and looped-functional techniques, are considered to ensure asymptotic stability in the
presence of the dwell-time.

For both system classes, emulation design and co-design are addressed. In the emula-
tion design context, the control law (and the observer gains, when appropriate) are given
and the task is to compute the event generator parameters. In the co-design context, the
event generator and the control law or the observer can be simultaneously designed.

Numerical examples are presented to illustrate the application of the proposed meth-
ods.

Keywords: Network control, event-triggered control, nonlinear systems, Lur’e sys-
tems.



RESUMO

Neste trabalho é abordado o projeto de controladores baseados em eventos para duas
classes de sistemas não lineares: sistemas racionais e sistemas tipo Lur’e. Técnicas da
teoria de Lyapunov são usadas em ambos os casos para derivar condições de estabilidade
assintótica na forma de inequações matriciais lineares. Tais condições são então utilizadas
em problemas de otimização convexa como meio de calcular os parâmetros do sistema de
controle, visando uma redução no número de eventos gerados.

No contexto de sistemas racionais, realimentação de estados é considerada e represen-
tações algébrico-diferenciais são usadas como meio de obter condições de estabilidade
tratáveis computacionalmente. Uma estratégia de disparo de eventos que usa uma medida
de erro ponderado através de matrizes definidas positivas é proposta e é demonstrado que
tal estratégia não gera comportamento de Zenão.

No caso de sistemas tipo Lur’e, considera-se o caso de controladores com restrições de
informações, a saber, com acesso apenas às saídas do sistema. Um observador de estados
é então utilizado para recuperar a informação faltante. Neste contexto, é necessária a
introdução de um tempo de espera (dwell time, em inglês) para garantir a inexistência
de comportamento de Zenão. Todavia, a introdução do tempo de espera apresenta um
desafio adicional na garantia de estabilidade que é tratado neste trabalho considerando
duas técnicas possíveis: a discretização exata do sistema e o uso de looped-functionals
(funcionais em laço, em uma tradução livre).

Para ambas classes de sistemas, são tratados os problemas de projeto por emulação e
co-design (projeto simultâneo, em uma tradução livre). No projeto por emulação, a lei de
controle (e os ganhos do observador, quando apropriado) são dados a priori e a tarefa é
projetar os parâmetros do gerador de eventos. No caso do co-design, o gerador de eventos
e a lei de controle ou o observador são projetados simultaneamente.

Exemplos numéricos são usados para ilustrar a aplicação dos métodos propostos.

Palavras-chave: Controle em rede, controle baseado em eventos (event-triggered con-
trol), sistemas não lineares, sistemas tipo Lur’e.
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1 INTRODUCTION

The technical advances and the popularization of digital communication networks that
took place in the last decades have introduced innovations in many fields of science and
technology, as well as in our daily activities. As examples of this revolution, we can
cite the appearance of smart sensors, which transmit data through digital networks (e.g.
bluetooth, Wi-Fi, etc.) and the mobile phone communications that currently are carried
almost entirely over digital communication networks.

These advances also spread to the automatic control field, leading to what is called
Networked Control Systems (NCS). In such systems, part of the communication among
their components (controller, plant, sensors, actuators) take place over a shared generic
digital communication network. This paradigm allows the reduction of the cost of
the system and also increases its flexibility, as pointed, for instance, in HESPANHA;
NAGHSHTABRIZI; XU (2007); POSTOYAN et al. (2015); GHIGGI et al. (2015). In
this context of shared network, bandwidth and energy consumption (in wireless systems)
become important issues (DONKERS; HEEMELS, 2012; ABDELRAHIM et al., 2016).
Bandwidth consumption can be reduced if one brings down the number of transmissions
over the network. At the same time, since a significant part of the energy consumption
in wireless systems is due to the data transmissions (TIBERI; LINDBERG; ISAKSSON,
2012; GOMES DA SILVA JR.; LAGES; SBARBARO, 2014), one can reduce the energy
consumption in these systems by reducing the number of transmissions. Such consider-
ations lead to the research of control techniques that need fewer control updates than the
traditional periodic sampling mechanisms usually applied in the digital control field. Be-
sides the advantages mentioned for NCS, the use of techniques that lead to fewer control
updates are also suitable for systems where actuator fatigue is important.

With these objectives in mind, there exist in the literature some aperiodic sampling
techniques where the transmission of the sensors data and the update of the control sig-
nal occur only at instants determined by variations in the state and/or outputs of the
systems. In particular, there exist the event-triggered and the self-triggered control ap-
proaches. In the event-triggered control, an event generator continuously monitors the
state and/or the outputs of the system and triggers the sampling, transmission and up-
date of the control signal when a criterion based on the value of the state and/or outputs
is verified (HESPANHA; NAGHSHTABRIZI; XU, 2007; HEEMELS; JOHANSSON;
TABUADA, 2012). On the other hand, in the self-triggered control, each time an event
occurs, the event generator calculates the next event instant, based on the information
available about the current state and the system dynamics (HEEMELS; JOHANSSON;
TABUADA, 2012).

Considering the number of publications, the literature has favored the event-triggered
control approach so far. Possible reasons for this preference are the facts that event-
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triggered systems can be computationally less demanding and handle non-modeled dy-
namics better than self-triggered ones. Event-triggered control systems can have linear
complexity with respect to the order of the closed-loop system, i.e. the sum of the orders
of the plant and of the controller, as in the schema proposed in (MOREIRA et al., 2016)
and in (MOREIRA; GROFF; GOMES DA SILVA JR., 2016a), while self-triggered sys-
tems have at least quadratic complexity, as in (HEEMELS; JOHANSSON; TABUADA,
2012). Furthermore, since the self-triggered systems operate in completely open-loop
between events, without even monitoring the state or outputs of the system, it is harder
to accommodate for disturbances. For these reasons, the present work addresses event-
triggered control.

Most of the literature on event-triggered control addresses linear systems and only dur-
ing the last few years there has been an increase in the number of works addressing non-
linear plants. Besides that, the majority of works both for linear and nonlinear cases ad-
dress the stability analysis, but do not present constructive methods that allow to compute
the parameters of the control law and/or the event generator parameters, i.e. to treat the
synthesis problem. The exceptions, treating the synthesis, are (GOMES DA SILVA JR.;
LAGES; SBARBARO, 2014; SBARBARO; TARBOURIECH; GOMES DA SILVA JR.,
2014; TARBOURIECH et al., 2016; GROFF et al., 2016; MOREIRA et al., 2016) con-
sidering the linear case and (TARBOURIECH et al., 2017; ARANDA-ESCOLÁSTICO
et al., 2017; ZHANG; HAN, 2017; MOREIRA et al., 2017a,b) addressing some classes
of nonlinear systems.

Therefore, the research of constructive methodologies for event-triggered control con-
sidering continuous-time nonlinear systems is still an open field. The present work ad-
dresses precisely that, presenting a design methodology for some classes of nonlinear
systems.

The first class of nonlinear systems that is addressed is the rational one. Many pro-
cesses of interest can be modeled as rational systems. For instance, brushless DC motors,
when modeled by the Lorenz equation (HEMATI, 1994); biological systems like gen
expression, metabolic networks and enzymatic reactions (WU; MU, 2009; NĚMCOVÁ,
2010); bioreactors (CAMPESTRINI et al., 2014; ANTONELLI et al., 2003); systems in
Economy, Physics and Engineering fields (NĚMCOVÁ, 2010); DC-DC converters (SIRA-
RAMÍREZ; SILVA-ORTIGOZA, 2006; JAVAID; DUJIĆ, 2015). Moreover, by noting
that polynomial systems are a subclass of rational ones, truncated Taylor series expansion
can be applied to derive accurate approximations of general smooth nonlinear systems.

The second class of nonlinear systems addressed are the Lur’e systems, i.e. sys-
tems composed by the feedback connection of a linear system and a sector-bounded non-
linearity. Two cases are considered: nonlinearities that depend on the system input and
nonlinearities that depend on the system state. In the first case one can include linear
plants subject to actuator saturation (TARBOURIECH et al., 2011; ZACCARIAN; TEEL,
2011; TURNER; HERRMANN, 2014); quantization of the control input (DE SOUZA;
COUTINHO; FU, 2010; FU; XIE, 2005) and backlash, for instance. In the case of sector-
bound nonlinearities that depend on the state, many nonlinearities can be addressed, such
as piecewise linear, odd-degree polynomial and trigonometric ones.

Hence, the following general goal is defined for the present work:

• Propose an event-triggered control design methodology for the fol-
lowing classes of nonlinear systems: rational and Lur’e type systems.

And, from this general goal, the following specific goals are considered:
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• Propose a systematic methodology allowing the synthesis of the pa-
rameters of the event generator considering a given control law that
stabilizes the system when implemented in continuous-time, i.e. by
direct connection between the controller and the plant. This is re-
ferred as emulation design.

• When possible, address also the co-design of the event-trigger and
other parameters of the control system. For instance, design simulta-
neously the event generator and the control law and/or observer pa-
rameters.

• In the cases where only local (regional) stabilization is possible, ex-
plicitly characterize a set of initial conditions where the asymptotic
stability is guaranteed.

• Compute the control system parameters through convex optimization
problems based on linear matrix inequalities.

This thesis is structured as follows:
In Chapter 2, the paradigm of event-triggered control is presented, detailing its char-

acteristics like typical topologies, Zeno behavior and triggering conditions (i.e. strategies
to determine the trigger instants). This chapter also completes the bibliographical review
started at the Introduction.

Chapters 3 to 5 address rational systems. In Chapter 3, the specific problem for ratio-
nal systems is formulated, stating the characteristics of the system being considered, the
mathematical tools used in the derivation of stability conditions and the trigger condition
proposed. Besides that, in this chapter we present a proof that the proposed trigger condi-
tion does not lead to the occurrence of Zeno behavior. The chapters that follow, Chapter
4 and Chapter 5, address the design in the emulation and co-design contexts, respectively,
including numerical examples to illustrate each of the methods.

Chapters 6 and 7 address Lur’e type systems, considering controllers and event-ge-
nerators that have access only to the plant outputs and the use of nonlinear observers to
recover the missing information. Chapter 6 addresses Lur’e systems with sector-bound
nonlinearities that depend only on the plant input, while Chapter 7 considers Lur’e sys-
tems where the nonlinearity is also sector-bounded but depends on the plant state.

The thesis ends with a final remarks chapter containing the conclusions and the per-
spectives of future work.
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2 EVENT-TRIGGERED CONTROL

The event-triggered control paradigm consists in transmitting data among the elements
of the system only when a trigger condition is verified (HESPANHA; NAGHSHTABRIZI;
XU, 2007; HEEMELS; JOHANSSON; TABUADA, 2012). As stated in Chapter 1, the
main applications of this paradigm are in Networked Control Systems, where it is interest-
ing to reduce the data exchange among the elements that are connected via generic shared
communication networks (HESPANHA; NAGHSHTABRIZI; XU, 2007) and in systems
subject to actuator fatigue, where it is interesting to avoid frequent changes in the control
action.

2.1 Topologies

A typical topology for event-triggered control systems, presented e.g. in
(HEEMELS; JOHANSSON; TABUADA, 2012; KIENER; LEHMANN; JOHANSSON,
2014; LEHMANN; LUNZE, 2011; LEHMANN; KIENER; JOHANSSON, 2012; SBAR-
BARO; TARBOURIECH; GOMES DA SILVA JR., 2014; TARBOURIECH et al., 2016),
is depicted in Figure 2.1. A static or dynamic controller receives information from the
plant output (or, possibly its complete state) at instants defined by the event generator.
Plant and controller are in different nodes of a generic data communication network, rep-
resented by the double lines in the figure. The event generator monitors the state of the
plant continuously, i.e. in continuous-time, and based on this information, determines
when a new sample needs to be sent to the controller, causing an update of the control
signal. Between events, a zero-order hold keeps the signal applied to the controller input
constant.

In this case, the closed-loop system can be represented by:
ẋp(t) = fp(xp(t),u(t))

y(t) = gp(xp(t))

ẋc(t) = fc(xc(t),y(tk))

u(t) = gc(xc(t))

(2.1)

where xp ∈ Rn is the plant state vector, xc ∈ Rnc is the controller state vector, u ∈ Rm

is the plant’s inputs vector, y ∈ Rp is the outputs vector, tk ∈ R, k ∈ N are the event
instants, fp, gp, fc and gc are generic matrix functions of appropriate dimensions.

A slight variation of this topology, shown in Figure 2.2, includes the transmission of
the control signal via a generic network. In this case, the update of the control signal
takes place at the same time as the controller input and the control signal is kept con-
stant between two events by a zero-order hold located at the plant input. This topology
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Controller:{
ẋc(t) = fc(xc(t),y(tk))

u(t) = gc(xc(t))

u(t)
Plant:{
ẋp(t) = fp(xp(t),u(t))

y(t) = gp(xp(t))

y(t)

Event generator
(trigger instants: tk)

xp(t)

SamplerZOH
y(tk)

trigger signal

node 1 node 2

Figure 2.1: Event-triggered control topology with dedicated link for the control signal.

is considered e.g. em (ABDELRAHIM et al., 2014a, 2016; AL-AREQI; GÖRGES; LIU,
2015; DONKERS; HEEMELS, 2012; HEEMELS; JOHANSSON; TABUADA, 2012;
GOMES DA SILVA JR.; LAGES; SBARBARO, 2014; REIMANN et al., 2015; TAL-
LAPRAGADA; CHOPRA, 2012).

Controller:{
ẋc(t) = fc(xc(t),y(tk))

u(t) = gc(xc(t))

Sampler
u(t)

ZOH
Plant:{
ẋp(t) = fp(xp(t),u(tk))

y(t) = gp(xp(t))

u(tk) y(t)

Event generator
(trigger times: tk)

xp(t)

SamplerZOH
y(tk)

trigger signal

trigger signal

node 1 node 2

Figure 2.2: Event-triggered control topology without dedicated links between nodes.

In this case, the closed-loop system can be represented by:
ẋp(t) = fp(xp(t),u(tk))

y(t) = gp(xp(t))

ẋc(t) = fc(xc(t),y(tk))

u(t) = gc(xc(t))

(2.2)

One should note that in the case of a static controller, the closed-loop representations
of both topologies are equivalent.

Other variations in the topologies include:
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• The event generator monitoring only the plant outputs or the plant inputs and out-
puts.

• The plant outputs being continuously transmitted to the controller, but the control
action being transmitted (or updated) only at the event instants.

2.2 Zeno behavior

One of the challenges in designing event-triggered control systems is to ensure that the
event generator does not lead to Zeno behavior. Zeno behavior (HEEMELS; JOHANS-
SON; TABUADA, 2012) is the occurrence of infinitely many events at the same instant,
i.e. without a time interval between them, or the occurrence of inter-event times that tend
to zero as the time goes to infinity or, in even more pathological cases, as the time goes
to some finite instant (which characterizes the existence of a finite accumulation point in
the event instants sequence). Therefore, we can formally define the occurrence of Zeno
behavior as follows.

Definition 1. A sequence of event instants {tk}k∈N presents Zeno behavior if at least one
of the following conditions is verified:

(i) tk+1 − tk = 0 for some k.

(ii) lim
k→∞

tk+1 − tk = 0.

Note that the existence of a finite accumulation point is characterized by condition (ii)
in Definition 1.

The occurrence of Zeno behavior renders the control system useless since the trans-
missions of the signals would eventually use all the network bandwidth. Two methods to
cope with this problem are found in the literature, both based on the fact that the existence
of a positive scalar ε such that tk+1− tk ≥ ε, ∀k ∈ N is a sufficient condition for ensuring
that Zeno behavior does not happen:

1. Proving that the event-trigger mechanism ensures the existence of ε > 0 such that
tk+1 − tk ≥ ε, ∀k ∈ N. In this case, it is said that the event-trigger mecha-
nism has a guaranteed minimum inter-event interval ε. This is done for example in
(TABUADA, 2007) and (MOREIRA et al., 2017a).

2. The use of a dwell-time to impose a minimum inter-event interval (MAZO; ANTA;
TABUADA, 2010). The dwell-time is a time interval defined at design time such
that, when an event occurs, the trigger condition is not re-evaluated until the dwell-
time has elapsed (see, for instance MAZO; ANTA; TABUADA (2010) for de-
tails). Hence, an explicit minimum inter-event time is forced and Zeno behavior
is avoided. The main challenge in this case is to ensure the asymptotic stability in
the presence of the dwell-time. This technique is used for instance in (ABDEL-
RAHIM et al., 2016) and (TARBOURIECH et al., 2017).

2.3 Stability

Besides ensuring that there is no Zeno behavior, one needs to design the trigger con-
ditions such that the closed-loop equilibrium point of interest is stable under the aperiodic
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control updating introduced by the event-triggered control strategy. In this thesis, we
assume, without loss of generality, that the origin is the equilibrium of interest. The ape-
riodic update of the control signal renders impossible to use the traditional discretization
and Z transform techniques in the analysis (GHIGGI et al., 2015). For this reason, more
elaborated techniques based on the Lyapunov theory (KHALIL, 1996), hybrid systems
framework (GOEBEL; SANFELICE; TEEL, 2012) and, more recently, time-delay sys-
tems theory (FRIDMAN, 2014) have been employed.

Lyapunov theory techniques consider a stability criterion like the one presented in
Appendix A, Theorem A.1. One chooses a Lyapunov candidate function, i.e. a positive-
definite function V (x) (which means one that satisfies (A.1) of Theorem A.1) and de-
sign an event generator that ensures the negativity of the time derivative of the Lyapunov
candidate (which means, ensuring satisfaction of (A.2) of Theorem A.1). Among the
works that use this technique one can cite (TABUADA, 2007; HEEMELS; DONKERS;
TEEL, 2011; HEEMELS; JOHANSSON; TABUADA, 2012; DONKERS; HEEMELS,
2012; TALLAPRAGADA; CHOPRA, 2014; LIU; JIANG, 2015; GOMES DA SILVA
JR.; LAGES; SBARBARO, 2014; SBARBARO; TARBOURIECH; GOMES DA SILVA
JR., 2014; TARBOURIECH et al., 2016; GROFF et al., 2016; MOREIRA et al., 2016,
2017a,b). In some of them, a priori knowledge of a Lyapunov function for the system is
required, constituting a serious drawback when the synthesis problem is considered.

Hybrid systems, as defined in (GOEBEL; SANFELICE; TEEL, 2012), are those that
feature both continuous and instantaneous changes in their state. Therefore, they show
characteristics of both continuous- and discrete-time dynamical systems. In (GOEBEL;
SANFELICE; TEEL, 2012), a formal framework for the analysis of such systems is de-
fined, including specific stability conditions for them. As examples of papers considering
event-triggered control and employing these techniques one can cite (ABDELRAHIM
et al., 2015, 2016; POSTOYAN et al., 2015). It should be noticed that the stability condi-
tions for hybrid systems are based on Lyapunov theory and that the results shown in the
mentioned papers feature event generators that do not effectively postpone the events with
respect to the minimum inter-event time explicitly imposed in the triggering strategy, i.e.,
many events are separated only by the minimum inter-event time. Therefore, although the
hybrid systems formalism can be seen as a natural framework to model event-triggered
control systems, its efficacy has not been demonstrated until now.

The time-delay approach models the sampled control as a time-delayed signal with
a varying delay that increases linearly over the sampling interval with a unitary time-
derivative and is reset to zero at the next sampling instant. Then Lyapunov-Krasowskii
functionals (FRIDMAN, 2014) or looped-functionals (BRIAT; SEURET, 2012; SEURET,
2012) are used to derive stability conditions. Since this approach, when directly applied,
is suitable for addressing discrete-time systems, it can be directly applied to obtain sta-
bility conditions solely in the context of periodic event-triggered control (PETC), i.e.
event-triggered control systems where the triggering condition is evaluated only in a peri-
odical fashion. It is considered for instance in (ARANDA-ESCOLÁSTICO et al., 2017)
to derive sum-of-squares (SOS) conditions that guarantee the global asymptotic stability
of a class of nonlinear PETC systems. Nevertheless, in the context of continuous-time
event-triggered control, time-delay techniques can be of great value to address the stabil-
ity in the presence of dwell time in the trigger conditions, as will be seen in Part II of this
thesis. In such cases, the time-delay approach can be combined with the Lyapunov theory
techniques.
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2.4 Triggering strategies

In this section, the different triggering strategies found in the literature are presented.

2.4.1 Absolute error threshold

The simplest idea of triggering strategy is to generate an event when the norm of the
difference between the current and the last sampled state values reaches a threshold. This
strategy can be summarized as follows:

Algorithm 1 Absolute error threshold trigger
if ||x(t)− x(tk)|| ≥ εabs then

Generate an event;
tk = t;

end if

The term εabs ∈ R+ is the chosen threshold and it is the only design parameter avail-
able in this case.

To simplify the analysis, it is very common in the event-triggered control field to
define the sampling error signal δ(t) as follows:

δ(t) , x(tk)− x(t) (2.3)

Considering this definition, the Algorithm 1 can be rewritten as:

Algorithm 2 Absolute error threshold trigger – using δ(t)
if ||δ(t)|| ≥ εabs then

Generate an event;
tk = t;

end if

An extension to the absolute error threshold strategy consists in applying different
weights to the error in each state variable (and their cross-products), leading to:

Algorithm 3 Weighted absolute error threshold trigger
if δ′(t)Qδδ(t) ≥ 1 then

Generate an event;
tk = t;

end if
Qδ ∈ Rn×n is a symmetric positive-definite matrix.

In this case, Qδ is the design parameter. Since it is a matrix, this strategy has more
degrees of freedom than the one defined by Algorithm 2.

These strategies are used, for instance in (DURAND; MARCHAND, 2009a,b;
TIBERI; ARAUJO; JOHANSSON, 2012; LEHMANN; KIENER; JOHANSSON, 2012;
KIENER; LEHMANN; JOHANSSON, 2014). Since there is no normalization of the er-
ror norm with respect to the state norm, as the state approaches the origin, the error norm
becomes small and the event generator stops triggering. This means that, after this point,
the system operates in open-loop. If it is open-loop stable, it will converge to the origin at
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the open-loop convergence rate. However, if it is open-loop unstable, operating in open-
loop will make the norm of the state increase again until the error threshold is reached and
a new event is generated. This process will repeat indefinitely leading to a limit cycle or to
chaotic behavior. Thus, these strategies do not allow asymptotic stability with open-loop
unstable systems. Moreover, for open-loop stable systems, the trajectories can converge
to a point different of the origin, although close to it.

Modifications to avoid these problems are presented, for instance, in (TIBERI;
ARAUJO; JOHANSSON, 2012), which includes a filter before the event generator to
avoid the open-loop operation. Unfortunately, the proposed modification is only suitable
for first-order open-loop stable linear systems. Hence, it regards only a small class of
systems.

2.4.2 Relative error threshold

One alternative to achieve asymptotic stability of the origin is to normalize the sam-
pling error norm to the current state norm, leading to the relative error threshold strategy,
defined as follows:

Algorithm 4 Relative error threshold trigger

if ||δ(t)||||x(t)|| ≥ σ0 then
Generate an event;
tk = t;

end if

This strategy has been proposed in (TABUADA, 2007), which demonstrates that it
ensures asymptotic stability and absence of Zeno behavior for a broad class of systems.
The term σ0 ∈ R+ is the design parameter and its value can be chosen in an interval that
depends on the dynamics of the system. The greater the value of σ0, the more the error
can grow before a new event occurs. Hence, one expects less events for larger values of
σ0. One should also note that the trigger condition can be rewritten as ||δ(t)|| ≥ σ0||x(t)||
or as ||δ(t)|| − σ0||x(t)|| ≥ 0.

2.4.3 Weighted relative error threshold

The trigger condition described by Algorithm 4 can be further extended by considering
weights for the different variables, leading to the following strategy:

Algorithm 5 Weighted relative error threshold trigger
if δ′(t)Qδδ(t)− x′(t)Qxx(t) > 0 then

Generate an event;
tk = t;

end if

In this case, matrices Qδ and Qx are the design parameters. They are symmetric
positive-definite n×n matrices and act as weights in the relative error measurement. The
relation between these matrices has a role similar to that of σ0 in Algorithm 4, in the
sense that the “larger” Qx and the “smaller” Qδ, the more the current state can deviate
from the last sampled one before a new event is generated. To illustrate this fact, note
that letting Qx = σI and Qδ = µI , one retrieves the trigger condition from Algorithm 4
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with σ0 = σ/µ. That is, the strategy described by Algorithm 5 is indeed a generalization
of Algorithm 4. Therefore, one can expect that it allows to achieve less events than with
Algorithm 4.

This strategy has been introduced as part of the author’s research and it is used for
instance in (MOREIRA et al., 2016, 2017a; MOREIRA; GROFF; GOMES DA SILVA
JR., 2016a; MOREIRA et al., 2017b).

2.4.4 Extensions to the trigger criteria

Many variations and extensions of the trigger criteria presented in the previous sec-
tions can be considered, as for instance: the inclusion of filters before or after the measure-
ments (TIBERI; LINDBERG; ISAKSSON, 2012; GIRARD, 2015); the use of only part
of the system state and/or the use of the control input signals; the use of only the output
signals (ABDELRAHIM et al., 2016; MOREIRA et al., 2017b; TARBOURIECH et al.,
2017); the inclusion of artificial variables (POSTOYAN et al., 2015) or combinations of
these ideas. These variations generally aim at further reducing the number of events or
to broaden the applicability of the techniques (in the case of only the output signals, for
instance).

2.5 Emulation design and co-design

With respect to the design tasks, there are two approaches in the literature: emulation
design and co-design.

In the emulation design context, one starts with a stabilizing controller previously
designed considering a continuous-time implementation, i.e., without sampling or event-
trigger mechanisms. Then the design task is to synthesize only the event-trigger condition
so that the event-triggered implementation of the closed-loop is stable. Among works ad-
dressing this approach one can cite (TABUADA, 2007; DONKERS; HEEMELS, 2012;
POSTOYAN et al., 2013; BESCHI et al., 2014; ARANDA-ESCOLASTICO; GUINALDO;
DORMIDO, 2015; ABDELRAHIM et al., 2016; POSTOYAN et al., 2015; SEURET et al.,
2013; MOREIRA et al., 2016).

In the co-design context, the trigger function and the control law parameters are de-
signed simultaneously. Doing so, one expects to achieve a better result in terms of the
number of events generated, since those parameters can all be included as variables in the
same optimization problem, allowing more degrees of freedom and leading to the choice
of the values of all of them that optimize the objective function. There is also the simplic-
ity advantage: the designer needs to execute less steps and does not need to use different
mathematical tools to compute each part of the system. Among the papers addressing
the co-design of control law and trigger condition, one can cite (LI; XU, 2011; ABDEL-
RAHIM et al., 2014a; WU; REIMANN; LIU, 2014; AL-AREQI; GÖRGES; LIU, 2015).
Since just a few papers available in the event-trigger control literature consider the use
of observers 1, the term co-design is usually employed to the method of designing the
trigger condition and the control law simultaneously. But when observers are consid-
ered, co-design can mean that the trigger condition and any other of the parameters of the
system, like the control law and/or the observer gains, are designed concomitantly.

1For instance, (SBARBARO; TARBOURIECH; GOMES DA SILVA JR., 2014; SELIVANOV; FRID-
MAN, 2016; GROFF et al., 2016; TARBOURIECH et al., 2017) use observers, but all of them address only
emulation design.
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2.6 Linear plants

The literature on event-triggered control addressing linear plants is vast. One can
cite the following papers considering static state-feedback control laws: (HEEMELS; JO-
HANSSON; TABUADA, 2012), which presents a comprehensive research of
event-triggered control techniques for this class of systems. (ARANDA-ESCOLASTICO;
GUINALDO; DORMIDO, 2015), which considers a relative error threshold trigger crite-
rion and an event generator that monitors the system in a periodic fashion instead of con-
tinuously, resulting in what is know as periodic event-triggered control. (SBARBARO;
TARBOURIECH; GOMES DA SILVA JR., 2014) and (GROFF et al., 2016) address the
use of state observers, the last one considering discrete-time systems, i.e. a periodic im-
plementation of event-triggered control.

Output-feedback is addressed, for instance in (DONKERS; HEEMELS, 2012) con-
sidering decentralized event generators based on a relative error threshold criterion. In
particular, stability and L∞ performance analysis are provided for a system composed by
a set of nodes. Each node has its own set of state variables and its own event generator, re-
sponsible for determining, based on its knowledge of local variables, when its data should
be broadcast to the other nodes.

Proportional-Integral (PI) event-triggered controllers are considered in (TIBERI;
ARAUJO; JOHANSSON, 2012) and in (BESCHI et al., 2014), for first order linear plants
and in (GOMES DA SILVA JR.; LAGES; SBARBARO, 2014) for linear plants of higher
order. In (DURAND; MARCHAND, 2009a,b), an absolute error trigger criterion is con-
sidered and simulations are presented to illustrate the applicability of their method. How-
ever, it should be noticed that these last two references do not show any proof of stability
of the designed closed-loop system.

2.7 Nonlinear plants

In the context of nonlinear plants, (TABUADA, 2007) presents stability conditions
for an event-triggering strategy based on Lyapunov functions and a generic static state-
feedback control law (which can be linear or nonlinear as long as it is Lipschitz in com-
pacts). It assumes knowledge of a Lyapunov function certificating input-to-state stability
(ISS) 2 of the continuous-time closed-loop implementation with respect to the sampling
error. Therefore, the results are not constructive and cannot be applied to systematically
design the parameters of the event-trigger criterion. Nevertheless, this reference provides
important insights in the analysis context.

Output feedback and event generators that access only the outputs of the system are
addressed in (ABDELRAHIM et al., 2014b, 2016, 2015), which use the hybrid system
formalism from (GOEBEL; SANFELICE; TEEL, 2012) and dwell-time techniques. It
is assumed in these papers that the closed-loop systems at hand are L2-gain stable with
respect to the sampling error and that the dynamics of this error grows exponentially.
Unfortunately, these assumptions are not applicable to all classes of nonlinear systems.
Moreover, the event generators presented in these references do not effectively postpone
the events with respect to the minimum inter-event time explicitly imposed in the trig-
gering strategy by the dwell time, i.e., many events are separated only by the minimum
inter-event time, which translates into a large number of events.

2Details on ISS Lyapunov functions can be found in the original paper (TABUADA, 2007) and in
(KHALIL, 1996).
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In (BORGERS; HEEMELS, 2014), a study of the properties of the minimum inter-
event time is presented considering systems with absolute and relative error threshold
triggering strategies. It also takes into account external disturbances and measurement
errors. No constructive conditions allowing the synthesis are presented.

Linear plants subject to input saturation are addressed e.g. in (WU; REIMANN; LIU,
2014) which considers an absolute error threshold trigger condition. In this work, the
plant is discretized and LMI stability conditions are derived. Authors aim at maximizing
the region of attraction of the closed-loop system instead of minimizing the number of
events. Since it considers exact discretization of the system, the method is suitable only
to periodic event-triggered control implementations. In (MOREIRA; GROFF; GOMES
DA SILVA JR., 2016a), convex optimization problems are proposed as means to design
the event-triggered control system in both the emulation and the co-design contexts con-
sidering linear plants subject to input saturation and a weighted relative error threshold
trigger condition.

PI controllers for linear plants subject to saturation of the control input are addressed
in (LEHMANN; JOHANSSON, 2012) and (LEHMANN; KIENER; JOHANSSON, 2012),
which consider the use of anti-windup techniques to mitigate the effects of saturation; in
(MOREIRA et al., 2016), which uses Lyapunov theory techniques and proposes convex
optimization problems as means to compute the event-trigger parameters and in (MOR-
EIRA et al., 2017b), which includes triggering strategies with limited information, i.e.
accessing only the system outputs.

Also on nonlinear systems, (POSTOYAN et al., 2015) proposes the hybrid systems
formalism from (GOEBEL; SANFELICE; TEEL, 2012) as a general tool for the stabil-
ity analysis of event-triggered control systems. More recently, (TARBOURIECH et al.,
2017) addresses the emulation design for plants subject to sector-bounded input nonlin-
earities considering triggering strategies with limited information and a state observer.
In (ARANDA-ESCOLÁSTICO et al., 2017), stability conditions for discrete-time poly-
nomial plants are derived using a time-delay approach. The method is suitable only for
discrete-time systems, i.e. periodic event-trigger implementations.

2.8 Conclusion

In this chapter a bibliographical review on event-triggered control was presented. It
summarized the characteristics of this control paradigm and the main results from the lit-
erature. The works mentioned, with the exception of (GOMES DA SILVA JR.; LAGES;
SBARBARO, 2014), (SBARBARO; TARBOURIECH; GOMES DA SILVA JR., 2014),
(GROFF et al., 2016) (these considering linear systems) and (MOREIRA et al., 2016),
(MOREIRA; GROFF; GOMES DA SILVA JR., 2016a), (MOREIRA et al., 2017b), (TAR-
BOURIECH et al., 2017) and (ARANDA-ESCOLÁSTICO et al., 2017) (these consider-
ing nonlinear systems) do not present constructive methods that allow the synthesis of the
event-triggered controller neither in an emulation nor in a co-design context. It can also
be observed that the literature addressing the co-design is scarce, specially for nonlinear
systems.

In the next chapters we will address part of these gaps considering rational and Lur’e
type systems.
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Part I

Rational systems
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3 PROBLEM FORMULATION

In this chapter, we state the problem of event-triggered control for rational systems
considered in this thesis. We start presenting some preliminary concepts. Then we in-
troduce the system, the topology and the type of event generator considered. In the se-
quence, it follows a demonstration that Zeno behavior does not occur with this event-
trigger schema. Then the problem to be addressed is formally presented.

3.1 Preliminaries

Here we present some basic concepts on rational systems, differential-algebraic repre-
sentations and annihilators that will be used in the sequel. Besides those, some other usual
concepts from dynamical systems, like region of attraction (RA) and region of asymptotic
stability (RAS) will be employed. These are recalled in Appendix A.

3.1.1 Rational systems

Rational systems are those that can be generically represented by the following equa-
tion:

ẋ(t) = f(x(t)) (3.1)

where x(t) ∈ Rn is the system state and f : D ⊂ Rn → Rn is a rational function of the
state satisfying the usual conditions of existence and uniqueness of solutions in a region
of interest x ∈ Bx ⊂ D of the state space. The set D is the domain of f .

As pointed out in the Introduction, the class of rational systems encompasses the poly-
nomial systems and therefore, methods suitable for rational systems can also be used for
general nonlinear systems by considering truncated high-order Taylor series approxima-
tions, which are polynomial.

3.1.2 Differential-algebraic representations

To obtain tractable stability conditions in the form of LMIs, that can be conveniently
cast into convex optimization problems as means to compute the event-triggered control
system parameters, thus providing a systematic design method, we will use differential-
algebraic representations (DAR) introduced in (TROFINO, 2000). Alternative represen-
tations for rational systems that could be used include linear fractional representations
(LFR), as can be seen e.g. in (GHAOUI; SCORLETTI, 1996), quasi-linear parameter-
varying (quasi-LPV) (PALMEIRA; GOMES DA SILVA JR.; FLORES, 2018) and Takagi-
Sugeno (T-S) fuzzy systems (GAO; CHEN, 2007). The main advantage of the DAR is that
it tends to be less conservative than the alternatives mentioned in this paragraph, since it
takes into account the coupling between the state and the auxiliary variables used to model
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nonlinear terms (COUTINHO; GOMES DA SILVA JR., 2010; GOMES DA SILVA JR.
et al., 2014).

In particular, for rational systems it is always possible to obtain a DAR in the form
(COUTINHO et al., 2004; TROFINO, 2000):{

ẋ = A1(x)x+ A2(x)ξ(x)

0 = Ω1(x)x+ Ω2(x)ξ(x)
(3.2)

where ξ(x) ∈ Rq is an auxiliary vector containing the polynomial and rational terms of
f(x); A1(x) ∈ Rn×n, A2(x) ∈ Rn×q, Ω1(x) ∈ Rq×n, Ω2(x) ∈ Rq×q are matrix functions
affine with respect to x. It is assumed that the original equation ẋ(t) = f(x(t)) can be
recovered by the eliminating ξ(x) which implies that Ω2(x) is supposed to be full column
rank for all x of interest, i.e. ∀x ∈ Bx. Notice that this representation is valid only in the
region of interest Bx. The time dependency of x was omitted to simplify notation.

As an example of DAR, consider the following scalar system:

ẋ = x+
−x+ 2x3

1 + x2
(3.3)

A possible DAR for (3.3) is given by (3.2) with:

ξ =
1

1 + x2

[
x
x2

]
A1 = 1, A2 =

[
−1 2x

]
, Ω1 =

[
1
0

]
and Ω2 =

[
−1 −x
x −1

]
As it will be clear in chapters 4 and 5, the DAR will allow the formulation of stability

conditions in an LMI framework and therefore the use of convex optimization to design
the trigger function parameters.

The choice of ξ(x), A1(x), A2(x),Ω1(x),Ω2(x) is not unique and different choices
can lead to different results (COUTINHO et al., 2004; TROFINO, 2000). In the scope of
this thesis, different decompositions may lead to more or less events being generated. It
is possible to reduce the conservatism and the impact of different choices of DAR using
the concept of linear and affine annihilators (COUTINHO et al., 2004).

3.1.3 Annihilators

A matrix function N (x) is a linear (affine) annihilator if it is linear (affine) with
respect to x and N (x)x = 0 for all x of interest (TROFINO, 2000; COUTINHO et al.,
2004). In this thesis we will use the following annihilator (presented, e.g. in (TROFINO,
2000)) as a base for extended ones which will be introduced later:

N0(x) =


x(2) −x(1) 0 · · · 0 0
0 x(3) −x(2) · · · 0 0
...

...
... . . . ...

...
0 · · · 0 · · · x(n) −x(n−1)

 (3.4)

Notice that, by construction, N0(x)x = 0. These annihilators will be used to reduce
potential conservatism associated to the state-dependent stability conditions that will be
derived in the sequel. Since a rational system admits several different DARs by choosing
different matrices A1(x), A2(x),Ω1(x),Ω2(x), different results can be obtained from dif-
ferent choices of these matrices. The linear and affine annihilators can be used to mitigate
this problem.
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3.2 Controlled system

A controlled version of system (3.1) considering a state-feedback control law can be
represented by the following equation:{

ẋ(t) = f(x(t)) + g(x(t))u(t)

u(t) = Kx(t)
(3.5)

where x(t) ∈ Rn is the system state; u(t) ∈ Rm is the input vector; f : D ⊂ Rn → Rn

and g : D ⊂ Rn → Rn×m are rational functions of the state, Lipschitz in a region of
interest Bx containing the origin. We assume that f(0) = 0 and that the equilibrium point
of interest is the origin. K ∈ Rm×n is a constant matrix.

As f and g are rational functions and u is a state feedback, system 3.5 always admits
a DAR in the following form:{

ẋ = A1(x)x+ A2(x)ξ(x,u) + A3(x)u

0 = Ω1(x)x+ Ω2(x)ξ(x,u) + Ω3(x)u
(3.6)

where ξ(x) ∈ Rq is an auxiliary vector containing the polynomial and rational terms
of f(x) and g(x); A1(x) ∈ Rn×n, A2(x) ∈ Rn×q, A3(x) ∈ Rn×m, Ω1(x) ∈ Rq×n,
Ω2(x) ∈ Rq×q and Ω3(x) ∈ Rq×m are matrix functions affine with respect to x. Ω2(x) is
supposed to be full column rank for all x of interest, i.e. ∀x ∈ Bx. The representation is
valid only in the region of interest Bx. The time dependency of x and u was omitted to
simplify notation.

3.3 Event-triggered control

3.3.1 Topology

We consider that plant and controller are in separate nodes and are connected through
a general purpose network forming the closed-loop system depicted in Figure 6.1. This
topology is identical to the ones depicted in figures 2.1 and 2.2 if one considers static state
feedback, i.e. y(t) = x(t), u(t) = Kx(t). At instants tk, k = 0, 1, 2, . . . , determined by
the event generator, a sample of the plant state is sent to the controller node. Between two
trigger instants, the controller input is held constant by means of a zero-order holder. In
addition, we assume t0 = 0. Therefore, the closed-loop system can be represented by the
equation: {

ẋ(t) = f(x(t)) + g(x(t))u(t)

u(t) = Kx(tk)
∀t ∈ [tk, tk+1) (3.7)

and, considering δ(t) = x(tk)−x(t), as defined in (2.3), we can re-write (3.7) as follows:{
ẋ(t) = f(x(t)) + g(x(t))u(t)

u(t) = K(x(t) + δ(t))
∀t ∈ [tk, tk+1) (3.8)

3.3.2 Event generator

We assume that the event generator has access to the entire state of the system and we
propose the use of the weighted relative error threshold trigger condition (Algorithm 5)
recalled here as a convenience for the reader:
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K ẋ = f(x) + g(x)u
u(t) x(t)

Event generator
(Trigger times: tk)

SamplerZOH
x(tk)

trigger signal

node 1 node 2

Figure 3.1: Topology being considered for rational systems.

Algorithm 5 Weighted relative error threshold trigger
if δ′(t)Qδδ(t)− x′(t)Qxx(t) > 0 then

Generate an event;
tk = t;

end if

We recall also that the symmetric positive-definite matrices Qδ and Qx are design
parameters.

3.3.3 Zeno behavior

The first original result presented in this thesis is the proof that the triggering strategy
defined by Algorithm 5 considering the topology described in section 3.3.1 is free from
Zeno behavior. The following theorem addresses this.

Theorem 3.1. Assume that the origin of the closed-loop system given by (3.7) is asymp-
totically stable under the triggering strategy given by Algorithm 5, then the inter-event
times are lower bounded, i.e. ∃ Tmin : tk+1 − tk ≥ Tmin, ∀k ∈ N.

Proof. Observe that the trigger criterion, δ′(t)Qδδ(t)−x′(t)Qxx(t) > 0, can be rewritten
as follows:

Trigger if
δ′Qδδ

x′Qxx
> 1 (3.9)

where we omitted the time dependency for clarity.
When a trigger event occurs, δ becomes 0 and a new trigger event will occur only when

the relation above is satisfied again. That is, no new event can occur while δ′Qδδ
x′Qxx

≤ 1.

Hence, noticing that δ′Qδδ
x′Qxx

≤ λ ‖δ‖
2

‖x‖2 , with λ = λmax(Qδ)
λmin(Qx)

; no new trigger can occur while:

λ

(
‖δ‖
‖x‖

)2

< 1 ⇐⇒ ‖δ‖
‖x‖

<

√
1

λ

From this point, the proof follows the steps presented in (TABUADA, 2007, Theorem
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III.1). Consider the dynamics of ‖δ‖‖x‖ between two sampling instants as follows:

d

dt

(
‖δ‖
‖x‖

)
= − δ′ẋ

‖δ‖‖x‖
− x′ẋ

‖x‖2

‖δ‖
‖x‖
≤

≤ ‖δ‖‖ẋ‖
‖δ‖‖x‖

+
‖x‖‖ẋ‖
‖x‖2

‖δ‖
‖x‖

=

(
1 +
‖δ‖
‖x‖

)
‖ẋ‖
‖x‖

=

=

(
1 +
‖δ‖
‖x‖

)
‖h(x, x+ δ)‖
‖x‖

≤

≤
(

1 +
‖δ‖
‖x‖

)
L‖x‖+ L‖δ‖

‖x‖
= L

(
1 +
‖δ‖
‖x‖

)2

(3.10)

where h(x, x+ δ) , f(x) + g(x)K(x+ δ) and L is the Lipschitz constant of h in the set
{[x′ δ′]′ ∈ R2n : x ∈ Bx, δ : δ′Qδδ − x′Qxx ≤ 0}. The last inequality in (3.10) comes
from the fact that since f(x) and g(x) are Lipschitz, so is h(x, x+ δ), thus:

‖h(r1, r1 + s1)− h(r2, r2 + s2)‖ ≤
≤ L‖(r1, s1)− (r2, s2)‖

(3.11)

and, taking r1 = x, s1 = δ, r2 = s2 = 0:

‖h(x, x+ δ)− h(0, 0)‖ =

= ‖h(x, x+ δ)‖ ≤
≤ L‖(x, δ)− (0, 0)‖ = L‖(x, δ)‖ ≤
≤ L‖x‖+ L‖δ‖

(3.12)

Defining ϕ , ‖δ‖
‖x‖ , (3.10) becomes:

ϕ̇ ≤ L(1 + ϕ)2 (3.13)

Thus, δ′Qδδ
x′Qxx

takes more time to go from 0 to 1 than ϕ(t), solution of the initial value
problem ϕ̇ = L(1 + ϕ)2 with ϕ(0) = 0, takes to reach

√
1/λ for the first time. The

solution to this initial value problem is given by:

ϕ(t) =
Lt

1− Lt
(3.14)

which is continuous at t = 0. Therefore, it takes a finite (as opposed to infinitesimal)
amount of time to reach the value

√
1/λ. Thus, we conclude that the inter-event times are

lower-bounded by this amount.

From Theorem 3.1, one can guarantee that the proposed triggering strategy does not
lead to Zeno behavior when constant static state feedback is considered, i.e. u(t) =
Kx(tk). Nevertheless, this theorem can be trivially extended for the case where the con-
trol law is a function of the sampled state, i.e. u(t) = K(x(tk)), as long as K(·) is
Lipschitz in Bx. The proof is identical to the one presented for Theorem 3.1.
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3.4 Problem formulation

Considering system (3.7), the main goal is to design an event-triggered strategy that
reduces number of control updates while ensuring the asymptotic stability of the origin
of closed-loop system. Moreover, we want to ensure that the region of attraction of the
origin includes a given set of initial conditions X0. This set represents a region of safe
operation for the system. The sections in the sequel formally define two problems aiming
at these goals.

3.4.1 Emulation design

In the context of emulation design, one starts from a previously computed control law
gains matrix K and the task is to compute only the event generator parameters Qδ and
Qx. With this aim, the following hypothesis are considered.

Hypothesis 3.1. K is such that the origin of system (3.5) is asymptotically stable.

Hypothesis 3.2. The set X0 is contained in the region of attraction of the origin of system
(3.5).

It should be noted that Hypothesis 3.1 implies that a stabilizing controller was pre-
viously designed considering a continuous-time implementation of the control system,
i.e. considering direct connection between the controller and plant, without sampling or
event-trigger mechanisms.

Hence, assuming fulfillment of Hypothesis 3.1 and Hypothesis 3.2, the emulation
design problem is defined as follows:

Problem 3.1. Devise an event generator that ensures the asymptotic stability of the origin
of the closed-loop (3.7) under the triggering strategy defined by Algorithm 5 such that X0

is contained in the domain of attraction of the origin, while aiming at reducing the number
of triggered events.

3.4.2 Co-design

In the co-design context, the goal is to compute simultaneously the parameters of the
event generator and the control law. The problem at hand can be formalized as follows:

Problem 3.2. Compute simultaneously a gain matrix K and an event generator that en-
sure the asymptotic stability of the origin of system (3.7) under the triggering strategy
defined by Algorithm 5 such that X0 is contained in the domain of attraction of the origin,
while aiming at reducing the number of triggered events.

3.5 Conclusion

In this chapter we defined the characteristics of the systems that are considered in
Part I of this thesis. The subject of this part are rational systems under an event-triggered
control whose triggering condition is based on a weighted relative error threshold crite-
rion. Static state-feedback is considered and the system topology is the one depicted in
Figure 3.3.1.

We stated that differential-algebraic representations (DARs) of the nonlinear system
will be used to obtain tractable stability conditions (in the form of LMIs). The choice
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of this representation was due to its potential for less conservatism than the other possi-
ble representations, e.g. linear-fractional representations (LFRs), quasi-linear parameter-
varying (quasi-LPV) and Takagi-Sugeno (T-S).

We formulated the emulation and co-design problems to be addressed considering
rational plants. For the emulation design, it is assumed, as usual in this context, that a
stabilizing control law for the continuous-time implementation of the closed-loop system
is known.

We also presented in this chapter the first original result of this research: the proof that
the triggering strategy at hand features lower bounded inter-event times and, therefore,
does not lead to Zeno behavior.

In the next sections, we will address the emulation and co-design problems formulated
here.
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4 EMULATION DESIGN

In this chapter, we address Problem 3.1. Considering a given control law parameterK
that asymptotically stabilizes the origin of the continuous-time system (3.5) and a set X0

for which we want to ensure convergence to the origin, our goal is to compute the param-
eters Qδ and Qx of the event generator described in Algorithm 5 for the event-triggered
control system (3.7), whose equation is recalled here for the readers convenience:{

ẋ(t) = f(x(t)) + g(x(t))u(t)

u(t) = Kx(tk) ∀t ∈ [tk, tk+1)
(4.1)

Considering the sampling error definition from (2.3), δ(t) , x(tk) − x(t), we can
rewrite (4.1) as:

ẋ(t) = f(x(t)) + g(x(t))K(x(t) + δ(t))

= f(x(t)) + g(x(t))Kx(t) + g(x(t))Kδ(t)

∀t ∈ [tk, tk+1)

(4.2)

Since f(x) and g(x) are, by assumption, rational functions with respect to the state,
f(x) + g(x)Kx and g(x)Kx are also rational and it is always possible to find a DAR
decomposition for (4.2) with the following form:{

ẋ = A1(x)x+ A2(x)ξ(x,δ) + A3(x)δ

0 = Ω1(x)x+ Ω2(x)ξ(x,δ) + Ω3(x)δ
(4.3)

with A1(x) ∈ Rn×n, A2(x) ∈ Rn×q, A3(x) ∈ Rn×n, Ω1(x) ∈ Rq×n, Ω2(x) ∈ Rq×q and
Ω3(x) ∈ Rq×n being affine matrix functions of x and ξ(x, δ) ∈ Rq being an auxiliary
vector variable containing rational and polynomial terms of f(x) and g(x)K(x + δ). It
is assumed that (4.2) can be recovered from (4.3) by eliminating ξ(x,δ), which implies
that Ω2(x) is full column rank for all x of interest, i.e. ∀x ∈ Bx. Notice that the time
dependency of x and δ is omitted to simplify notation.

Remark 4.1. Notice that, if K is a rational matrix function of the state K(x) instead
of a constant matrix, f(x) + g(x)K(x)x is still rational and the same form of DAR can
be considered. Therefore, the results presented in this section also apply for the case of
nonlinear static state feedback depending rationally on the state.
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4.1 Stability conditions with quadratic Lyapunov functions

In this section, we apply Lyapunov theory techniques to obtain asymptotic stability
conditions for the origin of system (4.1) under the triggering strategy given by Algo-
rithm 5. Considering a quadratic Lyapunov function candidate, we derive conditions that
ensure that its time derivative is negative along the trajectories of the system between
the sampling events. The event generator is designed to trigger a new control update
each time the Lyapunov derivative is about to become positive, forcing the derivative to
stay negative. This is accomplished by incorporating the trigger parameters to the sta-
bility conditions via S-Procedure (see, e.g. (BOYD et al., 1994, Section 2.6.3) for de-
tails on S-Procedure). We also employ Finsler Lemma (BOYD et al., 1994, Section The
S-Procedure, Notes and References) and linear/affine annihilators to reduce the conser-
vatism introduced by the DAR and to minimize the effects of its choice.

We consider a convex region of interest Bx given by a polytope in the state space:

Bx = {x ∈ Rn : h′ix ≤ 1; hi ∈ Rn; i = 1, . . . , nf} (4.4)

where nf is its number of faces. By denoting the set of vertices of Bx as Ver(Bx) =
{x1, x2, . . . , xnv}, note that Bx can be alternatively described as the convex hull of its
vertices.

The following theorem, which is an original contribution of this thesis, establishes
sufficient conditions for the stability of the rational system (4.1) under the event-triggered
control strategy described by Algorithm 5.

Theorem 4.1. Consider a DAR (4.3) for the system (4.1) which is valid in the region of
interest Bx. If there exist constant positive-definite matrices P,Qx, Qδ ∈ Rn×n and a
constant matrix L ∈ R(3n+q)×(2n+q−1) such that the following inequalities are satisfied
∀x ∈ Ver(Bx) :

Q+ LN2(x) + N ′
2 (x)L′ < 0 (4.5)[
P hi
h′i 1

]
> 0, i = 1 . . . nf (4.6)

where

N2(x) =

[
N0(x) 0

N1(x)

]
N1(x) =

[
A1(x) −I A2(x) A3(x)
Ω1(x) 0 Ω2(x) Ω3(x)

]

Q =


Qx P 0 0
P 0 0 0
0 0 0 0
0 0 0 −Qδ


with N0 as defined in (3.4), then the origin of system (4.1), under the event-triggering
strategy given by Algorithm 5, is locally asymptotically stable and E(P ) = {x ∈ Rn :
x′Px ≤ 1} is contained in its region of attraction, i.e. ∀x(0) ∈ E(P ), x(t)→ 0 when t→
∞.

Proof. Considering a quadratic Lyapunov function V (x) = x′Px and the following vec-
tor:

ζ =


x
ẋ
ξ
δ

 (4.7)
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the time derivative of V can be written as follows:

V̇ (x) = ζ ′


0 P 0 0
P 0 0 0
0 0 0 0
0 0 0 0

 ζ (4.8)

Now, as N2(x) is affine in x, (4.5) verified ∀x ∈ Ver(Bx) implies, by convexity, that
(4.5) is verified ∀x ∈ Bx. Thus, by Finsler Lemma, it follows that

ζ ′Qζ < 0, ∀ζ : N2(x)ζ = 0 (4.9)

is verified ∀x ∈ Ver(Bx). By construction, N2(x)ζ = 0 along the trajectories of the
system 1, therefore, ζ ′Qζ < 0 along the trajectories of the system.

On the other hand, ζ ′Qζ < 0 is equivalent to:

V̇ (x)− δ′Qδδ + x′Qxx < 0 (4.10)

which can be re-written as:

V̇ (x) < δ′Qδδ − x′Qxx ≤ 0 (4.11)

where the last inequality is ensured by the triggering strategy. At the event instants, a new
sample is triggered, which makes δ = 0 and V̇ (x) < −x′Qxx < 0 (recalling that Qx is
positive-definite). Hence, it is proved that the satisfaction of (4.5) implies V̇ (x) < 0 along
the trajectories of the system that are confined in Bx and that the origin is asymptotically
stable as long as there is no Zeno behavior. On the other hand, Theorem 3.1 ensures that
there is no Zeno behavior when the proposed trigger condition is used.

We end the proof by noting that, given the conditions above, any level set of the Lya-
punov function V that is inside Bx is contained in the region of attraction of the origin,
since these level surfaces are contained in a region where V̇ (x) < 0 and thus they are pos-
itively invariant and contractive with respect to the trajectories of the closed-loop system.
Satisfaction of (4.6) ensures E(P ) ⊂ Bx (see TARBOURIECH et al., 2011, Appendix
C.8, for details), which concludes the proof.

4.2 Stability conditions with rational Lyapunov functions

In this section we propose to use a similar procedure to that of Section 4.1 to ob-
tain stability conditions considering a rational Lyapunov function which, for being more
generic, will potentially allow to further reduce the number of events generated for the
class of systems at hand.

The stability conditions will be based on the following class of Lyapunov candidates,
as presented in (COUTINHO; GOMES DA SILVA JR., 2010):

V (x) = θ′(x)Pθ(x) (4.12)

where θ(x) ∈ Rnθ is a given rational vector function of the state x, non-singular in Bx,
and P ∈ Rnθ×nθ is a matrix to be determined. Notice that this formulation encompasses

1Note that N2(x) ζ = 0, since, by construction, N0(x)x = 0, ∀x and from (4.3), it follows that
N1(x) ζ = 0 along the trajectories of the system.
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a broad class of functions, including quadratic (with θ(x) = x), bi-quadratic, polynomial
and rational (with θ(x) being a polynomial or non-singular rational vector function of x)
(COUTINHO; GOMES DA SILVA JR., 2010).

The level sets associated to V (x) are defined as follows:

LV (c) = {x ∈ Rn : V (x) ≤ c, c > 0} (4.13)

Since θ(x) and ẋ are rational with respect to x, it is clear that θ̇ is also rational with
respect to x. Thus, based on the same arguments of Section 3.1.2, the following represen-
tations for θ and θ̇ can be obtained:{

θ = E1(x)x+ E2(x)ξθ(x)

0 = Γ1(x)x+ Γ2(x)ξθ(x)
(4.14)

{
θ̇ = F1(x)ẋ+ F2(x)ξθ̇(x, ẋ)

0 = Φ1(x)ẋ+ Φ2(x)ξθ̇(x, ẋ)
(4.15)

with ξθ(x) ∈ Rqθ , ξθ̇(x, ẋ) ∈ Rqdθ being auxiliary nonlinear vector functions, E1(x) ∈
Rnθ×n, E2(x) ∈ Rnθ×qθ , Γ1(x) ∈ Rqθ×n, Γ2(x) ∈ Rqθ×qθ , F1(x) ∈ Rnθ×n, F2(x) ∈
Rnθ×qdθ , Φ1(x) ∈ Rqdθ×n, Φ2(x) ∈ Rqdθ×qdθ being affine matrix functions of x and E1(x),
Γ2(x) and Φ2(x) being full rank ∀x ∈ Bx.

Now the following theorem, which constitutes an original contribution of this thesis,
applies the representations (4.14) and (4.15) to establish sufficient conditions for the sta-
bility of the rational system (4.1) considering an underlying rational Lyapunov function
(4.12).

Theorem 4.2. Consider a DAR (4.3) for system (4.1) and a given rational vector-valued
rational function θ(x) non-singular in Bx, with corresponding representations given in
(4.14) and (4.15). If there exist constant symmetric positive definite matrices Qx, Qδ, P
and generic constant matrices L1, L2, L3i (i = 1, ..., nf ) of appropriate dimensions, such
that the following LMIs are satisfied ∀x ∈ Bx:

Σ + L1N1(x) + N ′
1 (x)L′1 > 0 (4.16)

Q+ L2N2(x) + N ′
2 (x)L′2 < 0 (4.17)[

1 −h′iN
∗ Σ

]
+ L3iN3(x) + N ′

3 (x)L′3i > 0, i = 1 . . . nf (4.18)

with N0 as defined in (3.4) and:

Σ =

0 0 0
0 P 0
0 0 0

 N1(x) =

N0(x) 0 0
E1(x) −I E2(x)
Γ1(x) 0 Γ2(x)



Q =



Qx 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −Qδ 0 0 0 0
0 0 0 0 0 P 0 0
0 0 0 0 P 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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N2(x) =



N0(x) 0 0 0 0 0 0 0
A1(x) −I A2(x) A3(x) 0 0 0 0
Ω1(x) 0 Ω2(x) Ω3(x) 0 0 0 0
E1(x) 0 0 0 −I 0 E2(x) 0
Γ1(x) 0 0 0 0 0 Γ2(x) 0

0 F1(x) 0 0 0 −I 0 F2(x)
0 Φ1(x) 0 0 0 0 0 Φ2(x)


N3(x) =

[
0 N1(x)
−x N

]
N =

[
I 0 0

]
Then, the origin of system (4.1), under the event-triggering strategy given by Algo-

rithm 5, is locally asymptotically stable and LV (1) = {x ∈ Rn : V (x) ≤ 1} is contained
in its region of attraction, i.e. ∀x(0) ∈ LV (1), x(t)→ 0 when t→∞.

Proof. We show first that condition (4.16) guarantees that V (x) = θ′(x)Pθ(x) > 0, ∀x ∈
Bx, x 6= 0. For this, consider the augmented state vector

ζ1 =

xθ
ξθ


which from representation (4.14) leads to:

V (x) = ζ ′1Σζ1

Now, pre- and post-multiplying (4.16) by ζ ′1 and ζ1 respectively and applying the
Finsler’s Lemma, we have that satisfaction of (4.16) is equivalent to satisfaction of the
following inequality:

ζ ′1Σζ1 > 0, ∀ζ1 : N1(x)ζ1 = 0 (4.19)

Since N1(x) is affine in x and (4.16) is verified ∀x ∈ Ver(Bx), by convexity, it implies
that (4.19) holds for all x ∈ Bx. From (3.4) and (4.14), we have N1(x)ζ1 = 0; hence, in
fact, (4.16) implies V (x) > 0, ∀x ∈ Bx.

Next we show that condition (4.17) guarantees V̇ (x) < 0 along the trajectories of the
system, as long as they remain confined in Bx. In this case, consider the following vector:

ζ2 =



x
ẋ
ξ
δ
θ

θ̇
ξθ
ξθ̇


which leads to:

V̇ (x) = θ′P θ̇ + θ̇′Pθ = ζ ′2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 P 0 0
0 0 0 0 P 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


ζ2



40

By the same arguments used earlier, one can conclude that satisfaction of (4.17) at
the vertices of Bx implies that ζ ′2Qζ2 < 0 along the trajectories of the system (notice that
N2(x)ζ2 = 0), as long as the trajectories remain confined in Bx.

Now, observe that ζ ′2Qζ2 < 0 is equivalent to:

V̇ (x)− δ′Qδδ + x′Qxx < 0 (4.20)

which implies that
V̇ (x) < δ′Qδδ − x′Qxx ≤ 0 (4.21)

where the last inequality is guaranteed by the event-trigger criterion, since at the instants
when δ′Qδδ − x′Qxx is about to become positive, an event is generated, causing a new
sampling, which makes δ = 0 again and guarantees the negativity of V̇ , since −x′Qxx is
negative for x 6= 0, provided that Qx > 0.

Given the above, any level set of the Lyapunov function V belonging to Bx is con-
tained in the region of attraction of the origin, since those level sets are contained in a
region where V̇ (x) < 0 and thus they are positively invariant and contractive with respect
to the trajectories of the closed-loop system.

Satisfaction of (4.18) guarantees LV (1) ⊂ Bx, as shown in the sequel.
Observe now that

x ∈ Bx ⇐⇒ 2h′ix = h′ix+ x′hi ≤ 2 ⇐⇒ 2− h′ix− x′hi ≥ 0 (4.22)

and
x ∈ LV (1) ⇐⇒ V (x) = ζ ′1Σζ1 ≤ 1 ⇐⇒ ζ ′1Σζ1 − 1 ≤ 0 (4.23)

Moreover,
LV (1) ⊂ Bx ⇐⇒ (∀x ∈ LV (1) =⇒ x ∈ Bx)

which, from (4.22) and (4.23) is equivalent to:

2− h′ix− x′hi ≥ 0, ∀x : 1− ζ ′1Σζ1 ≥ 0 (4.24)

Hence, using the S-Procedure, satisfaction of the following condition guarantees that
(4.24) holds:

1− h′ix− x′hi + ζ ′1Σζ1 ≥ 0 (4.25)

By noting that Nζ1 = x, with N =
[
I 0 0

]
, condition (4.25) can be written in

matrix form as: [
1
ζ1

]′ [
1 −h′iN
∗ Σ

] [
1
ζ1

]
≥ 0 (4.26)

Now, noticing that N3(x)

[
1
ζ1

]
= 0 and applying the Finsler’s Lemma, it follows that

if (4.18) is satisfied. Then (4.26) holds and, in fact, LV (1) ⊂ Bx, which concludes the
proof.
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4.3 Optimization problems

From the definition of Problem 3.1, we aim to design the trigger criterion, i.e. the
matrices Qδ and Qx in order to ensure the asymptotic stability of the origin for all initial
conditions in a given set X0 while minimizing the events occurrence. Theorem 4.1 and
Theorem 4.2 can be used with the additional condition X0 ⊂ E(P ) to ensure stability
for this set of initial conditions. Recalling that to reduce the number of events one aims
at finding Qδ as “small” as possible and Qx as “large” as possible, the minimization of
an objective function like tr(Qδ − Qx) could be used. Unfortunately, it leads to poor
results due to the use of the trace of the difference of the decision variables which is not
a good approximation to the actual objective that needs to be minimized, which is related
to the ratio between eigenvalues of matrices Qx and Qδ. Moreover, when the objective
function is defined as the minimization of the difference between two variables, if both
are increased by the same amount, the objective value will remain the same, which is
not interesting in our case. An alternative is to apply the Schur’s complement to the first
element of matrices Q in (4.5) and (4.17), as follows.

a) For quadratic Lyapunov functions:

Q̄+ L̄ ¯N2(x) + ¯N ′
2 (x)L̄′ < 0 (4.27)

with

Q̄ =


0 P 0 0 I
P 0 0 0 0
0 0 0 0 0
0 0 0 −Qδ 0
I 0 0 0 −Q̄x


¯N2 = [N2 0], Q̄x = Q−1

x , L̄ =

[
L
0

]

b) For rational Lyapunov functions:

Q̄+ L̄2
¯N2(x) + ¯N ′

2 (x)L̄′2 < 0 (4.28)

with

Q̄ =



0 0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −Qδ 0 0 0 0 0
0 0 0 0 0 P 0 0 0
0 0 0 0 P 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 −Q̄x


,

¯N2 = [N2 0], Q̄x = Q−1
x , L̄2 =

[
L2

0

]
Formulations (4.27) and (4.28) of (4.5) and (4.17), respectively, allows us to maximize

the trace of Qx implicitly by minimizing the trace of Q̄x = Q−1
x and use the objective

function tr(Qδ + Q̄x), which leads to better results in terms of the number of events.
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Considering X0 = {x ∈ Rn : x′P0x ≤ 1}, with a symmetric positive-definite P0 ∈
Rn×n, condition X0 ⊂ E(P ) can be expressed as:

P < P0 (4.29)

Summarizing, these considerations lead to the following convex optimization prob-
lems proposed as means to compute the parameters of the event generator, i.e. Qx = Q̄−1

x

and Qδ.

a) For the quadratic Lyapunov function case:

min(tr(Qδ + Q̄x))

subject to: (4.30)
(4.6), (4.27), (4.29)

b) For the case of rational Lyapunov functions:

min(tr(Qδ + Q̄x))

subject to: (4.31)
(4.16), (4.18), (4.28),[
P0 0
0 0

]
− Σ + LN1(x) + N1(x)′L ≥ 0

where L is a generic matrix of appropriate dimension. Note that the last constraint in
(4.31) ensures that X0 ⊂ LV (1).

It should be noticed that the choice of Bx impacts the results obtained from these
optimization problems. To overcome such problem, we parametrize Bx = {x ∈ Rn :
h′ix ≤ ρ, hi ∈ Rn, i = 1, . . . , nf ; ρ > 0}, where the vectors hi determine the shape
and the parameter ρ determines the size of Bx. Then we solve the optimization problems
performing a search over ρ.

Remark 4.2. Since only stabilization of the closed-loop system with no further perfor-
mance criteria was employed to derive the constraints of optimization problems (4.30)
and (4.31), these problems are not well-posed to open-loop stable systems, in the sense
that they will lead to a very large Qx and a very small Qδ. Under these circumstances,
the event-trigger will not generate any events and the system will operate in open-loop.
To avoid this, additional LMIs can be added to require some performance index of the
closed-loop system. For instance, one can add LMIs to require a minimum exponential
decay rate of the Lyapunov function. This reasoning is also valid for all optimization
problems discussed in the sequel of this thesis.

4.4 Numerical examples

In this section, we illustrate the application of the proposed emulation design method
by means of numerical examples. Three examples of systems are considered: a poly-
nomial planar, a rational planar and a third-order polynomial one. We also compare the
results obtained with the use of quadratic and bi-quadratic Lyapunov functions to illustrate
the impact of the use of more complex Lyapunov functions.
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4.4.1 Example 1 – Unstable polynomial system

Consider the following plant:{
ẋ(1)(t) = x(2)(t)

ẋ(2)(t) =
(
1 + x2

(1)(t)
)
x(1)(t) + x(2)(t) + u(t)

(4.32)

where x = [x(1) x(2)]
′ ∈ R2 is the plant state. The open-loop systems features only one

equilibrium point, the origin, which is a saddle point.
Considering the linearization of the system around the origin, we designed a gain ma-

trix K =
[
−2 −2

]
that ensures the asymptotic stability of the origin of the continuous-

time closed-loop system 2. Then we chose the following DAR for the event-triggered
closed-loop system: ẋ =

[
0 1
−1 −1

]
x+

[
0
x(1)

]
x2

(1) +

[
0 0
−2 −2

]
δ

0 =
[
x(1) 0

]
x+

[
−1
]
x2

(1) +
[
0 0

]
δ

(4.33)

Let Bx = {x ∈ R2 : |x(i)| < ρ; ρ ∈ R+}, with ρ being a parameter defining the side
length of Bx and X0 = {x ∈ R2 : x′P0x ≤ 1}, with P0 = 50I .

We will solve the emulation problem considering a quadratic and a bi-quadratic Lya-
punov function. For the bi-quadratic one, we consider the vectors

θ =


x2

(1)

x(1)x(2)

x2
(2)

x(1)

x(2)

 θ̇ =


2x(1)ẋ(1)

x(1)ẋ(2) + x(2)ẋ(1)

2x(2)ẋ(2)

ẋ(1)

ẋ(2)

 (4.34)

and the following parameters for representations (4.14) and (4.15):

ξθ =

 x2
(1)

x(1)x(2)

x2
(2)

 E1 =


0 0
0 0
0 0
1 0
0 1

 E2 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


Γ1 =

x(1) 0
0 x(1)

0 x(2)

 Γ2 =

−1 0 0
0 −1 0
0 0 −1



ξθ̇ =


x(1)ẋ(1)

x(1)ẋ(2)

x(2)ẋ(1)

x(2)ẋ(2)

 F1 =


0 0
0 0
0 0
1 0
0 1

 F2 =


2 0 0 0
0 1 1 0
0 0 0 2
0 0 0 0
0 0 0 0



Φ1 =


x(1) 0
0 x(1)

x(2) 0
0 x(2)

 Φ2 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



(4.35)

2With this control law, the continuous-time closed-loop has additional equilibria at xe1 =
[
1 0

]′
and

xe2 =
[
−1 0

]′
.
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We computed the trigger parameters using optimization problems (4.30) for the quadratic
Lyapunov function and (4.31) for the bi-quadratic one. These problems were solved for
various values of ρ (i.e., various sizes of Bx), with the additional restriction of Qδ <
0.0001I to prevent Qδ from becoming ill-conditioned. The obtained results are shown in
Table 4.1. One can observe that the best value of the objective function is obtained with
the use of a bi-quadratic Lyapunov function. This is the first indication that the use of
more complex Lyapunov functions can lead to better results. In the sequel we confirm
this expectation by means of simulations.

Table 4.1: Example 1 – Linear search over Bx size for different Lyapunov functions.
ρ Objective function value

Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

0.15 189 186
0.20 112 109
0.30 56.7 53.7
0.40 38.3 35.0
0.50 30.8 26.9
0.55 29.1 24.8
0.60 28.4 23.3
0.65 28.5 22.5
0.70 29.6 22.2
0.75 31.9 22.6
0.80 36.0 24.1
0.85 43.8 27.5
0.95 111 62.1
1.0 unfeasible unfeasible

Now we consider the event generator parameters with the values of Qx and Qδ cor-
responding to the best objective values obtained in each case, that is, ρ = 0.60 for the
quadratic case and ρ = 0.70 for the bi-quadratic one. The values of these matrices and of
the corresponding P for each case are depicted in Table 4.2.

Table 4.2: Example 1 – Matrices obtained from the optimization problems with different
Lyapunov functions.

Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

Qx

[
0.332 −0.118
−0.118 0.593

] [
0.299 −0.059
−0.059 0.638

]
Qδ

[
11.6514 11.6486
11.6486 11.6514

] [
8.5812 8.5799
8.5799 8.58012

]

P

[
2.86 0.553
0.553 3.71

] 
−1.81 0.00732 −0.00697 1.78 · 10−5 0.437

0.00732 0.0113 0.00106 −0.437 −0.501
−0.00697 0.00106 −0.00133 0.501 −4.16 · 10−5

1.78 · 10−5 −0.437 0.501 3.38 0.345
0.437 −0.501 −4.16 · 10−5 0.345 3.45



Simulations of the closed-loop systems using these values for the parameters give the
results shown in figures 4.1 and 4.2. In Figure 4.1, the top plots show the evolution of
the state for an initial condition x(0) = [0.1 0.1]′. The dashed lines represent the state
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of a continuous-time implementation of the control system, i.e. without an event-trigger
policy. One can see that the event-triggered implementation rendered the closed-loop
slightly faster and slightly more oscillatory, but the overall dynamics are very similar to
the one obtained with a continuous-time implementation. The plots in the middle show
the control signal, with the dashed lines representing again the corresponding continuous-
time implementation. Note that in the event-triggered implementation, the control signal
is held constant between two events (as expected) and that the control signals are very
similar to the continuous-time implementation. In particular, the event-trigger has not
led into much larger control efforts. The bottom plots depict the event instants, with the
sizes of the bars representing the inter-event times, i.e. the difference between the time
of that event and of the previous one. It should however be noticed that the important
information about the events is not the maximum inter-event time (which is clearly visible
in these plots), but the minimum inter-event time and the number of events. To quantify
this information we need to consider various initial conditions, taking the minimum inter-
event time and the average number of events among them.

For this, we computed the average number of events and the minimum inter-event
time for 200 initial conditions inside X0, 50 of them equally spaced along the border of
X0. The time interval simulated in each case was t ∈ [0, 15]. The results are summarized
in Table 4.3. These results confirm the predictions from the analysis of the objective
function values: the use of a bi-quadratic Lyapunov function indeed reduced the average
number of events and increased the minimum inter-event time.

Table 4.3: Example 1 – Comparison of event-trigger effectiveness for P0 = 50I .
Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

Average number of events 60.98 56.01

Minimum inter-event time 144 160

Figure 4.2 depicts the borders of the set X0 (in red) and of the Lyapunov level sets
E(P ) and LV (1) (in black) along with some convergent (in blue) and divergent (in ma-
genta) trajectories of the event-triggered implementation. As one can see, the set X0 is
contained in E(P ) and LV (1), respectively, and in the regions of attraction of the origin,
as expected. Note also that, although there are subtle differences in the trajectories for
each optimization case, the overall domains of attraction are very similar for all the con-
sidered cases and that the set LV (1) is indeed not an ellipsoid in the bi-quadratic case. It
is important to highlight that the optimization problems at hand do not aim at maximiz-
ing the size of E(P ) and LV (1) in any sense, so it is not expected that they lead to good
estimates of the region of attraction. Actually, it is only ensured that X0 is contained in
these level sets to guarantee that all trajectories starting inside X0 converge to the origin,
as desired.

4.4.1.1 Influence of X0 size

Now we consider larger sets X0, by choosing P0 = 4I and P0 = 2.8I . Figures 4.3
and 4.4 show phase portraits of the closed-loop system with the borders of the sets X0 (in
red) and of the Lyapunov level sets E(P ) and LV (1) (in black) obtained for each of these
values of P0, respectively.
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a) Quadratic, OP (4.30) b) Bi-quadratic, OP (4.31)

Figure 4.1: Example 1 – Simulations for x(0) = [0.1 0.1]′ – emulation.
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Figure 4.2: Example 1 – Phase portraits with P0 = 50I – emulation.

Tables 4.4 and 4.5 present the average number of events and the minimum inter-event
times for 200 initial conditions inside X0. It can be seen that there are no sensible changes
for P0 = 4I when compared to the results obtained for P0 = 50I shown previously. In
this case, the increment in X0 size has not represented an additional constraint for this
particular system and the optimization problem yields essentially the same results as for
P0 = 50I . On the other hand, when we consider P0 = 2.8I , we are effectively asking
more from the system and, in this case, the average number of events increases and the
minimum inter-event times decreases. This illustrates a trade-off between the size of the
region of certified asymptotic stability and the performance of the event-triggered control
in terms of the number of events. If larger regions are considered, more events and smaller
minimum inter-event times are expected.

It can be seem also that, in this case, the quadratic Lyapunov function gave better
results than the bi-quadratic for P0 = 2.8I . Note that the conditions for the quadratic
Lyapunov function cannot be obtained as a particular case of those for the bi-quadratic.
This explains why sometimes the quadratic can outperform the bi-quadratic.

Table 4.4: Example 1 – Events information for P0 = 4I .
Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

Average number of events 61.05 55.66

Minimum inter-event time 144 160
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Table 4.5: Example 1 – Events information for P0 = 2.8I .
Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

Average number of events 70.89 84.12

Minimum inter-event time 99 70
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Figure 4.3: Example 1 – Phase portraits with P0 = 4I – emulation.
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Figure 4.4: Example 1 – Phase portraits with P0 = 2.8I – emulation.
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4.4.2 Example 2 – Rational system

In this example we consider the following plant:
ẋ(1)(t) =

1 + x2
(1)(t)

2
x(2)(t)

ẋ(2)(t) =
2

1 + x2
(1)(t)

x(1)(t)− x(2)(t)−
1− x2

(1)(t)

1 + x2
(1)(t)

u(t)

(4.36)

where x = [x(1) x(2)]
′ ∈ R2 is the state of the plant. This system models the rotational

motion of a cart with an inverted pendulum after some variable changes to convert the
system from transcendental into rational (see (COUTINHO; GOMES DA SILVA JR.,
2010) for the details).

Considering a linearization of the system around the origin, we designed the con-
troller gain matrix K =

[
20 13

]
, which stabilizes the origin asymptotically. Then we

considered the following matrices for the DAR (4.3):

ξ(x, δ) =

[
x(1)x(2)

x(1)
1+x2(1)

x2(1)
1+x2(1)

K(x+δ)
1+x2(1)

x(1)K(x+δ)

1+x2(1)

]′
and

A1 =

[
0 0.5
−20 −14

]
A2 =

[
0.5x(1) 0 0 0 0

0 2 0 0 2x(1)

]
A3 =

[
0 0
−20 −13

]

Ω1 =


−x(2) 0
−1 0
0 0
−20 −13

0 0

 Ω2 =


1 0 0 0 0
0 1 x(1) 0 0
0 −x(1) 1 0 0
0 0 0 1 x(1)

0 0 0 −x(1) 1

 Ω3 =


0 0
0 0
0 0
−20 −13

0 0


Considering Bx = {x ∈ R2 : |x(i)| < ρ; ρ ∈ R+} and X0 = {x ∈ R2 : x′P0x ≤ 1},

with P0 = 50I , optimization problems (4.30) and (4.31) are solved for various values
of ρ. For problem (4.31), we consider a bi-quadratic Lyapunov function with θ and rep-
resentations (4.14) and (4.15) as defined in the previous example. To prevent Qδ from
becoming ill-conditioned, the additional restriction of Qδ < 0.0001I is considered. The
results are shown in Table 4.6. One can see that, in terms of the value of the objective
function, once again, the use of bi-quadratic Lyapunov functions yields the best results.

Considering the event generator with the parameter values corresponding to the best
objective in each case (i.e. ρ = 0.86 for the quadratic case and ρ = 0.89 for the bi-
quadratic case, which leads to the matrices depicted in Table 4.7) and simulating the
closed-loop systems with these settings, one obtains the results shown in figures 4.5 and
4.6.

In Figure 4.5, the top plots show the evolution of the state for an initial condition
x(0) = [0.1 0.1]′. The dashed lines represent the state of the corresponding continuous-
time system, i.e. considering the direct connection between plant and controller, without
the event-triggering mechanism. The performance of the event-triggered system is very
similar to the performance of the continuous-time system in all cases considered. The
control signals, depicted in the middle plots, are also very similar between the continuous-
time and the event-triggered implementations, without no substantial increase in the con-
trol effort in the event-triggered cases. The bottom plots show the instants when the events
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Table 4.6: Example 2 – Linear search on Bx size for different Lyapunov functions.
ρ Objective function value

Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

0.75 41.2070 41.7787
0.80 37.7597 37.9668
0.81 37.2467 37.3400
0.82 36.7917 36.7611
0.83 36.4265 36.2325
0.84 36.1265 35.7585
0.85 35.9383 35.3454
0.86 35.8686 35.0018
0.87 35.9433 34.7395
0.88 36.2024 34.5780
0.89 36.7390 34.5533
0.90 37.6713 34.7214
0.91 39.2032 35.1807
0.95 unfeasible unfeasible

Table 4.7: Example 2 – Matrices obtained from the optimization problems with different
Lyapunov functions.

Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

Qx

[
1.46 −0.0740
−0.0740 0.802

] [
1.69 −0.0425
−0.0425 0.902

]
Qδ

[
23.9 15.5
15.5 10.1

] [
23.1 15.0
15.0 9.76

]

P

[
12.3 1.59
1.59 1.56

] 
−2.76 0.822 −0.0527 0.0187 0.0691
0.822 3.26 −0.0558 −0.0215 −0.450
−0.0527 −0.0558 −0.00137 0.450 0.00141
0.0187 −0.0215 0.450 17.0 1.41
0.0691 −0.450 0.00141 1.41 1.51



occurred. The size of the bars reflect the time elapsed since the last event. There are more
events during the transient in all cases and the inter-event times become more spaced in
steady-state.

Figure 4.6 depicts the set X0 (in red) along with some convergent (in blue) and diver-
gent (in magenta) trajectories of the event-triggered implementation. Figure 4.7 shows
zoomed views around the origin. As in the previous example, the sets X0 are contained in
LV (1) and in the domains of attraction, as expected.

Computing the average number of events and the minimum inter-event time for 200
initial conditions inside X0 and considering t ∈ [0, 10], we obtain the results summarized
in Table 4.8. These results show again that the use of a bi-quadratic Lyapunov function
slightly reduced the average number of events and increased the minimum inter-event
time.
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Table 4.8: Example 2 – Comparison of event-trigger effectiveness.
Quadratic, OP (4.30) Bi-quadratic, OP (4.31)

Average number of events 9.84 9.31

Minimum inter-event time 14 15
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Figure 4.5: Example 2 – Simulations for x(0) = [0.1 0.1]′ – emulation.

4.4.2.1 Influence of X0 size

In this section, we assess the influence of X0 size. We set P0 = αI for various
values of the positive scalar α, solve the optimization problems (4.30) and (4.31), for
quadratic and bi-quadratic Lyapunov functions, respectively, and evaluate the average and
minimum inter-event times from simulations considering 200 initial conditions inside X0.
The results are shown in tables 4.9 and 4.10. One can observe again that the average
number of events tends to increase and the minimum inter-event time decreases as the
size of X0 increases.
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Figure 4.6: Example 2 – Phase portraits – emulation.
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Figure 4.7: Example 2 – Phase portraits (Zoom)– emulation.

Table 4.9: Example 2 – Influence of X0 size – Quadratic Lyapunov function.
α Average number of events Minimum inter-event time

25 9.84 14
12 10.00 14
8 12.31 14
6 17.95 11

Table 4.10: Example 2 – Influence of X0 size – Bi-quadratic Lyapunov function.
α Average number of events Minimum inter-event time

25 9.33 15
12 10.29 14
8 13.87 11
6 25.93 7



53

4.4.3 Example 3 – Lorenz system

The Lorenz system (LORENZ, 1963) is a classical dynamical system that features
chaotic behavior. It is a third-order polynomial system, represented by the following
equation: 

ẋ(1) = σ(x(2) − x(1))

ẋ(2) = x(1)(ν − x(3))− x(2) + u

ẋ(3) = x(1)x(2) − βx(3)

(4.37)

where x = [x(1) x(2) x(3)]
′ ∈ R3 is the state and u ∈ R is the control input. σ, ν and β

are positive scalar parameters. In this text we will consider σ = 10, ν = 28 and β = 8/3,
which leads to chaotic behavior when u = 0.

We consider the stabilizing gain K =
[
−29 0 0

]
, ξ(x, δ) = x(1) and the following

matrices for DAR (4.3):

A1 =

−10 10 0
−1 −1 0
0 0 −2.67

 A2 =

 0
−x(3)

x(2)

 A3 =

 0 0 0
−29 0 0

0 0 0


Ω1 =

[
1 0 0

]
Ω2 =

[
−1
]

Ω3 =
[
0 0 0

]

As in the previous examples, we assume Bx = {x ∈ R3 : |x(i)| < ρ; ρ ∈ R+} and
X0 = {x ∈ R3 : x′P0x ≤ 1}, with P0 = 50I .

To consider a bi-quadratic Lyapunov function, since we are dealing with a third-order
system, we choose the following structure for θ and the representations (4.14) and (4.15):

θ =



x(1)

x(2)

x(3)

x2
(1)

x2
(2)

x2
(3)

x(1)x(2)

x(2)x(3)

x(1)x(3)


θ̇ =



ẋ(1)

ẋ(2)

ẋ(3)

2x(1)ẋ(1)

2x(2)ẋ(2)

2x(3)ẋ(3)

x(1)ẋ(2) + x(2)ẋ(1)

x(2)ẋ(3) + x(3)ẋ(2)

x(1)ẋ(3) + x(3)ẋ(1)


ξθ =



x2
(1)

x2
(2)

x2
(3)

x(1)x(2)

x(2)x(3)

x(1)x(3)

 ξθ̇ =



x(1)ẋ(1)

x(2)ẋ(2)

x(3)ẋ(3)

x(1)ẋ(2)

x(2)ẋ(1)

x(2)ẋ(3)

x(3)ẋ(2)

x(1)ẋ(3)

x(3)ẋ(1)



E1 =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


E2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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Γ1 =


x(1) 0 0
0 x(2) 0
0 0 x(3)

0 x(1) 0
0 0 x(2)

0 0 x(1)

 Γ2 =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1



F1 =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


F2 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1



Φ1 =



x(1) 0 0
0 x(2) 0
0 0 x(3)

0 x(1) 0
x(2) 0 0
0 0 x(2)

0 x(3) 0
0 0 x(1)

x(3) 0 0


Φ2 =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1


As one can see, the dimensions of the optimization problem increase quickly with the

order of the system when rational Lyapunov functions are considered. In this case, we
increased the order of the system from two (in the previous examples) to three and, even
using a relatively simple bi-quadratic Lyapunov function, the number of lines of the ma-
trices matrices in the DARs (E1, E2, F1, F2, etc.) increased from 5 to 9, complexifying
the optimization problem that needs to be solved. The additional complexity comes from
the fact that the number of optimization variables increases from 951 (for the second-
order systems) to 2463 (for the third-order system) and that the number of constraints
also increases due to the larger number of vertices and faces. This constitutes the main
drawback of the use of more complex underlying Lyapunov functions. In the example
at hand, attempts to solve optimization problem (4.31) with the formulation above did
not complete within 96 hours 3 for the first value of ρ. Since we need to execute a line
search over ρ, the use of bi-quadratic Lyapunov functions for this example was consid-
ered too computationally demanding to be worth. Moreover, comparing the optimization
problems with quadratic and bi-quadratic Lyapunov functions for the system at hand, the
former features 96 decision variables while the later features 2463, showing how more
computationally demanding the problem based on bi-quadratic can be. Hence, we will
consider here only quadratic Lyapunov functions and optimization problem (4.30). Solv-
ing it with different values of ρ and the additional condition Qδ < 0.0001I to prevent
Qδ from becoming ill-conditioned, we obtain the results depicted in Table 4.11. The line

3Using a personal computer with Intel Core i7-4770 8-Core 3.4 GHz CPU, 8 MB cache, 8 GB of
memory.
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in boldface corresponds to the best value found for the objective function, obtained with
ρ = 4.80.

Table 4.11: Example 3 – Linear search over Bx size.
ρ Objective function tr(Qδ + Q̄x)

0.14 unfeasible
0.20 1.149 · 104

1.00 249.3
4.50 51.32
4.60 51.29
4.70 51.27
4.80 51.26
4.90 51.28
5.00 51.31
10.0 57.81
100 72.78

With ρ = 4.80, the optimization problem yields:

Qx =

 0.292 −0.219 −1.44 · 10−8

−0.219 0.263 7.33 · 10−9

−1.44 · 10−8 7.33 · 10−9 0.248


Qδ =

28 0 0
0 0.000104 0
0 0 0.000104


P =

 0.071 −0.0598 4.38 · 10−9

−0.0598 0.129 −3.54 · 10−9

4.38 · 10−9 −3.54 · 10−9 0.0747


Figure 4.8 depicts simulations of the closed-loop system considering x(0) =[

0.08 0.08 0.08
]′. The top plot shows, in solid lines, the state of the event-triggered

implementation and, in dashed lines, the state of an equivalent (in the sense that it has
the same control law) continuous-time implementation of the system. One can see that
the event-triggered control in this case leads to more sensible differences with respect to
the continuous-time implementation. The middle plot depicts the control signals for the
event-triggered implementation, again in solid line, and the equivalent continuous-time
implementation in dashed line. The plot at the bottom shows the event instants. During
the time interval [0, 4], 98 events were generated and the minimum inter-events time was
of 24 ms. Simulating the event-triggered implementation for 400 initial conditions on the
border of X0, the average number of events is 115.8 and the minimum inter-events time
observed is 9 ms.

Figure 4.9 depicts the set X0 in green and the ellipsoid E(P ) in red. One can observe
that X0 ⊂ E(P ) as imposed by the conditions in the optimization problem. Indeed, E(P )
is much bigger than X0.

4.4.3.1 Influence of X0 size

Now we consider larger sets X0, by choosing P0 = αI for various values of the
positive scalar α. Table 4.12 presents the average number of events and the minimum
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Figure 4.8: Example 3 – Simulation for x(0) = [0.08 0.08 0.08]′ – emulation.

inter-event times obtained from simulations considering 400 initial conditions on the bor-
der of X0. One can observe again that the average number of events tends to increase and
the minimum inter-event time decreases as the size of X0 increases.

Table 4.12: Example 3 – Influence of X0 size.
α Average number of events Minimum inter-event time

4.00 114.5 10
0.10 111.2 7
0.01 131.2 3
0.001 202.0 1

4.5 Conclusion

In this chapter we addressed the emulation problem for the class of rational systems.
We established asymptotic stability conditions in the form of LMIs that allow to com-
pute the parameters of the triggering condition considering a given state-feedback control
law that stabilizes the origin of the continuous-time nonlinear system. These conditions
were cast into convex optimization problems proposed as means of computing the event
generator parameters Qδ and Qx.

We considered quadratic and rational underlying Lyapunov functions and we illus-
trated, by means of numerical experiments, that with the use of more complex Lyapunov
functions (bi-quadratic, in the experiments) trigger functions leading to less events gener-
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Figure 4.9: Example 3 – E(P ) and X0.

ation can be obtained. The more complex Lyapunov functions do not impose additional
online computation burden (i.e. computational complexity in the event generator) but
highly increase the off-line computational burden, i.e. the complexity of the optimization
problem that one needs to solve to compute the event generator parameters. It was shown
that even considering a third-order polynomial system and a bi-quadratic Lyapunov func-
tion, the optimization problems can scale to a complexity that renders difficult to solve
them using ordinary equipment. Thus, from this point, we will consider only quadratic
Lyapunov functions.

Compared to other approaches in the event-triggered control for nonlinear systems
literature, the proposed approach has the following advantages: It provides a systematic
method for designing of the event-triggering condition parameters and, in the co-design
case, also the control law. The underlying Lyapunov function does not need to be designed
a priori, since it is implicitly computed as part of the method. The method certifies a set
of initial conditions where convergence to the origin is ensured, ensuring that this set
represents a region of safe operation of the system. It was shown that there is a trade-off
between the size of this region and the expected number of events and the minimum inter-
event time. As larger sets are considered, initial conditions farther away from the origin
are included and these ones will typically require a more effective control action. This
translates into smaller inter-event times and, consequently, more events.

The results presented in this chapter considering quadratic Lyapunov functions were
published in (MOREIRA; GROFF; GOMES DA SILVA JR., 2016b) and (MOREIRA
et al., 2017a).
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5 CO-DESIGN

In this chapter, we address Problem 3.2, i.e. the simultaneous design of the control
law gain K and the event generator parameters Qx and Qδ. We consider again the trigger
condition described by Algorithm 5 and the system (3.7), whose representation is recalled
here for the reader’s convenience:{

ẋ(t) = f(x(t)) + g(x(t))u(t)

u(t) = Kx(tk) ∀t ∈ [tk, tk+1)
(5.1)

We assume again that the set of initial conditions where we want to ensure asymptotic
stability is given by X0 = {x ∈ Rn : x′P0x ≤ 1}, with P0 being a symmetric positive-
definite matrix.

Recalling that δ(t) = x(tk)− x(t), here we slightly change the DAR so that we have
K explicitly in the representation as follows:{

ẋ = (A1(x) + A3(x)K)x+ A2(x)ξ(x, δ) + A3(x)Kδ

0 = (Ω1(x) + Ω3(x)K)x+ Ω2(x)ξ(x, δ) + Ω3(x)Kδ
(5.2)

with ξ(x, δ) ∈ Rq being an auxiliary variable vector containing the polynomial and ratio-
nal terms of f(x) and of g(x)K(x + δ); A1(x) ∈ Rn×n, A2(x) ∈ Rn×q, A3(x) ∈ Rn×m,
Ω1(x) ∈ Rq×n, Ω2(x) ∈ Rq×q and Ω3(x) ∈ Rq×m being affine matrix functions of x. We
assume again that Ω2(x) is full column rank ∀x ∈ Bx.

5.1 Stability conditions

Here we consider a Lyapunov function candidate and design simultaneously the event
generator parameters (i.e. Qδ and Qx) and the gain matrix K so that the time derivative
of the Lyapunov function is negative along the trajectories of the system.

Differently from the emulation design, here we will consider only the quadratic Lya-
punov functions. The extension to rational Lyapunov functions using the same ideas
applied for the emulation design is not difficult from a theoretical perspective, but the
computational complexity of the resulting conditions does not seem to justify the possi-
ble gains in performance, as discussed in the previous chapter.

Also differently from the emulation, here we do not use annihilators. If one uses them
in a context where K is variable, like in the co-design, it is not possible to obtain stability
conditions that are affine with respect to the decision variables due to the terms LN2(x)
and N ′

2 (x)L′ 1. As an alternative to reduce conservatism, we are going to use particular
1When K is a decision variable, N1(x) depends on K, and, as a consequence, N2(x) also depends on

K. Therefore, the terms LN2(x) and N ′
2 (x)L′ become bilinear.
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multipliers similar to those in (OLIVEIRA; GOMES DA SILVA JR.; COUTINHO, 2012;
OLIVEIRA, 2012).

The following theorem was developed as original research for this thesis and provides
sufficient stability conditions in the co-design context.

Theorem 5.1. Consider a DAR (5.2) for system (5.1), valid in the region of interest Bx,
defined as in (4.4). If there exist constant positive-definite matrices Q̄x, Q̄δ, N2 ∈ Rn×n

and constant matrices N1 ∈ Rn×n, N3 ∈ Rq×q and Y ∈ Rn×m such that the following
inequalities are satisfied ∀x ∈ Ver(Bx):

ψa ψb ψc A3(x)Y ′ N2

∗ −He{N1} A2(x)N ′3 A3(x)Y ′ 0
∗ ∗ He{Ω2(x)N ′3} Ω3(x)Y ′ 0
∗ ∗ ∗ −Q̄δ 0
∗ ∗ ∗ ∗ −Q̄x

 < 0 (5.3)

[
N2 N2hi
h′iN2 ρ2

i

]
> 0, i = 1 . . . nf (5.4)

with

ψa = He{A1(x)N ′2 + A3(x)Y ′}
ψb = N2A

′
1(x) + Y A′3(x)

ψc = A2(x)N ′3 +N2Ω′1(x) + Y Ω′3(x)

then the origin of system (5.1) with K = Y N−1
2 , under the event triggering strategy

given by Algorithm 5 with Qx = Q̄−1
x and Qδ = N−1

2 Q̄δN
−1
2 , is asymptotically stable

and E(N−1
2 ) = {x ∈ Rn : x′N−1

2 x ≤ 1} is contained in its region of attraction, i.e.
∀x(0) ∈ E(N−1

2 ), x(t)→ 0 when t→∞.

Proof. Observe that the terms of (5.2) can be re-arranged as follows:{
− ẋ+ (A1 + A3K)x+ A2ξ + A3Kδ = 0

(Ω1 + Ω3K)x+ Ω2ξ + Ω3Kδ = 0
(5.5)

For simplicity, the dependence on x in the matrix functions was omitted. Then, from
(5.5), one can derive the following relations:

β1 = ẋ′M1(−ẋ+ (A1 + A3K)x+ A2ξ + A3Kδ) = 0, ∀M1 ∈ Rn×n

β2 = x′M2(−ẋ+ (A1 + A3K)x+ A2ξ + A3Kδ) = 0, ∀M2 ∈ Rn×n

β3 = ξ′M3((Ω1 + Ω3K)x+ Ω2ξ + Ω3Kδ) = 0, ∀M3 ∈ Rq×q
(5.6)

Consider now a quadratic Lyapunov function V (x) = x′Px, with symmetric positive-
definite P . Defining ζ =

[
x′ ẋ′ ξ′ δ′

]′ and considering β1, β2 and β3 as above, one
can write V̇ (x) as:

V̇ (x) = V̇ (x) + 2β1 + 2β2 + 2β3 =

= ζ ′


ψ1 ψ2 ψ3 M2A3K
∗ −He{M1} M1A2 M1A3K
∗ ∗ He{M3Ω2} M3Ω3K
∗ ∗ ∗ 0

 ζ (5.7)
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with
ψ1 = He{M2(A1 + A3K)}
ψ2 = P + (A1 + A3K)′M ′

1 −M2

ψ3 = M2A2 + (Ω1 + Ω3K)′M ′
3

From Algorithm 5, it follows that, along the trajectories of the system, δ′Qδδ −
x′Qxx ≤ 0. Thus, if the following matrix inequality is verified:

ψ1 +Qx ψ2 ψ3 M2A3K
∗ −He{M1} M1A2 M1A3K
∗ ∗ He{M3Ω2} M3Ω3K
∗ ∗ ∗ −Qδ

 < 0 (5.8)

one ensures V̇ (x) < δ′Qδδ − x′Qxx ≤ 0.
Assuming now that M1,M2,M3 are non-singular matrices, define N1 = M−1

1 , N2 =
M−1

2 , N3 = M−1
3 . Hence, pre- and post-multiplying (5.8) by diagN2, N1, N3, N2 and

diagN ′2, N
′
1, N

′
3, N

′
2 respectively, leads to:
ψ4 ψ5 ψ6 A3KN

′
2

∗ −He{N1} A2N
′
3 A3KN

′
2

∗ ∗ He{Ω2N
′
3} Ω3KN

′
2

∗ ∗ ∗ −N2QδN
′
2

 < 0 (5.9)

with

ψ4 = He{(A1 + A3K)N ′2}+N2QxN
′
2

ψ5 = N2PN
′
1 +N2(A1 + A3K)′ −N ′1

ψ6 = A2N
′
3 +N2(Ω1 + Ω3K)′

Applying the Schur’s complement to the term ψ4, restricting P = M2 (which implies
N2PN

′
1 = N ′1 and M2 = M ′

2 > 0) and applying the changes of variables Y = N2K
′,

Q̄δ = N2QδN
′
2 one obtains the relation (5.3). Note that, from (5.3) and (5.4), it follows

that He{Ω2N
′
3} < 0, He(N1) > 0 and N2 > 0, which indeed ensure that M1, M2 and M3

are non-singular. Hence, since (5.3) is affine with respect to x, by convexity arguments,
if it is verified at the vertices of Bx, we can conclude that V̇ (x) < 0,∀x ∈ Bx and that the
origin is asymptotically stable.

Satisfaction of (5.4) guarantees that E(N−1
2 ) ⊂ Bx, making E(N−1

2 ) an estimate of the
domain of attraction of the origin.

Remark 5.1. Since conditions of Theorem 5.1 imply V̇ (x) < 0 for the particular case
where δ(t) = 0, any gain K satisfying these conditions stabilizes a continuous-time im-
plementation of the closed-loop system.

Remark 5.2. The multipliers used in this section can be seen as a particular form of
the multipliers L used in the emulation context, in Chapter 4. Actually, considering the
equalities given in (5.6), satisfaction of (5.3) implies satisfaction of (4.5) with:

L =




0 M2

0 M1

0 0
0 0

 M3

 (5.10)
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The first column of zeros that appear in the relation is due to the absence of the annihilator
N0(x) and the zeros in the second column are due to the absence of the cross-product of
terms.

Remark 5.3. Notice that Ψa = He{A1(x)N ′2 + A3(x)Y ′} < 0 is a necessary condition
to verify (5.3). This condition is feasible only if the pair (A1(x), A3(x)) is stabilizable for
all x ∈ Bx.

5.2 Optimization problem

From the definition of Problem 3.2, we aim at designing K, Qδ and Qx to ensure the
asymptotic stability of the origin in a given set X0 of initial conditions while reducing the
number of events. Once again, we look for Qδ as small as possible and Qx as “large” as
possible, but in the current context, considering the stability conditions of Theorem 5.1
and X0 ⊂ E(N−1

2 ). Assuming that X0 = {x ∈ Rn : x′P0x ≤ 1}, with symmetric
positive-definite P0 ∈ Rn×n, X0 ⊂ E(N−1

2 ) can be ensured if the condition N2 > P−1
0 is

satisfied.
Note however that the event generator parameters Qx and Qδ do not appear explicitly

in the stability conditions. Therefore, we need to employ approximations or algebraic
manipulations to obtain an appropriate optimization problem. Since Q̄x = Q−1

x appears
in (5.3), we can use the same procedure applied in the emulation design, minimizing
tr(Q̄x) to obtain a “large” Qx. To obtain a “small” Qδ, we can minimize the trace of
Q̄δ = N2QδN

′
2. Since tr(N2QδN

′
2) can be reduced either by reducing tr(Qδ) or by

reducing tr(N2), this has the drawback that N2 will be minimized together with Qδ, po-
tentially reducing the size of the estimate of the domain of attraction until it reaches the
limit imposed by the definition of X0. This does not impact the problem at hand since
our objective is to compute the trigger function and the controller parameters instead of
estimating the domain of attraction. Therefore, we propose the following optimization
problem as means to address the co-design case:

min(tr(Q̄δ + Q̄x))

subject to: (5.11)
(5.3), (5.4), N2 > P−1

0

Similarly to the emulation design case, the set Bx impacts the results obtained from
this optimization problem. Hence, we will adopt the same approach as for that case,
parameterizing Bx = {x ∈ Rn : h′ix ≤ ρ, hi ∈ Rn, i = 1, . . . , nf ; ρ > 0}, where the
vectors hi determine the shape and the parameter ρ determines the size of Bx. Then we
solve the optimization problem performing a search over ρ.

5.3 Numerical example

In the current section we illustrate the proposed co-design methodology by means of
numerical simulations. We consider the same examples presented in the emulation design,
in Section 4.4.
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5.3.1 Example 1 – Unstable polynomial system

Here we consider the plant defined by equation (4.32), recalled here for the reader’s
convenience: {

ẋ(1)(t) = x(2)(t)

ẋ(2)(t) =
(
1 + x2

(1)(t)
)
x(1)(t) + x(2)(t) + u(t)

(5.12)

We choose ξ(x) = x2
(1) and the following matrices for the DAR (5.2):

A1 =

[
0 1
1 1

]
A2 =

[
0
x(1)

]
A3 =

[
0
1

]
Ω1 =

[
x(1) 0

]
Ω2 =

[
−1
]

Ω3 =
[
0
]

Considering once again Bx = {x ∈ R2 : |x(i)| < ρ} and X0 = {x ∈ R2 : x′P0x ≤ 1},
with P0 = 50I , and solving the optimization problem (5.11) with different values of ρ
and the additional condition Q̄δ < 0.0001I to prevent Qδ from becoming ill-conditioned,
we obtain the results depicted in Table 5.1. The line in boldface corresponds to the best
value found for the objective function, 0.1653, obtained with ρ = 0.18.

Table 5.1: Example 1 – Linear search over Bx size.
ρ Objective function tr(N2QδN

′
2 +Q−1

x )

0.15 0.2097
0.16 0.1719
0.17 0.1655
0.18 0.1653
0.19 0.1655
0.20 0.1657
0.21 0.1659
0.50 0.1756

1 0.2126
10 7.486
50 208.2
100 847.7
120 1224
124 1308
125 unfeasible

With ρ = 0.18, the optimization problem yields:

Qx =

[
22.8 8.18
8.18 40.2

]
Qδ =

[
63.5 94.9
94.9 141

]
P = N−1

2 =

[
37.2 12.6
12.6 37.6

]
K =

[
−2.62 −3.92

]
The results of simulations of the closed-loop system considering these parameter val-

ues for the event generator and for the control law are depicted in figures 5.1 and 5.2.
Figure 5.1 depicts the set X0 in red, some trajectories that converge to the origin in blue
and some divergent trajectories in magenta. The ellipsoid E(P ) is shown in black. One
can observe thatX0 is contained in the region of attraction as expected and thatX0 ⊂ E(P )
as imposed by the conditions in the optimization problem.
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Figure 5.1: Example 1 – Phase portrait (big picture and zoom) – co-design.

Figure 5.2 depicts simulations considering x(0) = [0.1 0.1]′. The top plot shows,
in solid lines, the state of the event-triggered implementation and, in dashed lines, the
state of an equivalent (in the sense that it has the same control law) continuous-time im-
plementation of the system. One can see that the event-triggered system, in this case,
featured better performance than the equivalent continuous-time one in terms of settling
time. Nevertheless, this characteristic cannot be generalized. Usually, the event-trigger
mechanism degrades the performance of the system. The middle plot depicts the con-
trol signals for the event-triggered implementation, again in solid line, and the equivalent
continuous-time implementation, in dashed line. The plot in the bottom shows the event
instants. During the time interval [0, 15] seconds, 31 events were generated and the mini-
mum inter-events time was of 126 ms.

The average number of events for 200 initial conditions inside X0, 50 of them equally
spaced along the border of X0, is 29.2 and the minimum inter-events time observed is 122
ms. Comparing this average number of events to that obtained in an emulation design
context for the same example in Chapter 4 (60.98 events when considering the quadratic
Lyapunov function), one can see that the co-design led to a closed-loop system that de-
manded less events.

5.3.1.1 Influence of X0 size

To illustrate the influence of X0 size, we consider P0 = αI for various values of the
positive scalar α. Table 5.2 presents the average number of events and the minimum inter-
event times obtained from simulations considering the same 200 initial conditions inside
X0 as before. One can observe that, as in the emulation case, the average number of events
increases and the minimum inter-event time decreases as the size of X0 increases.
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Figure 5.2: Example 1 – Simulation for x(0) = [0.1 0.1]′ – co-design.

Table 5.2: Example 1 – Influence of X0 size – co-design.
α Average number of events Minimum inter-event time

4.0 31.33 99
2.8 33.44 88
1.0 42.31 52

5.3.2 Example 2 – Rational system

Here we consider again the plant defined by (4.36), recalled below for the reader’s
convenience:


ẋ(1)(t) =

1 + x2
(1)(t)

2
x(2)(t)

ẋ(2)(t) =
2

1 + x2
(1)(t)

x(1)(t)− x(2)(t)−
1− x2

(1)(t)

1 + x2
(1)(t)

u(t)

(5.13)

We choose

ξ(x, δ) =

[
x(1)x(2)

x(1)
1+x2

(1)

x2
(1)

1+x2
(1)

K(x+δ)

1+x2
(1)

x(1)K(x+δ)

1+x2
(1)

]′
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and the following matrices for the DAR (5.2):

A1 =

[
0 0.5
0 −1

]
A2 =

[
0.5x(1) 0 0 0 0

0 2 0 0 2x(1)

]
A3 =

[
0
−1

]

Ω1 =


−x(2) 0
−1 0
0 0
0 0
0 0

 Ω2 =


1 0 0 0 0
0 1 x(1) 0 0
0 −x(1) 1 0 0
0 0 0 1 x(1)

0 0 0 −x(1) 1

 Ω3 =


0
0
0
−1
0


Considering once again Bx = {x ∈ R2 : |x(i)| < ρ} and X0 = {x ∈ R2 : x′P0x ≤ 1},

with P0 = 50I , and solving the optimization problem (5.11) with different values of ρ
and the additional condition Q̄δ < 0.0001I to prevent Qδ from becoming ill-conditioned,
we obtain the results depicted in Table 5.3. The line in boldface corresponds to the best
value found for the objective function, 0.2181, obtained with ρ = 0.31.

Table 5.3: Example 2 – Linear search over Bx size.
ρ Objective function tr(N2QδN

′
2 +Q−1

x )

0.14 unfeasible
0.15 1.0329
0.20 0.2965
0.30 0.2182
0.31 0.2181
0.32 0.2189
0.35 0.2246
0.60 0.3740

1 unfeasible

With ρ = 0.31, the optimization problem yields:

Qx =

[
18.0 7.63
7.63 16.3

]
Qδ =

[
112 51.5
51.5 23.6

]
P = N−1

2 =

[
46.1 12.0
12.0 13.5

]
K =

[
4.17 1.90

]
The results of simulations of the closed-loop system considering these parameter val-

ues for the event generator and for the control law are depicted in figures 5.3 and 5.4.
Figure 5.3 depicts the set X0 in red, some trajectories that converge to the origin in blue
and some divergent trajectories in magenta. The ellipsoid E(P ) is shown in black. One
can observe that X0 is contained in the region of attraction and that E(P ) includes X0, as
expected.

Figure 5.4 depicts simulations considering x(0) = [0.1 0.1]′. The top plot shows, in
solid lines, the state of the event-triggered implementation and, in dashed lines, the state
of an equivalent (in the sense that it has the same control law) continuous-time imple-
mentation of the system. One can see that both implementations have almost identical
performance. The middle plot depicts the control signals for the event-triggered imple-
mentation, again in solid line, and the equivalent continuous-time implementation, in
dashed line. The plot in the bottom shows the event instants. During the time interval
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Figure 5.3: Example 2 – Phase portrait (big picture and zoom) – co-design.

[0, 15] seconds, 11 events were generated and the minimum inter-events time was of 314
ms.

The average number of events for 200 initial conditions inside X0 is 10.52 and the
minimum inter-events time observed is 270 ms. In this case, the closed-loop system
obtained with the co-design demanded slightly more events than emulation. It is important
to keep in mind that the comparison to the emulation design is misleading in this example
because the feedback gain matrices are very different (

[
20 13

]
in the emulation case,[

4.17 1.90
]

in the co-design).

5.3.2.1 Influence of X0 size

Here we consider again sets X0 of various sizes by setting P0 = αI for various values
of the positive scalar α. Table 5.4 presents the average number of events and the minimum
inter-event times obtained from simulations considering 200 initial conditions inside X0.
One can observe again that the average number of events increases and the minimum
inter-event time decreases as the size of X0 increases. For α ≤ 4.1 the problem becomes
unfeasible.

Table 5.4: Example 2 – Influence of X0 size – co-design.
α Average number of events Minimum inter-event time

25 10.68 162
12 11.53 56
6 16.23 7
4.2 20.73 1
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Figure 5.4: Example 2 – Simulation for x(0) = [0.1 0.1]′ – co-design.

5.3.3 Example 3 – Lorenz system

Here we address again the Lorenz system (LORENZ, 1963), whose equation is re-
called here for the reader’s convenience:

ẋ(1) = σ(x(2) − x(1))

ẋ(2) = x(1)(ν − x(3))− x(2) + u

ẋ(3) = x(1)x(2) − βx(3)

(5.14)

with σ = 10, ν = 28 and β = 8/3.
As in the emulation context, we consider Bx = {x ∈ R3 : |x(i)| < ρ; ρ ∈ R+};

X0 = {x ∈ R3 : x′P0x ≤ 1}, with P0 = 50I .
We choose ξ(x, δ) = x(1) and the following matrices for DAR (5.2):

A1 =

−10 10 0
−28 −1 0

0 0 −2.67

 A2 =

 0
−x(3)

x(2)

 A3 =

0
1
0


Ω1 =

[
1 0 0

]
Ω2 =

[
−1
]

Ω3 =
[
0
]

Solving optimization problem (5.11) for various values of ρ with the additional con-
dition Q̄δ < 0.01I to prevent Qδ from becoming ill-conditioned, we obtain the results
depicted in Table 5.5. The line in boldface corresponds to the best value found for the
objective function, 0.5435, obtained with ρ = 0.41.
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Table 5.5: Example 3 – Linear search over Bx size.
ρ Objective function tr(N2QδN

′
2 +Q−1

x )

0.14 unfeasible
0.20 0.5888
0.30 0.5678
0.40 0.5636
0.41 0.5635
0.42 0.5636
0.50 0.5648
0.60 0.5667
0.80 0.5707
1.00 0.5747

With ρ = 0.41, the optimization problem yields:

Qx =

 157 −53.1 3.28 · 10−12

−53.1 69.9 −8.33 · 10−13

3.28 · 10−12 −8.33 · 10−13 219



Qδ =

 797 618 2.79 · 10−13

618 479 −1.34 · 10−13

2.79 · 10−13 −1.34 · 10−13 25



P = N−1
2 =

 32.8 22.3 2.99 · 10−13

22.3 21.1 −4.18 · 10−13

2.99 · 10−13 −4.18 · 10−13 50


K =

[
31.5 −24.5 1.73 · 10−14

]
As in previous examples, Figure 5.5 depicts simulations of the closed-loop system

considering x(0) = [0.08 0.08 0.08]′. The top plot shows, in solid lines, the state of
the event-triggered implementation and, in dashed lines, the state of an equivalent (in the
sense that it has the same control law) continuous-time implementation of the system.
One can see that the event-triggered control in this case also leads to sensible differences
with respect to the continuous-time implementation. The middle plot depicts the con-
trol signals for the event-triggered implementation, again in solid line, and the equivalent
continuous-time implementation, in dashed line. Control signals are very similar with
slightly larger amplitude in the event-triggered implementation. The plot in the bottom
shows the event instants. During the time interval [0, 4] seconds, 34 events were generated
and the minimum inter-events time was of 25 ms. Simulating the event-triggered imple-
mentation for 400 initial conditions on the border of X0, the average number of events
is 31.1 and the minimum inter-events time observed is 13 ms. In this example we ob-
serve, again, less events with co-design than with emulation (average of 31.1 events with
co-design and of 115.8 with emulation). Nevertheless, one should keep in mind that the
closed-loop system dynamics are very different due to large differences in the feedback
gain matrices for each case.

Figure 5.6 depicts the set X0 in green and the ellipsoid E(P ) in red. One can observe
that X0 ⊂ E(P ) as imposed by the conditions in the optimization problem and that, in this
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Figure 5.5: Example 3 – Simulation for x(0) = [0.08 0.08 0.08]′ – co-design.

case, the borders of the sets actually touch each other. This can be seen as an indication
that the optimization problem was very effective, what is also confirmed by the small
number of events.

5.3.3.1 Influence of X0 size

To illustrate the influence of X0 size we consider P0 = αI for various values of the
positive scalar α. Table 5.6 presents the average number of events and the minimum
inter-event times obtained from simulations considering 729 initial conditions over a grid
equally spaced inside a cube of side 20 centered at the origin. Once again, the average
number of events tends to increase and the minimum inter-event time decreases as the size
of X0 increases.

Table 5.6: Example 3 – Influence of X0 size – co-design.
α Average number of events Minimum inter-event time

1.00 33.56 12
0.10 35.62 10
0.01 55.38 3
0.006 100.39 2

5.4 Conclusion

In this chapter we established sufficient stability conditions considering a co-design
context. We proposed a convex optimization problem based on these conditions as means
to compute the event generator parameters and the control law aiming at a reduced number



70

Figure 5.6: Example 3 – E(P ) and X0.

of events. We illustrated the method by means of numerical experiments, showcasing
its efficacy and giving evidences that the co-design, besides simplifying the task for the
designer, can lead to better results in terms of the number of events.
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Part II

Lur’e systems
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6 LUR’E SYSTEMS WITH INPUT NONLINEARITIES

In this chapter we address the emulation and co-design problems considering Lur’e
systems where the nonlinearity depends only on the plant input. We assume that the event
generator and the controller do not have access to the entire state of the system and we
use a nonlinear state observer to recover the missing information. The event-generator and
the controller are designed to use only the available information, i.e. the system inputs,
outputs and the observed state. This configures an output-based event-trigger scenario
and we use a dwell-time to avoid Zeno behavior (MAZO; ANTA; TABUADA, 2010). The
dwell-time imposes an explicit minimum inter-event time. Following the ideas introduced
in (TARBOURIECH et al., 2017) to ensure the asymptotic stability of the origin in the
presence of the dwell-time, an additional condition, similar to the one for ensuring the
stability of discrete-time linear systems is included. Taking into account that the system
input (and thus, the nonlinearity value) is kept constant during the interval between an
event and the end of the dwell-time, this condition is derived from the computation of
the solutions of the system in this interval. The stability analysis is therefore split in two
intervals. The first one just described, i.e. t ∈ [tk, tk + T ], and the second one, from the
end of the dwell-time up to the next event, i.e. t ∈ (tk + T, tk+1), where the triggering
condition is designed to ensure the negativity of the time derivative of the underlying
Lyapunov function along the trajectories of the closed-loop system.

6.1 Addressed system

We consider a continuous-time plant, represented by the following equation:{
ẋp(t) = Apxp(t) +Bpu(t) +Bpff(u(t))

yp(t) = Cpxp(t) +Dpff(u(t))
(6.1)

where xp(t) ∈ Rn, u(t) ∈ Rm, yp(t) ∈ Rp are the state, the input and the output of the
plant, respectively. The matrices Ap, Bp, Bpf , Cp and Dpf are constant and of appropriate
dimensions. Pairs (Ap,Bp) and (Cp,Ap) are supposed to be stabilizabile and detectable,
respectively. Function f : Rm → Rm is a continuous, decentralized cone-bounded
nonlinearity (see, e.g. (KHALIL, 1996), for details) affecting the input u. Hence, it
satisfies the following property:

f(u)′S(f(u) +Ru) ≤ 0 (6.2)

where S ∈ Rm×m is any diagonal positive definite matrix. Matrix R ∈ Rm×m is sup-
posed to be a diagonal positive matrix that is fixed by the designer and depends on the
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nonlinearity characteristics. Property (6.2) can be satisfied either globally (i.e. it is valid
∀u ∈ Rm) or regionally (i.e. it is valid for all u in a given set Su ⊂ Rm containing the
origin). In the present work, for the regional stabilization cases, we consider that Su is a
polyhedral set, symmetric around the origin, generically defined as follows:

Su = {u ∈ Rm : |h′iu| ≤ 1; hi ∈ Rm, i = 1, ..., nf} (6.3)

where nf is half the number of faces.
We consider the following observer-based state feedback controller to asymptotically

stabilize system (6.1):
˙̂x(t) = Apx̂(t) +Bpu(t) +Bpff(u(t))− Ley(t)
ŷ(t) = Cpx̂(t) +Dpff(u(t))

ey(t) = yp(t)− ŷ(t)

u(t) = Kx̂(t)

(6.4)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rp are the state and the output of the observer, respectively,
and ey(t) = yp(t) − ŷ(t) is the output error. L ∈ Rn×p and K ∈ Rm×n are the observer
and controller gains, respectively.

In the event-triggered implementation, the control action applied to the plant input is
updated only at the instants tk and kept constant between these instants by means of a
zero-order hold. Hence, ∀t ∈ [tk , tk+1), the closed-loop system can be represented by
the following equations:

ẋp(t) = Apxp(t) +Bpu(tk) +Bpff(u(tk))

˙̂x(t) = Apx̂(t) +Bpu(tk) +Bpff(u(tk))− Ley(t)
u(tk) = Kx̂(tk)

yp(t) = Cpxp(t) +Dpff(u(tk))

ŷ(t) = Cpx̂(t) +Dpff(u(tk))

ey(t) = yp(t)− ŷ(t)

(6.5)

The topology is depicted in Figure 6.1. The observer, plant and event generator are in
one node of a generic data communication network while the controller and, possibly, the
actuator are in another one. This generic data communication network is represented by
the double line in the figure.

At this point, it is convenient to re-write system (6.5) in terms of the observer state
x̂(t) and the observer error e(t) = xp(t)− x̂(t), obtaining:{

˙̂x(t) = (Ap +BpK)x̂(t) +BpKδ(t) +Bpff(u(tk))− LCpe(t)
ė(t) = (Ap + LCp)e(t)

(6.6)

It is also convenient to define the augmented state vector x =
[
x̂′ e′

]′. This definition
and the representation (6.6) will be used in the stability theorems that follow.

6.2 Event generator

Since we are now considering an output-based event-trigger, we need to introduce
a new trigger condition which relies solely on available information. Therefore, we re-
define δ(t) as the error between the value of the observed state at the last trigger instant
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Figure 6.1: Topology for Lur’e systems with input nonlinearities.

and the current one, i.e.:

δ(t) = x̂(tk)− x̂(t) (6.7)

and we define the following triggering strategy, which is a modified version of the weighted
relative error threshold one:

tk+1 = min{t ≥ tk + T, s.t. δ(t)′Qδδ(t)−
[
x̂(t)
ey(t)

]′
Q−1
ε

[
x̂(t)
ey(t)

]
≥ 0} (6.8)

Qδ and Qε are constant symmetric positive-definite matrices of appropriate dimensions
and the dwell-time T is a positive scalar. The dwell-time ensures a minimum inter-event
time, which prevents Zeno behavior. The condition uses only available information since
δ(t) only depends on the observed state x̂(t) and its sampled value at the instant tk.

6.3 Emulation case

In this section we use techniques from the Lyapunov theory to derive sufficient condi-
tions for the asymptotic stability of the origin of system (6.5) under the triggering strategy
(6.8) in an emulation design context, considering both the global and the regional stabi-
lization cases. The global stabilization for the same class of systems with a slightly dif-
ferent trigger condition has been addressed previously in (TARBOURIECH et al., 2017),
while the regional stabilization is an original result developed for this thesis.

6.3.1 Stability conditions

The following theorem establishes sufficient conditions for the regional asymptotic
stability of the origin when the class of systems at hand is considered.

Theorem 6.1. Consider system (6.6) with f satisfying (6.2) and K and L given. If there
exist symmetric positive definite matrices Q̄δ, Qε, W =

[
W1 W2
∗ W3

]
, diagonal positive defi-

nite matrices U1 and U2 of appropriate dimensions and a positive scalar T such that the
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conditions:

Φ1 =

Q1

WC ′a
0
0


∗ −Qε

 < 0 (6.9)

Φ2 =

−W −W
[
K ′

0

]
R W

(
Aad(T )′ +

[
K ′

0

]
B′aBad(T )′

)
∗ −2U2 U2B

′
afBad(T )′

∗ ∗ −W

 < 0 (6.10)

Φ3 =

W W

[
K ′

0

]
hi

∗ 1

 > 0 (6.11)

are verified with

Q1 = He


I0

0

(Aa +Ba

[
K 0

]
)W BaKW1 BafU1

−
0
I
0

 Q̄δ

[
0 I 0

]

− He


0

0
I

R [K 0
]
W RKW1 U1


Aa =

[
Ap −LCp
0 Ap + LCp

]
Ba =

[
Bp

0

]
Baf =

[
Bpf

0

]
Ca =

[
I 0
0 Cp

]

Aad = eAaT Bad =

∫ T

0

eAasds

(6.12)
Then, the event-triggered sampling rule (6.8) with Qδ = W−1

1 Q̄δW
−1
1 is such that the

origin of system (6.5) is regionally asymptotically stable and the set LV (1) = {x ∈ R2n :

x′W−1x ≤ 1}, with x =
[
x̂′ e′

]′, is included in its region of attraction. Furthermore,
the inter-sampling times are lower bounded by T .

Proof. Consider the quadratic Lyapunov candidate function for system (6.6) given by:

V (x) = x′W−1x, (6.13)

where the matrix W−1 is positive definite thanks to the satisfaction of (6.10) and (6.11),
implying that there exist scalars ε1 > 0 and ε2 > 0 such that the following relation is
satisfied:

ε1||x||2 ≤ V (x) ≤ ε2||x||2,∀x ∈ R2n (6.14)

Observe also that system (6.6) can be rewritten as:

ẋ(t) =
(
Aa +Ba

[
K 0

])
x(t) +BaKδ(t) +Baff(u(tk))

The remaining of the proof is carried considering the time intervals [tk , tk + T ] and
(tk + T, tk+1).



76

Solving the linear differential equation (6.6) over the interval [tk, tk + T ] yields

x(tk + T ) = Λ1(T )x(tk) + Λ2(T )f(u(tk)) (6.15)

where
Λ1(T ) , Aad +BadBa

[
K 0

]
, Λ2(T ) , BadBaf

with Aad, Bad, Ba and Baf defined as in (6.12).
Hence, considering the definition of V in (6.13), one obtains the following expression:

ΨT , V (x(tk + T ))− V (x(tk))− 2f(u(tk))
′S2(f(u(tk)) +Ru(tk))

=
(
x(tk)

′Λ1(T )′ + f(u(tk))
′Λ2(T )′

)
W−1

(
Λ1(T )x(tk) + Λ2(T )f(u(tk))

)
− x(tk)

′W−1x(tk)− 2f(u(tk))
′S2

(
f(u(tk)) +Ru(tk)

)
= ξ(tk)

′M1ξ(tk)

with ξ(tk) =
[
x′(tk) f ′(u(tk))

]′ and:

M1 =

Λ1(T )′W−1Λ1(T )−W−1 Λ1(T )′W−1Λ2(T )−
[
K ′

0

]
RS2

∗ Λ2(T )′W−1Λ2(T )− 2S2


Satisfying M1 < 0, ensures ΨT < 0 and, consequently, V (x(tk + T )) − V (x(tk)) <

−2f(u(tk))
′S2

(
f(u(tk)) +Ru(tk)

)
. Applying Schur’s complement and a congruence

transformation with diag(W,U2,W ), where U2 = S−1
2 , it can be seen that condition Φ2 <

0 in (6.10) is equivalent to M1 < 0. Therefore, considering the sector condition (6.2),
satisfaction of (6.10) effectively ensures that V (x(tk + T ))− V (x(tx)) < 0, ∀k ∈ N, as
long as u(tk) ∈ Su, ∀k ∈ N.

Now, considering the time-derivative of V along the trajectories of system (6.6) for
any t ∈ (tk + T, tk+1), the following expression is obtained:

Ψc , V̇ (x(t))− δ(t)′Qδδ(t) +

[
x̂(t)
ey(t)

]′
Q−1
ε

[
x̂(t)
ey(t)

]
− 2f(u(tk))

′S1(f(u(tk)) +Ru(tk))

=

 x(t)
δ(t)

f(u(tk))

′ Γ
 x(t)

δ(t)
f(u(tk))


with

Γ = He


I0

0

W−1
[(
Aa +Ba

[
K 0

])
BaK Baf

]−
0
I
0

Qδ

[
0 I 0

]

+

C ′a0
0

Q−1
ε

[
Ca 0 0

]
− He


0

0
I

 [S1R
[
K 0

]
S1RK S1

]
where we used the facts that u(tk) = Kx̂(tk) = Kx̂(t) + Kδ(t) and ey(t) = Cpe(t) for
the last equality.

Pre- and post-multiplying Γ by diag(W,W1, U1) with U1 = S−1
1 , making the change

of variables Q̄δ = W1QδW1 and considering the Schur’s complement, it follows that
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inequality Φ1 < 0 in (6.9) implies Γ < 0. Considering that satisfaction of Γ < 0,
guarantees that Ψc < 0, it follows from (6.2) and (6.8) that V̇ (x(t)) < 0 in the interval
[tk + T, tk+1) as long as u(tk) ∈ Su and therefore

V (x(t)) < V (x(tk + T )), ∀t ∈ [tk + T, tk+1), ∀k ∈ N (6.16)

From the arguments above, we conclude that satisfaction of (6.9) and (6.10) ensure
V (x(tk+1) < V (x(tk)), provided that u(tk) ∈ Su, ∀k ∈ N.

Moreover, system (6.6) is composed by a linear part and a bounded nonlinearity since
from relation (6.2), one gets, ‖f(v)‖ ≤ γ‖v‖ for any vector v ∈ Su, where γ is a positive
constant depending on the norm of R. Then, since V (x) satisfies (6.14), there exists a
positive scalar β such that maxt∈[tk, tk+T ]V (x(t)) ≤ βV (x(tk)), for all k ∈ N, provided
that u(tk) ∈ Su. Hence, associating this property to relation (6.8) and to the fact that
V̇ (x) < 0 on the interval [tk + T , tk+1), the trajectories of the system are bounded
between every two successive events. As a consequence, asymptotic stability is ensured,
provided that u(tk) ∈ Su, ∀k ∈ N.

Now pre- and post-multiplying (6.11) by diag(W−1, 1) and applying the Schur com-
plement, one obtains:

W−1 −
[
K ′hi

0

] [
h′iK 0

]
> 0. (6.17)

Pre- and post-multiplying (6.17) by x(tk)
′ and x(tk), respectively, the satisfaction of

(6.11) implies that the following condition is fulfilled:

x(tk)
′W−1x(tk)− x̂(tk)

′K ′hih
′
iKx̂(tk) > 0. (6.18)

Thus, recalling the definition of V (x) in (6.13) and that u(tk) = Kx̂(tk), the satis-
faction of (6.18) (or, equivalently, of (6.11)) implies that u(tk) ∈ Su as long as x(tk) ∈
LV (1). This, in conjunction with the fact that satisfaction of conditions (6.9) and (6.10)
ensures V (x(tk+1) < V (x(tk)), implies that x(tk) ∈ LV (1) and therefore u(tk) ∈
Su, ∀k ∈ N, provided that x(t0) = x(0) ∈ LV (1).

Hence, we can conclude that the solutions of system (6.6) converge asymptotically
to the origin if they start in LV (1). Furthermore, the event-triggered strategy defined by
(6.8) implicitly ensures that the inter-event times are lower bounded by T .

Figure 6.2 illustrates the idea behind Theorem 6.1. The underlying Lyapunov function
V (x(t)) can increase during the interval [tk, tk +T ) but its total variation in the interval is
negative, that is, V (x(tk + T )) < V (x(tk)). On the other hand, V̇ (x(t)) is guaranteed to
be negative in the time interval [tk +T, tk+1), hence the total variation of V in the interval
[tk, tk+1) is negative. This means that the level sets LV are not positively invariant in
the sense that the trajectories can exit them during the dwell time. Nevertheless, the
trajectories are guaranteed to return to a smaller level set at the end of the dwell time
and the existence of the uniform bound β for the Lyapunov function ensures that the
trajectories are also uniformly bounded and decreasing with the time, i.e. their excursions
outside each level set decreases as k increases.

The following corollary addresses the global case (i.e. when relation (6.2) is satisfied
∀u ∈ Rm).

Corollary 6.1. Consider system (6.6) with f satisfying (6.2) and K and L given. If
there exist symmetric positive definite matrices Q̄δ, Qε and W =

[
W1 W2
∗ W3

]
, diagonal
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Figure 6.2: Lyapunov function bounding illustration.

positive definite matrices U1 and U2 of appropriate dimensions and a positive scalar T
such that LMIs (6.9) and (6.10) are verified, then the event-triggered sampling rule (6.8)
with Qδ = W−1

1 Q̄δW
−1
1 is such that the origin of system (6.6) is globally asymptotically

stable. Furthermore, the inter-sampling times are lower bounded by T .

Proof. The proof mimics that of Theorem 6.1 without the need to use constraint (6.11)
since property (6.2) is globally satisfied.

Observe that, if T is fixed, conditions of Theorem 6.1 and of Corollary 6.1 are LMIs.

6.3.2 Optimization problems

The goal is again to choose the trigger condition parameters aiming at a reduction of
the number of events while ensuring convergence to the origin for all initial conditions in
a given set X0. We assume now that the set X0 is given by:

X0 =
{
x =

[
x̂′ e′

]′ ∈ R2n : x′P0x ≤ 1
}

(6.19)

with symmetric positive-definite P0 ∈ R2n×2n and that T is given. Then we propose
the following convex optimization problem as means of computing the trigger condition
parameters in the regional stabilization context:

min tr(Q̄δ) + tr(Qε)

subject to:
(6.9), (6.10), (6.11),W > P−1

0

(6.20)

The motivation behind the optimization problem (6.20) is analogous to what was pre-
sented in sections 4.3 and 5.2.

One should note that the dwell-time T is also a design parameter and can be chosen
according to the processing and network communication constraints. The designer can
choose, for instance, the smallest dwell-time that is suitable given the infrastructure at
hand or he can solve the optimization problems for various values of T and choose the
largest one that renders the optimization problem feasible.

For the global stabilization case, one uses the conditions of Corollary 6.1 and there is
no need to ensure X0 ⊂ LV (1). Hence, optimization problem (6.20) without conditions
(6.11) and W > P−1

0 can be considered.
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6.4 Co-design

In this section, we address a partial co-design problem. Since the control system at
hand employs a state observer, the term co-design can mean, as mentioned in Section 2.5,
that the trigger condition and any other of the parameters of the system, like the control
law and/or the observer gains, are designed concomitantly.

The idea here is the traditional co-design in the event-triggered control context, that
is, to jointly design the matrix K and the event-trigger function parameters, i.e. matrices
Qε and Qδ for a given observer gain L. It is worth noticing that, if K, Qε and Q̄δ are free
variables, the conditions in Theorem 6.1 are no longer LMIs. To obtain tractable LMI
stabilization conditions, the solution proposed is to impose some additional constraints
on the structure of matrix W . The results that follow, addressing both regional and global
stabilization, constitute original work developed as part of this thesis.

6.4.1 Stability conditions

The following theorem and corollary establish sufficient conditions for the regional
and global asymptotic stabilization of the origin of the system (6.6).

Theorem 6.2. Consider system (6.6) with f satisfying (6.2) and L given. Assume there
exist symmetric positive definite matrices Q̄δ, Qε, W =

[
W1 0
0 W3

]
, diagonal positive defi-

nite matrices U1 and U2, a matrix Y1 of appropriate dimensions and a positive scalar T
such that the following LMIs are satisfied:

Ω1 =

M2

WC ′a
0
0


∗ −Qε

 < 0 (6.21)

Ω2 =

−W −
[
Y ′1
0

]
R WAad(T )′ +

[
Y ′1
0

]
B′aBad(T )′

∗ −2U2 U2B
′
afBad(T )′

∗ ∗ −W

 < 0 (6.22)

Ω3 =

W [
Y ′1
0

]
hi

∗ 1

 > 0 (6.23)

with

M2 = He


I0

0

AaW +Ba

[
Y1 0

]
BaY1 BafU1

−
0
I
0

 Q̄δ

[
0 I 0

]

− He


0

0
I

R [Y1 0
]
RY1 U1


and the definitions of the auxiliary matrices Aa, Ba, Baf , Ca, Aad, Bad as in (6.12).

Then, the event-triggered sampling rule defined by (6.8) with Qδ = W−1
1 Q̄δW

−1
1 is

such that the origin of system (6.6) with K = Y1W
−1
1 is asymptotically stable and the set

LV (1) = {x ∈ R2n : x′W−1x ≤ 1} is included in its region of attraction. Furthermore,
the inter-sampling times are lower bounded by T .
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Proof. The proof follows the same steps as the proof of Theorem 6.1 except that we
impose the following structure to matrix W =

[
W1 0
0 W3

]
, implying that

[
K 0

]
W =[

KW1 0
]

and then the change of variables Y1 = KW1 is done to linearize the conditions.

The following corollary addresses the global case in the co-design context.

Corollary 6.2. Given an observer gain matrix L and a scalar T > 0, assume there exist
symmetric positive definite matrices Q̄δ, Qε, W =

[
W1 0
0 W3

]
, diagonal positive definite

matrices U1 and U2 and a matrix Y1 of appropriate dimensions such that the LMIs (6.21)
and (6.22) are satisfied. Then, the event-triggered sampling rule defined by (6.8) with
Qδ = W−1

1 Q̄δW
−1
1 is such that the origin of system (6.6) with K = Y1W

−1
1 is globally

asymptotically stable. Furthermore, the inter-sampling times are lower bounded by T .

Proof. It mimics the proof of Theorem 6.2 without the need of constraint (6.23) because
property (6.2) is globally satisfied.

6.4.2 Optimization problem

Conditions in Theorem 6.2 are LMIs provided L and T are fixed. Thus, the parameters
of the trigger functionQδ andQε and the controller gains matrixK can be simultaneously
computed by solving the following convex optimization problem:

min tr(Q̄δ) + tr(Qε)

subject to:
(6.21), (6.22), (6.23),W > P−1

0 .

(6.24)

The reasoning behind the optimization problem (6.24) is the same as the one behind
(6.20).

In the global stabilization case, i.e. when the relation (6.2) is satisfied ∀u ∈ Rm,
the conditions from Corollary 6.2 should be used. In this case, the optimization problem
(6.24) without conditions (6.23) and W > P−1

0 can be considered.

Remark 6.1. The emulation design employs conditions that are less conservative than
the co-design, as it uses an unconstrained matrix W . Thus, after solving co-design opti-
mization problem (6.24) to obtain a suitable gain K, one can use this value of K as an
input to the emulation optimization problem (6.20), aiming to a further reduction in the
number of events. This process, referred as co-design refinement, is illustrated in Section
6.5, presenting the numerical examples.

Remark 6.2. The simultaneous design of Qδ, Qε, K, L and T is a challenging co-design
problem. Unfortunately, if one considers L as a decision variable, it is not possible to
linearize the conditions of Theorem 6.2. Moreover, L and T appear as part of exponential
terms in the method used to integrate the trajectories of the system in the interval [tk, tk +
T ], representing an additional difficulty.

Remark 6.3. Generic dynamic output event-triggered controllers with reduced informa-
tion, i.e. controllers and event-generators with access only to the outputs and that do not
use state observers, can also be addressed by the techniques presented here. For details,
see (MOREIRA et al., 2017b, Section 6), which discusses generic dynamic controllers for
linear plants subject to input saturation under event-triggered strategies with access only
to the outputs.
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6.5 Numerical examples

In this section we present two numerical examples, one addressing the regional stabi-
lization and one illustrating the global stabilization.

6.5.1 Example 1 – Regional stabilization

Let us consider the following plant: ẋp(t) =

[
0 1
4 0

]
xp(t) +

[
0
1

]
q(u(t))

yp(t) =
[
1 0

]
xp(t)

(6.25)

where q(u) is a logarithmic quantization function defined as follows (FU; XIE, 2005):

q(u) =


ρjqµq if ρjqµq

1+δq
≤ u <

ρjqµq
1−δq , j ∈ {0, 1, 2, ...}

0 if u = 0

−q(−u) if u < 0

with the quantization parameters:

0 < ρq < 1 δq =
1− ρq
1 + ρq

µq > 0

where ρq specifies the density of quantization and µq defines the maximum absolute level
of quantization. Figure 6.3 shows a graphical representation of the positive branch of this
logarithmic quantization function.

u

v
v = (1 + δq)u

v = u

v = (1− δq)u
µq v = q(u)

Figure 6.3: Logarithmic quantization function (positive branch).

It should be noticed that the quantization error q̃(u) = q(u)−u is regionally restricted
to the cone defined by ±δqu (i.e. it satisfies the relation (q̃(u) − δqu)(q̃(u) + δqu) < 0)
for all values of u satisfying |u| < µq

1−δq (see (DE SOUZA; COUTINHO; FU, 2010)). In
order to cast the system in the form (6.1), with a function f(u) satisfying (6.2), it suffices
to consider:

f(u) = q̃(u)− δqu Ap =

[
0 1
4 0

]
Bpf =

[
0
1

]
Bp = (1 + δq)Bpf Cp =

[
1 0

]
Dpf = 0
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Note that in this case the relation (q̃(u) + δqu)(q̃(u)− δqu) < 0 becomes f(u)(f(u) +
2δqu) < 0, i.e. (6.2) is verified with R = 2δq. Moreover, this relation is satisfied as long
as |u| < µq

1−δq , that is, 1−δq
µq
|u| ≤ 1.

We consider the quantization with ρq = 0.9, which leads to R = 2δq = 0.1053 and
µq = 35.

6.5.1.1 Optimization results

Considering the state feedback gain matrix K =
[
−4.8 −1.9

]
, the observer gain

matrix L =
[
−3.5 −7

]′, X0 defined as in (6.19) with P0 = diag(106, 106, 0.1, 0.1) and
the dwell-time T = 0.02, we solve the emulation design optimization problem (6.20) with
additional conditions λmin(Qδ) > 10−4 and λmax(Qε) < 103λmin(Qε) to prevent Qδ and
Qε from becoming ill-conditioned, obtaining the following results:

Qε =

848.8 188.2 98.71
188.2 101.4 18.31
98.71 18.31 27.89

 Qδ =

[
1.162 0.4599
0.4599 0.1822

]

Using the same values L =
[
−3.5 −7

]′, P0 = diag(106, 106, 0.1, 0.1) and T = 0.02,
the co-design optimization problem (6.24) with the same additional conditions to prevent
Qδ and Qε from becoming ill-conditioned yields:

K =
[
−9.299 −4.598

]
Qε =

 201.9 −7.784 122.3
−7.784 44.37 11.15
122.3 11.15 81.26

 Qδ =

[
4.309 2.131
2.131 1.054

]

As mentioned in Remark 6.1, we can refine the results by solving the emulation opti-
mization problem (6.20) with the gainK =

[
−9.299 −4.598

]
obtained in the co-design.

This yields the following results:

Qε =

63.14 1.518 37.73
1.518 52.2 25.8
37.73 25.8 36.2

 Qδ =

[
1.929 0.9537
0.9537 0.4716

]

The ellipses defined by the intersection between the plane x̂ = 0 and the sets LV (1) =
{x ∈ R2n : x′W−1x = 1} for each W obtained with the optimization problems above are
shown in Figure 6.4 (in black lines), along with the intersection between the same plane
and the border of X0 (in red lines). This figure also shows some trajectories that converge
to the origin in blue and some divergent ones in magenta. The graphics at the bottom
are zoomed views of the ones at the top. One can see that, in all cases, LV (1) contains
X0, as required by the optimization problems. It is also visible that the sets LV (1) are
contained in the region of attraction of the origin in each case and, therefore, can be used
as estimates for it.

6.5.1.2 Influence of T

Table 6.1 shows the influence of T in the results. It depicts the average number of
control updates for simulations within the time interval [0, 10] seconds, considering 100
different initial plant states, distributed along the boundary of the respective LV (1) set,
for various values of T and for each of the proposed design methods. The initial state
of the observer is zero in all simulations. One can see that T has an expressive impact
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a) Emulation b) Co-design c) Co-design refinement

Figure 6.4: Example 1 – Phase portraits, LV (1) (in black) and X0 ( in red).

on the number of events generated in the co-design and refinement cases, but not in the
emulation case. In the emulation context, the impact of T is highly dependent on the sys-
tem characteristics and the chosen value of K. Different behaviors can occur for different
choices of K. Moreover, notice that the co-design problem is not feasible for some values
of T where the emulation problem is. This can be expected since the co-design condi-
tions are more restrictive than the emulation ones due to the structure imposed to W . It is
also shown that the co-design leads to less events and that the refinements mentioned in
Remark 6.1 reduce even more their number.

6.5.1.3 Simulations

Here we present simulations of the closed-loop systems designed with the help of op-
timization problems (6.20) and (6.24) and also with the co-design refinements proposed
in Remark 6.1, considering two different values of T . In all simulations, the initial condi-
tions for the plant and the observer are, respectively:

xp(0) =

[
−3
0

]
x̂(0) =

[
0
0

]
Figures 6.5 and 6.6 depict the plant and observer states in the top plots. It can be

noticed that the observer states converge to the plant states, as expected, and also the
convergence of the plant states to the origin. The middle plots show the control action.
One can note that the value of the control is subject to a logarithmic quantization. The
bottom plot depicts the event instants, with the sizes of the bars representing the inter-
event times, i.e. the difference between the time of that event and the previous one.
It can be seen that the triggering strategy effectively delays the event instants, yielding
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Table 6.1: Example 1 – Average number of control updates for 100 different initial con-
ditions.

T Emulation Co-design Co-design refinement

0.01 65.56 50.33 35.00
0.02 65.47 50.13 34.47
0.03 65.67 48.48 34.72
0.04 65.05 43.48 32.45
0.043 64.60 40.38 30.86
0.044 64.09 40.55 29.64
0.045 64.24 unfeasible –
0.05 63.31 unfeasible –
0.10 64.25 unfeasible –
0.11 unfeasible unfeasible –

inter-event times larger than the dwell-time while ensuring the asymptotic stability of the
closed-loop system. The figures also highlight that the co-design and refinement processes
result in less events than the emulation.
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a) Emulation b) Co-design c) Co-design refinement

Figure 6.5: Example 1 – Simulations, T = 0.02.
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Figure 6.6: Example 1 – Simulations, T = 0.043.

6.5.2 Example 2 – Global stabilization

Now we consider the following stable plant: ẋp(t) =

[
−1 2
−2 0

]
xp(t) +

[
0
1

]
sat(u(t))

yp(t) =
[
1 0

]
xp(t)

(6.26)

where sat(·) is a saturation function with saturation levels at ±5. Note that (6.26) can
be re-written in the form (6.1) by assuming f to be a dead-zone function, i.e. f(u) =
sat(u) − u, which satisfies condition (6.2) with R = 1 globally, i.e. ∀u ∈ Rm and the
following matrices:

Ap =

[
−1 2
−2 0

]
Bp = Bpf =

[
0
1

]
Cp =

[
1 0

]
Dpf = 0
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6.5.2.1 Optimization results

Consider first the emulation case with K =
[
2 −4

]
and L =

[
−20 −53

]′. In this
case, the eigenvalues of Ap + BpK are −1 and −4 and the eigenvalues of Ap + LCp are
−10 and −11. Choosing a dwell-time T = 0.1, and solving the version of optimization
problem (6.20) suitable for the global case, with modifications to impose a minimum
exponential decay rate of 0.75 so that the solution does not degenerate into open-loop 1,
i.e. imposing V̇ (x(t)) < −0.75V (x(t)) and V (x(tk + T )) − V (x(tk)) < (e−0.75T −
1)V (x(tk)), one obtains the following results:

Qε =

 3.581 0.5562 −0.001386
0.5562 2.715 0.008729
−0.001386 0.008729 0.7225

 Qδ =

[
9.922 −9.883
−9.883 17.38

]

For the co-design case, considering the same values of L =
[
−20 −53

]′, T = 0.1
and the same additional conditions related to the conditioning of matrices and exponential
decay rate, the solution of the version of optimization problem (6.24) suitable for the
global case leads to:

K =
[
1.232 −4.6503

]
Qε =

 1.067 0.1554 0.0005847
0.1554 1.058 0.002162

0.0005847 0.002162 0.1619

 Qδ =

[
6.266 −5.72
−5.72 16.92

]

Refining the event-trigger as mentioned in Remark 6.1, one obtains:

Qε =

 0.3437 0.04672 0.0003135
0.04672 0.3302 0.001317

0.0003135 0.001317 0.06555

 Qδ =

[
15.98 −15.15
−15.15 43.56

]

6.5.2.2 Influence of T

Table 6.2 shows the influence of T in the results. It depicts the average number of
control updates for simulations considering 100 different initial plant states distributed
along the unit circle and within the time interval [0, 10] seconds for various values of T
and for each of the proposed design methods. The initial state of the observer is zero
in all simulations. One can see that, for small values of T , the co-design leads again to
less events and that the refinements mentioned in Remark 6.1 allow to further reduce the
number of events. For larger values of T , on the other hand, all three methods give the
same results. As it is going to be shown in the simulations, this is because, in the case
presented here, when T increases, the event-trigger mechanism becomes less effective
and the triggering becomes periodic with period T . Table 6.2 also shows that, for this
system and the particular value of K considered in the emulation design, the co-design
allows to choose a wider range of values for the dwell-time T . This illustrates again that,
in the emulation case, the impact of T is highly dependent on the system characteristics
and the chosen value of K. In the example at hand, with the chosen K =

[
2 −4

]
, a

periodic controller with a period greater than or equal to 0.5 leads to a closed-loop system
that is not asymptotically stable as can be seen in the simulations shown in Figure 6.7.

1Since the origin of the system is open-loop stable, if we impose just stability, the optimal event gener-
ator will be one that does not generate any events and the system will operate in open-loop.
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Table 6.2: Example 2 – Average number of control updates for 100 different initial con-
ditions.

T Emulation Co-design Co-design refinement

0.01 78.58 53.82 49.23
0.05 73.50 48.88 46.35
0.10 60.18 48.74 45.15
0.20 50.00 50.00 50.00
0.30 34.00 34.00 34.00
0.40 25.00 25.00 25.00
0.50 unfeasible 20.00 20.00
0.60 unfeasible 17.00 17.00

That explains why the emulation problem becomes unfeasible for T ≥ 0.5. On the other
hand, the co-design problem (which computes a differentK) and the co-design refinement
(which uses K from the corresponding co-design) are still feasible for T = 0.5 and
T = 0.6.
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a) T = 0.5 b) T = 0.6 c) T = 0.7

Figure 6.7: Example 2 – Simulations of periodic implementation.

6.5.2.3 Simulations

In this section, we present simulations of the closed-loop systems from an emulation
and a co-design point of view for two different values of T . We also include simulations
of the systems obtained with the refinements proposed in Remark 6.1. In all simulations,
the initial conditions for the plant and the observer are, respectively:

xp(0) =

[
−12

5

]
x̂(0) =

[
0
0

]
Figures 6.8 and 6.9 depict the plant and observer states in the top plots. The observer

states quickly converge to the plant states and the state converges to the origin, as ex-
pected. The middle plots show the control action, where one can note that it is indeed
being limited at the values ±5 given by the saturation function. The bottom plot depicts
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a) Emulation b) Co-design c) Co-design refinement

Figure 6.8: Example 2 – Simulations, T = 0.1.
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Figure 6.9: Example 2 – Simulations, T = 0.3.

the event instants, with the sizes of the bars representing the inter-event times. One can
see that the triggering strategy effectively delays the event instants for low values of T .
On the other hand, when T increases, the event-trigger mechanism becomes less effective
and the triggering becomes periodic.

6.6 Conclusion

In this chapter we addressed the design of event-triggered control for Lur’e type sys-
tems where the nonlinearities are sector-bounded and depend only on the system input.
The triggering strategy uses only available information and an observer was proposed to
recover the state variables that are not available.

Since this configuration is a type of output-based event-triggered control, it is gen-
erally impossible to eliminate the possibility Zeno behavior by the techniques employed
in Part I of this thesis. Therefore, we imposed an explicit minimum inter-event time by
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the use of a dwell-time T in the trigger condition. The inclusion of a “discrete-time like”
stability condition, derived from the solution of the system in the intervals [tk, tk + T ],
allows to guarantee the asymptotic stability of the origin in the presence of the dwell-time.
This approach is possible since the nonlinearity depends only on the system input, which
is kept constant between any two consecutive events.

Emulation design and co-design of the event generator parameters and the controller
gains have been addressed both for regional and global stabilization cases. Convex opti-
mization problems were proposed as means to compute these parameters.

We ended the chapter with numerical examples showing some potential of the pro-
posed methods and highlighting the superiority of results achievable in the co-design
context with respect to the number of generated events. The examples also illustrated that
solving the co-design problem to obtain a suitable control gain matrix K and the subse-
quent use of this gain in an emulation context leads to a refinement in the event generator
parameters and less events. This is explained by the fact that the linearization methods
used to obtain the co-design stability conditions represent additional conservatism with
respect to the stability conditions in the emulation context.

The results of this chapter were submitted for publication in (MOREIRA et al., 2018a)
and a resumed congress version, encompassing the global stabilization case, was pub-
lished in (TARBOURIECH et al., 2017). Besides that, (MOREIRA et al., 2017b) uses
similar techniques, based on a dwell time and exact discretization of the system, to ad-
dresses the design of event-triggered PI controllers for systems subject to control input
saturation.

An interesting related problem is the co-design including the observer gain L. It is
difficult to be addressed with the methodology presented in this chapter due to the terms
involving the exponential of L. Nevertheless, it can be elegantly addressed by the looped-
functional approach that is going to be presented in Chapter 7.
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7 LUR’E SYSTEMS WITH NONLINEARITIES DEPEND-
ING ON THE STATE

In this chapter we address the design of event-triggered controllers for Lur’e systems
where the nonlinearity depends on the plant’s state. We assume again that the event gener-
ator and the controller do not have access to the entire state of the system and a nonlinear
state observer is used to recover the missing information. This leads to an additional
challenge since, in this case, the nonlinearity does not cancel out in the observation error
dynamics. Thus, a different approach needs to be employed to cope with this fact.

A dwell-time is used, as in Chapter 6, to avoid Zeno behavior (MAZO; ANTA;
TABUADA, 2010). In the case at hand, however, the exact discretization technique used
in Chapter 6 to ensure the asymptotic stability in the presence of the dwell-time cannot be
applied, since the value of the nonlinearity varies continuously. To overcome this issue,
we consider a looped-functional approach (SEURET, 2012; BRIAT; SEURET, 2012) to
ensure that the trajectories during the dwell-time are bounded and the total variation of a
quadratic Lyapunov function over this time is strictly decreasing. As a side effect of the
condition, the stability of the closed-loop nonlinear system under periodic sampled-data
control, with period equal to the considered dwell time is also formally guaranteed.

Since the design of a continuous-time controller for the class of systems at hand can
be carried out by the methods described e.g. in (CASTELAN; TARBOURIECH; QUEIN-
NEC, 2008), we consider here the emulation case and the co-design of the observer and
the event-generator. Nevertheless, the method can be extended to address the usual co-
design of the event-generator and the controller gain as shown in Remark 7.1.

7.1 Addressed system

We consider a continuous-time plant represented by the following equations:{
ẋp(t) = Apxp(t) +Bpu(t) +Bpff(Hxp(t))

yp(t) = Cpxp(t)
(7.1)

where xp(t) ∈ Rn, u(t) ∈ Rm, yp(t) ∈ Rp are the state, the input and the output of the
plant, respectively. The matrices Ap, Bp, Bpf , Cp and H are constant and of appropriate
dimensions.

Function f : Rl → Rl is a sector-bounded, slope-restricted, decentralized nonlinear-
ity, i.e., each component f(i) : R→ R, i ∈ {1,..., l} satisfies the assumptions:

(A1) f(i)(0) = 0.
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(A2) f(i)(vi)
(
f(i)(vi)− λivi

)
≤ 0.

(A3) f(i)(vi) is continuous and differentiable by parts, satisfying

0 ≤
df(i)(vi)

dvi
≤ λi; λi > 0,∀vi ∈ R

Associated to the nonlinearity f , we can define a function ρ : Rl×Rl → Rl as follows:

ρ(a, b) = f(a+ b)− f(b) (7.2)

where a,b ∈ Rl.
We consider the following observer-based state feedback controller to asymptotically

stabilize the system (7.1):
˙̂x(t) = Apx̂(t) +Bpu(t) +Bpff(Hx̂(t))− Ley(t)
ŷ(t) = Cpx̂(t)

u(t) = Kx̂(t)

(7.3)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rp are the state and the output of the observer, respectively,
and ey(t) = yp(t) − ŷ(t) is the output error. L ∈ Rn×p and K ∈ Rm×n are the observer
and controller gains, respectively.

Considering an event-triggered control implementation, the actual control signal ap-
plied to the plant during the time interval t ∈ [tk, tk+1) is given by:

u(t) = Kx̂(tk) (7.4)

Now, taking (7.4) into consideration, defining the observation error e(t) = xp(t)−x̂(t)
and noticing that this implies Hxp(t) = He(t) + Hx̂(t), we can represent the dynamics
of the closed-loop system with respect to the variables x̂(t) and e(t) as follows:

˙̂x(t) = Apx̂(t) +Bpu(t) +Bpff(Hx̂(t))− LCpe(t)
ė(t) = (Ap + LCp)e(t) +Bpf [f(Hxp(t)− f(Hx̂(t))]

= (Ap + LCp)e(t) +Bpf [f(He(t) +Hx̂(t))− f(Hx̂(t))]

u(t) = Kx̂(tk)

(7.5)

Then, from the definition of function ρ in (7.2), it follows that f(He(t) + Hx̂(t)) −
f(Hx̂(t)) = ρ (He(t), Hx̂(t)) and (7.5) can be written as:

˙̂x(t) = Apx̂(t) +Bpu(t) +Bpff(Hx̂(t))− LCpe(t)
ė(t) = (Ap + LCp)e(t) +Bpfρ(He(t), Hx̂(t))

u(t) = Kx̂(tk)

(7.6)

Defining the augmented state vector x(t) =
[
x̂′(t) e′(t)

]′ ∈ R2n, it follows that
Hx̂(t)) =

[
H 0

]
x, He(t) =

[
0 H

]
x and Kx̂(tk) =

[
K 0

]
x(tk). Using these

relations and defining the vector of information available to the event generator as ya(t) =[
x̂′(t) e′y(t)

]′ ∈ R2n+p, the closed-loop system can be represented, ∀t ∈ [tk, tk+1),∀k ∈
N, as follows:

ẋ(t) = Aax(t) +Bau(t) +Baff(H1x(t)) +Baρρ(H2x(t), H1x(t))

u(t) =
[
K 0

]
x(tk)

ya(t) = Cax(t)

(7.7)
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with

H1 =
[
H 0

]
H2 =

[
0 H

]
Aa =

[
Ap −LCp
0 Ap + LCp

]

Ba =

[
Bp

0

]
, Ca =

[
I 0
0 Cp

]
Baf =

[
Bpf

0

]
Baρ =

[
0
Bpf

]
ρ(H2x(t), H1x(t)) = f(H1x(t) +H2x(t))− f(H1x(t))

(7.8)

7.2 Event generator

Here, we consider the same event-triggering strategy used in the Chapter 6, i.e.:

tk+1 = min{t ≥ tk + T, s.t. δ(t)′Qδδ(t)−
[
x̂(t)
ey(t)

]′
Q−1
ε

[
x̂(t)
ey(t)

]
≥ 0} (7.9)

where Qδ and Qε are constant symmetric positive-definite matrices of appropriate dimen-
sions, the dwell-time T is a positive scalar and δ(t) is defined as follows:

δ(t) = x̂(tk)− x̂(t) (7.10)

To simplify the notation in the exposition that follows, we are going to define the
vector of information available to the event generator:

ya(t) =

[
x̂(t)
ey(t)

]
∈ Rn+p (7.11)

and the triggering function:

g(δ(t), ya(t)) = δ(t)′Qδδ(t)−
[
x̂(t)
ey(t)

]′
Q−1
ε

[
x̂(t)
ey(t)

]
(7.12)

Considering (7.11) and (7.12), the trigger function can be written in the following
compact form:

tk+1 = min{t ≥ tk + T, s.t. g(δ(t),ya(t)) ≥ 0}. (7.13)

7.3 Instrumental tools

The following lemmas will be useful to derive the main results of this chapter. The
first one is the classical sector condition (KHALIL, 1996):

Lemma 7.1. If each component of f satisfies the assumption (A2), then

f ′(v)Sf (f(v)− Λv) ≤ 0 (7.14)

where Λ = diag(λ1, ..., λl) and Sf ∈ Rl×l is any diagonal positive-definite matrix, is
satisfied ∀v ∈ Rl.

Proof. It follows directly from (A2).
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To handle the nonlinearity ρ(H2x(t), H1x(t)) that appears from the use of the state
observer, we derive the following lemma, inspired by Lemma 1 from (FISCHMANN;
FLORES; GOMES DA SILVA JR., 2017):

Lemma 7.2. Consider the nonlinearity ρ, derived from f and defined in (7.2), i.e.:

ρ(v1, v0) = f(v0 + v1)− f(v0) (7.15)

If each component of f satisfies the assumptions (A1) - (A3), then

ρ′(v1, v0)Sρ(ρ(v1,v0)− Λv1) ≤ 0 (7.16)

where Λ = diag(λ1, ..., λl) and Sρ ∈ Rl×l is any diagonal positive-definite matrix, is
satisfied ∀v1, v0 ∈ Rl.

Proof. Consider each component ρ(i) of ρ and its corresponding arguments v1i and v0i,
which are scalars.

If v1i ≥ 0, the assumptions on the lower-bound of the derivative of f(i) imply that
f(i) is monotonically crescent, i.e., f(i)(v0i + v1i) ≥ f(i)(v0i), or, equivalently, f(i)(v0i +
v1i)−f(i)(v0i) ≥ 0, leading to ρ(i)(v1i,v0i) ≥ 0. The upper-limit of the derivative leads, by
applying the Mean Value Theorem, to f(i)(v0i+v1i)−f(i)(v0i) ≤ λiv1i, i.e. ρ(i)(v1i, v0i)−
λiv1i ≤ 0. Thus (7.16) holds in this case.

If v1i < 0, a similar analysis brings ρ(i)(v1i,v0i) ≤ 0 and ρ(i)(v1i, v0i)− λiv1i ≥ 0.
Hence, ρ(i)(v1i,v0i)σi(ρ(i)(v1i,v0i) − λiv1i) ≤ 0,∀σi > 0 and relation (7.16) follows

directly with Sρ = diag(σ1, ..., σl).

To enable the use of a dwell-time in the triggering condition, we will use the following
lemma, which is an adapted version of the Theorem 1 from (SEURET; GOMES DA
SILVA JR., 2012).

Lemma 7.3. Consider a positive scalar T , a differentiable function X ∈ Fn[0,T ] and a
differentiable positive definite function V : Rn → R such that there exist positive scalars
µ1 and µ2 and a positive integer p satisfying

µ1‖x‖p ≤ V (x) ≤ µ2‖x‖p (7.17)

Then, the following statements are equivalent:

(i) The total variation of V (X (t)) in the time interval [0, T ] is negative, i.e.:

V (X (T ))− V (X (0)) < 0 (7.18)

(ii) There exist a continuous functional V0 : [0, T ]× Fn[0,T ] → R such that:

V0(T,X ) = V0(0,X ), ∀X ∈ Fn[0,T ] (7.19)

Ẇ (τ,X ) =
d

dτ
[V (X (τ)) + V0(τ,X )] < 0,

∀τ ∈ [0, T )
(7.20)

Proof. Assume that (i) is satisfied. Consider the functional V0(τ,X ) = −V (X (τ)) +
τ
T

[V (X (T )) − V (X (0))], with τ ∈ [0, T ). It is easy to see that this functional satisfies
(7.19) and that Ẇ (τ,X ) = 1

T
[V (X (T ))− V (X (0))] < 0, if (i) is satisfied.

Now assume that (ii) is satisfied, which means that (7.19) and (7.20) hold. Integrating
(7.20) over [0, T ) leads to V (X (T ))−V (X (0)) +V0(T,X )−V0(0,X ) < 0. Since (7.19)
holds by assumption, relation (7.18) follows directly.
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7.4 Emulation case

In this section, the emulation case is addressed. The goal is to propose a way to design
the parameters Qδ and Qε of the event-triggering strategy (7.9) when the controller and
observer gains, K and L respectively, are given a priori.

7.4.1 Stability conditions

The following theorem establishes sufficient conditions for the global asymptotic sta-
bilization of the origin of the system (7.7) considering the event-triggering strategy (7.9).

The idea is basically the one adopted in Theorem 6.1: split the analysis in two intervals
[tk, tk + T ) and [tk + T, tk+1). However, differently from Theorem 6.1, we employ a
looped-functional approach instead of a exact discretization to cope with the stabilization
issues imposed by the dwell time.

Theorem 7.1. Considering T , K and L given, if there exist symmetric positive definite
matrices Qδ, Qε, P and R, a symmetric matrix F1, matrices Y1, Y2, Y1c, Y2c, F2, N and X
and positive definite diagonal matrices Sf , Sρ, Sfc and Sρc satisfying:

Π1 + T (Π2 + Π3) < 0 (7.21)[
Π1 − TΠ3 TN
∗ −TR

]
< 0 (7.22)[

Πa Π′b
∗ −Qε

]
< 0 (7.23)

with 1:

Π1 = He{M ′
1PM3 −NM12 −M ′

12F2M2 + (M ′
1Y
′

1 +M ′
3Y
′

2)[AaM1 +Ba

[
K 0

]
M2

−M3 +BafM4 +BaρM5]−M ′
4Sf (M4 − ΛH1M1)−M ′

5Sρ(M5 + ΛH2M1)}
−M ′

12F1M12

Π2 = He{M ′
3(F1M12 + F2M2)}+M ′

3RM3

Π3 = M ′
2XM2

Πa = He{M ′
1PM2 −M ′

4Sfc(M4 − ΛH1M1)−M ′
5Sρc(M5 − ΛH2M1)

+ (M ′
1Y
′

1c +M ′
2Y
′

2c)[(Aa +Ba

[
K 0

]
)M1 −M2 +BaKM3 +BafM4 +BaρM5]}

−M ′
3QδM3

Πb = CaM1

and

M1 =
[
I 0 0 0 0

]
M2 =

[
0 I 0 0 0

]
M3 =

[
0 0 I 0 0

]
M4 =

[
0 0 0 I 0

]
M5 =

[
0 0 0 0 I

] (7.24)

Then the origin of system (7.7) with the trigger rule defined by (7.9) is globally asymp-
totic stable.

Proof. Consider a quadratic function V (x(t)) = x(t)′Px(t). The stability analysis is
carried out considering two intervals, namely [tk, tk + T ) and [tk + T, tk+1). As in The-
orem 6.1, we are going to show that conditions (7.21)-(7.23) ensure V (x(tk + T )) −
V (x(tk)) < 0,∀k ∈ N and V̇ (x(t)) < 0, ∀t ∈ [tk + T, tk+1), ∀k ∈ N.

1Notice that the selector matrices Mi in (7.21) and (7.22) differ from those in (7.23) in the dimensions
of the third element, although they read the same in the notation used in this document.
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For t ∈ [tk, tk + T ), we can represent the trajectories of (7.7) in a lifted domain
(BRIAT; SEURET, 2012; SEURET, 2012; YAMAMOTO, 1990) by defining τ = t− tk,
with τ ∈ [0, T ), and denoting Xk(τ) = x(tk + τ) = x(t). It follows that the dynamics of
(7.7) in the interval [tk, tk + T ] can be equivalently described as follows:

Ẋk(τ) = AaXk(τ) +Ba

[
K 0

]
Xk(0) +Baff(H1Xk(τ))

+Baρρ(H2Xk(τ), H1Xk(τ))
∀τ ∈ [0, T ) (7.25)

Moreover, for t ∈ [tk, tk + T ), we have:

V (x(t)) = V (Xk(τ)) = X ′k(τ)PXk(τ) τ ∈ [0, T ) (7.26)

Consider now the solution of (7.25) for τ ∈ [0, T ] given by Xk ∈ F2n
[0,T ] and define:

W (τ,Xk) = V (Xk(τ)) + V0(τ,Xk) (7.27)

with V0(τ,Xk) : [0, T ]→ F2n
[0,T ] being a functional defined as follows:

V0(τ,Xk) = (T − τ)(Xk(τ)−Xk(0))′[F1(Xk(τ)−Xk(0)) + 2F2Xk(0)]

+ (T − τ)τX ′k(0)XXk(0) + (T − τ)

∫ τ

0

Ẋ ′k(θ)RẊk(θ)dθ
(7.28)

Observe that V0(T,Xk) = V0(0,Xk) = 0, ∀Xk ∈ F2n
[0,T ], meaning that condition (7.19)

of Lemma 7.3 is satisfied. Besides that, we have:

Ẇ (τ,Xk) = 2X ′k(τ)P Ẋk(τ)

+ (T − τ)Ẋ ′k(τ)[RẊk(τ) + 2F1(Xk(τ)−Xk(0)) + 2F2Xk(0)]

− (Xk(τ)−Xk(0))′[F1(Xk(τ)−Xk(0)) + 2F2Xk(0)]

+ (T − 2τ)X ′k(0)XXk(0)−
∫ τ

0

Ẋ ′k(θ)RẊk(θ)dθ

(7.29)

We show now that (7.21) and (7.22) imply that Ẇ (τ,Xk) < 0. For this similar steps
to those of Theorem 2 from (SEURET; GOMES DA SILVA JR., 2012) are taken. With
this aim, consider the following augmented vector:

ξk(τ) =
[
X ′k(τ) X ′k(0) Ẋ ′k(τ) f ′(τ) ρ′(τ)

]′
(7.30)

where we are using the shortcuts f(τ) = f(H1Xk(τ)) and ρ(τ) = ρ(H2Xk(τ), H1Xk(τ))
for clarity.

The coupling relation between the components of ξk imposed by (7.25) leads to the
following relation, valid for any matrices Y1 and Y2 of appropriate dimensions:

2(X ′(τ)Y ′1 + Ẋ ′k(τ)Y ′2)M0ξk = 0 (7.31)

with M0 =
[
Aa Ba

[
K 0

]
−I Baf Baρ

]
. Therefore, this null term can be added to

the inequality (7.29). Combining (7.29), (7.31), taking into account that for any matrix
N of appropriate dimensions (SEURET; GOMES DA SILVA JR., 2012, Theorem 2), the
inequality∫ τ

0

Ẋ ′k(θ)RẊk(θ)dθ ≥ 2ξ′k(τ)N(Xk(τ)−Xk(0))− τξ′k(τ)NR−1N ′ξk(τ) (7.32)
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holds and that Lemma 7.1 and Lemma 7.2 ensure f ′(τ)Sf (f
′(τ)− ΛH1Xk(τ)) < 0 and

ρ′(τ)Sρ(ρ(τ)− ΛH2Xk(τ)) < 0, respectively, one obtains that:

Ẇ (τ,Xk) ≤ ξ′k[Π1 + (T − τ)Π2 + (T − 2τ)Π3 + τNR−1N ′]ξk (7.33)

Hence, if the inequality

Π1 + (T − τ)Π2 + (T − 2τ)Π3 + τNR−1N ′ < 0 (7.34)

is satisfied, it follows from (7.33) that Ẇ < 0.
Now, notice that (7.34) is affine with respect to τ with τ ∈ [0,T ]. Thus, by convexity,

it suffices to ensure that it is satisfied for τ = 0 and for τ = T to guarantee that it is
satisfied for the entire interval τ ∈ [0,T ]. Applying these values leads to the following
conditions:

Π1 + T (Π2 + Π3) ≤ 0 (7.35)
Π1 − TΠ3 + TNR−1N ′ ≤ 0 (7.36)

Applying now the Schur complement to (7.36), one retrieves condition (7.22) and
concludes that satisfaction of conditions (7.21) and (7.22) ensures Ẇ (τ,Xk) < 0. Then,
applying Lemma 7.3 allows to conclude that satisfaction of conditions (7.21) and (7.22)
ensure that V (x(tk + T ))− V (x(tk)) < 0,∀k ∈ N.

For t ∈ [tk + T, tk+1), we can consider the signal δ(t), defined in (2.3) to re-write
system (7.7) as follows:

ẋ(t) = (Aa +Ba

[
K 0

]
)x(t) +BaKδ(t) +Baff(H1x(t))

+Baρρ(H2x(t), H1x(t))
(7.37)

Consider now the following vector:

ξ(t) =
[
x′(t) ẋ′(t) δ′(t) f ′(t) ρ′(t))

]′
where the shortcuts f(t) = f(H1x(t)) and ρ(t) = ρ(H2x(t), H1x(t)) are used for sim-
plicity.

Thus, considering the time derivative of V along the trajectories of the system for any
t ∈ [tk + T, tk+1) the following expression is obtained:

Ψc = V̇ (x)− g(δ(t), ya(t))− 2f ′(t)Sfc(f(t)− ΛH1x(t))

− 2ρ′(t)Sρc(ρ(t) + ΛH2x(t))

= ξ′(t)
{

He{M ′
1PM2 −M ′

3QδM3 +M ′
1C
′
aQ
−1
ε CaM1

−M ′
4Sfc(M4 − ΛH1M1)−M ′

5Sρc(M5 + ΛH2M1)}
}
ξ(t)

(7.38)

Using the coupling between the components of ξ imposed by (7.37), the following
relation is satisfied for any matrices Yc1 and Yc2 of appropriate dimensions:

2(x′(t)Y ′1c + ẋ′(t)Y ′2c)M0cξ(t) = 0 (7.39)

with M0c =
[
Aa +Ba

[
K 0

]
−I BaK Baf Baρ

]
and this term can be added to Lc

without changing its value, i.e.:

Ψc = ξ′(t)
{

He{M ′
1PM2 −M ′

3QδM3 +M ′
1C
′
aQ
−1
ε CaM1−

M ′
4Sfc(M4 − ΛH1M1)−M ′

5Sρc(M5 + ΛH2M1)

+ (M ′
1Y
′

1c +M ′
2Y
′

2c)M0c}
}
ξ(t)

= ξ′(t)(Πa + Π′bQ
−1
ε Πb)ξ(t)

(7.40)
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If we ensure Ψc < 0, relations (7.14) and (7.16) from lemmas 7.1 and 7.2, which are
satisfied by hypothesis, and relation g(δ(t), ya(t)) ≤ 0, which is ensured by the trigger-
ing condition (7.9) for any t ∈ [tk + T, tk+1), guarantee that V̇ (x) < g(δ(t), ya(t)) −
2f ′(t)Sf (f(t) − ΛH1x(t)) − 2ρ′(t)Sρ(ρ(t) + ΛH2x(t))} ≤ 0. Therefore, satisfying
(Πa + Π′bQ

−1
ε Πb) < 0 ensures V̇ (x) < 0 when g(δ(t), ya(t)) is given as in (7.12). Apply-

ing the Schur complement to this last inequality, we recover (7.23). Hence, satisfaction
of (7.23) effectively ensures that V̇ (x) < 0 ∀t ∈ [tk + T, tk+1).

To conclude the proof, we need to show that the trajectories of the system in the
intervals [tk, tk + T ) are bounded and converge to the origin as k → ∞. For this, define
the set Sθ = {

[
θ′f θ′ρ

]′ ∈ R2l : 0 ≤ θf(i) ≤ 1 and 0 ≤ θρ(i) ≤ 1, i = 1, ..., l}, where
θf(i) and θρ(i) are the i-th components of θf and θρ, respectively. Since (7.14) and (7.16)
are verified, note that there exists θ(t) =

[
θ′f θ′ρ

]′ ∈ Sθ, such that

f(i)(H1x(t)) = θf(i)(t)ΛH1x(t)

ρ(i)(H2x(t), H1x(t)) = θρ(i)(t)ΛH2x(t)
∀i = 1, ..., l

Hence, the trajectories of the closed-loop system (7.7) can be represented by the following
time-varying linear differential inclusion:

ẋ(t) = (Aa +BafΘf (t)ΛH1 +BaρΘρ(t)ΛH2)x(t) +Ba

[
K 0

]
x(tk) (7.41)

with Θf (t) = diag(θf1(t), ..., θfl(t)) and Θρ(t) = diag(θρ1(t), ..., θρl(t)).
For each admissible function θ(t) ∈ Sθ, since (7.41) is a linear time-varying system,

we can define a transition matrix Ψθ(t, t0) for the system (7.41). Defining Ψθk(τ) =
Ψ(tk + τ, tk) as the restriction of function Ψθ(t, t0) to the interval [tk, tk + T ], it follows
that

Xk(τ) = Ψθk(τ)Xk(0) +

∫ τ

0

Ψθk(s)dsBa

[
K 0

]
Xk(0)

and thus we can write

‖Xk(τ)‖ ≤
(
‖Ψθk(τ)‖+

∥∥∥∥∫ τ

0

Ψθk(s)ds

∥∥∥∥∥∥Ba

[
K 0

]∥∥) ‖Xk(0)‖

Considering all the possible functions θk ∈ F2l
[0,T ] such that θk(τ) ∈ Θ,∀τ ∈ [0, T ], there

exist a scalar

µΨ = sup
θk∈F2l

[0,T ]
,θk(τ)∈Sθ

{
‖Ψθk(τ)‖+

∥∥∥∥∫ τ

0

Ψθk(s)ds

∥∥∥∥∥∥Ba

[
K 0

]∥∥}

such that ‖Xk(τ)‖ ≤ µΨ‖Xk(0)‖.
Hence, since from (7.21) and (7.22) Xk(0) = x(tk) → 0 as k → ∞, it follows that

Xk(τ) = x(t)→ 0 as t→∞.

Although the subject of this thesis regards event-triggered controllers, as a side effect
of the conditions in Theorem 7.1, the asymptotic stability of the origin of the closed-loop
system under periodic sampled control with a period equal to the dwell-time T can be
formally guaranteed. The following corollary addresses this.
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Corollary 7.1 (Periodic sampled control). Considering T , K and L given, if there exist
symmetric positive definite matrices P and R, a symmetric matrix F1, matrices Y1, Y2,
Y1c, Y2c, F2, N and X and positive definite diagonal matrices Sf , Sρ, Sfc and Sρc satis-
fying (7.21) and (7.22), then the origin of system (7.7) is globally asymptotic stable when
periodic sampling with period T is considered, i.e. the sampling instants are given by
tk = kT, ∀k ∈ N.

Proof. It follows directly from Theorem 7.1. Just notice that for periodic sampling, one
needs to consider only the time inteval [tk, tk+T ], therefore condition (7.23) is not needed.

7.4.2 Optimization problem

Conditions in Theorem 7.1 are LMIs provided K, L and T are fixed. Thus, the fol-
lowing optimization problem is proposed as means to compute the parameters Qδ and
Qε:

min(tr(Qδ) + tr(Qε))

subject to:
(7.21), (7.22), (7.23), P > 0

(7.42)

The reasoning behind this optimization problem is again to get Qδ and Qε as “small”
as possible. Considering the definition of the trigger function (7.9), this means that the
matrix Qδ is “minimized” while the matrix Q−1

ε is “maximized”. Since an event is gener-
ated and the control input is updated only when the term δ(t)′Qδδ(t)− y′aQ−1

ε ya becomes
positive, this optimization procedure aims at reducing the impact of the positive contribu-
tion of Qδ > 0, over the negative contribution, −Qε < 0, which implies more time before
a new event occurs.

The dwell-time parameter T can be chosen according to the processing and network
communication constraints, as stated in Section 6.3.2. That is, the designer can choose,
for instance, the smallest dwell-time that is suitable given the infrastructure at hand or he
can solve the optimization problems for various values of T and choose the largest one
that renders the optimization problem feasible.

7.5 Co-design

In this section, we assume that a stabilizing state feedback control law was pre-
viously designed using, for instance, the techniques presented in (CASTELAN; TAR-
BOURIECH; QUEINNEC, 2008). From this starting point, the co-design of the observer
gain L and the event-trigger parameters is addressed.

7.5.1 Stability conditions

The following theorem establishes sufficient conditions for the global asymptotic sta-
bility of system (7.7) in the considered co-design case.

Theorem 7.2. Considering T and K given, if there exist positive scalars εc, εd, γ, sym-
metric positive definite matricesQδ,Qε, P andR, a non-singular matrix Y11, a symmetric
matrix F1, matrices U , F2, N and X and positive definite diagonal matrices Sf , Sρ,Sfc
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and Sρc satisfying:

Π1 + T (Π2 + Π3) < 0 (7.43)[
Π1 − TΠ3 TN
∗ −TR

]
< 0 (7.44)[

Πa Π′b
∗ −Qε

]
< 0 (7.45)

with:

Π1 = He{M ′
1PM3 −NM12 −M ′

12F2M2 + (εdM
′
1 +M ′

3)[(Y ′Aa1 + La)M1

+ Y ′Ba

[
K 0

]
M2 − Y ′M3 + Y ′BafM4 + Y ′BaρM5]

−M ′
4Sf (M4 − ΛH1M1)−M ′

5Sρ(M5 + ΛH2M1)} −M ′
12F1M12

Π2 = He{M ′
3(F1M12 + F2M2)}+M ′

3RM3

Π3 = M ′
2XM2

Πa = He{M ′
1PM2 −M ′

4Sfc(M4 − ΛH1M1)−M ′
5Sρc(M5 − ΛH2M1)

+ (εcM
′
1 +M ′

2)[(Y ′Aa1 + La + Y ′Ba

[
K 0

]
)M1

− Y ′M2 + Y ′BaKM3 + Y ′BafM4 + Y ′BaρM5]} −M ′
3QδM3

Πb = CaM1

Aa1 =

[
Ap 0
0 Ap

]
La =

[
0 −UCp
0 γUCp

]
Y =

[
Y11 0
0 γY11

]
and H1, H2 and the matrices M as defined in (7.8) and (7.24), respectively.

Then the origin of system (7.7) with L = (Y ′11)−1U is globally asymptotic stable.

Proof. The proof follows the same steps as for Theorem 7.1. The differences arise from
the fact that the conditions in Theorem 7.1 are not linear if L is variable, due to the terms
2(X ′(τ)Y ′1 + Ẋ ′k(τ)Y ′2)M0 in (7.31) and 2(x′(t)Y ′1c + ẋ′(t)Y ′2c)M0c in (7.39). To linearize
the conditions, one needs to isolate the terms depending on L in Aa and consider that

Y2 = Y2c = Y =

[
Y11 0
0 γY11

]
Y1 = εdY2

Y1c = εcY2c

which readily leads to the conditions stated in the present theorem.

Remark 7.1 (Co-design of K, Qδ and Qε). If L is given, but K is a decision variable,
conditions in Theorem 7.1 are not linear due to the terms (M ′

1Y
′

1 +M ′
3Y
′

2)Ba

[
K 0

]
M2

and (M ′
1Y
′

1c +M ′
2Y
′

2c)Ba

[
K 0

]
)M1. Nevertheless they can be linearized considering:

Y2 = Y2c = Y =

[
Y11 0
Y21 Y22

]
, Y1 = εdY, Y1c = εcY,

Ȳ = Y −1, Ȳ11 = Y −1
11 , S̄f = S−1

f , S̄ρ = S−1
ρ , S̄fc = S−1

fc , S̄ρc = S−1
ρc

and applying congruence transformations with diag(Ȳ , Ȳ , Ȳ , S̄f , S̄ρ) and
diag(Ȳ , Ȳ , Ȳ11, S̄f , S̄ρ) to inequalities (7.34) and (Πa + Π′bQ

−1
ε Πb) < 0, respec-

tively. Then, considering the variable changes Q̄δ = Ȳ ′QδȲ and K̄ = KȲ11 and



100

observing that
[
K 0

]
Ȳ =

[
K̄ 0

]
, one obtains the following stability conditions:

Π̄1 + T (Π̄2 + Π̄3) < 0 (7.46)[
Π̄1 − T Π̄3 TN
∗ −TR

]
< 0 (7.47)[

Π̄a Π̄′b
∗ −Qε

]
< 0 (7.48)

with

Π̄1 = He{M ′
1PM3 −NM12 −M ′

12F2M2 + (εdM
′
1 +M ′

3)[AaȲ M1 +Ba

[
K̄ 0

]
M2

− Ȳ M3 +Baf S̄fM4 +BaρS̄ρM5]−M ′
4S̄f (M4 − ΛH1Ȳ M1)−M ′

5S̄ρM5

+M ′
5ΛH2Ȳ M1} −M ′

12F1M12

Π̄2 = He{M ′
3(F1M12 + F2M2)}+M ′

3RM3

Π̄3 = M ′
2XM2

Π̄a = He{M ′
1PM2 −M ′

4S̄fcM4 +M ′
4ΛH1Ȳ M1 −M ′

5S̄ρcM5 −M ′
5ΛH2Ȳ M1

+ (εcM
′
1 +M ′

2)[(AaȲ +Ba

[
K̄ 0

]
)M1 − Ȳ M2 +BaK̄M3 +Baf S̄fcM4+

BaρS̄aρM5]} −M ′
3Q̄δM3

Π̄b = CaȲ M1

which are linear with respect to the decision variables. Parameters K and Qδ can then
be recovered as K = K̄Ȳ −1

11 and Qδ = (Ȳ ′)−1Q̄δȲ
−1.

These conditions can be used as part of an interactive approach to set the system
parameters. Starting from a given K, computed using the method presented in (CASTE-
LAN; TARBOURIECH; QUEINNEC, 2008) for instance, solve the optimization problem
for the co-design of L. Then, considering this value of L, use the conditions from this
Remark to refine the values of K, Qδ, Qε. Finally, a further step can be considered by
solving the emulation problem using the values of K and L previously computed, which
is analogous to the co-design refinement mentioned in Chapter 6. Notice, however, that in
the case addressed in the present chapter, the improvements expected with this refinement
are smaller since here the matrix structure for the co-design is imposed to the multipliers
and not to the Lyapunov matrix as in Chapter 6.

7.5.2 Optimization problem

Conditions in Theorem 7.2 are LMIs provided K, T , εc, εd and γ are fixed. Thus, the
following optimization problem is proposed as means to compute the parameters Qδ and
Qε:

min(tr(Qδ) + tr(Qε))

subject to:
(7.43), (7.44), (7.45), P > 0

(7.49)

To select the scalars εc, εd and γ, a grid search is proposed. T is selected by the same
criteria described in previous sections.
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7.6 Numerical example

Consider the system (7.1) with:

Ap =

[
0 1
4 0

]
, Bp =

[
0
1

]
, Bpf =

[
0

0.5

]
, Cp =

[
1 0

]
, H =

[
0 1

]
and f : R→ R being a logarithmic function with dead-zone (Figure 7.1):

f(v) =


0, if ‖v‖ ≤ 1

ln(v), if v > 1

− ln(−v), if v < −1

(7.50)

which leads to Λ = 1. We choose the controller gain K =
[
−6.102 −3.915

]
, which

stabilizes the origin of the system.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.1: Logarithm function with dead-zone.

7.6.1 Emulation

Considering the dwell-time T = 0.1 and L =
[
−4 −11

]′, we solve the emulation
optimization problem (7.42) with additional conditions λmax(Qδ) < 103λmin(Qδ) and
λmax(Qε) < 103λmin(Qε) to preventQδ andQε from becoming ill-conditioned, obtaining
the following results:

Qδ =

[
3.055 1.904
1.904 1.192

]
Qε =

 2.63 −1.231 · 10−6 3.487 · 10−7

−1.231 · 10−6 1.615 1.877 · 10−7

3.487 · 10−7 1.877 · 10−7 0.00263


Figure 7.2 depicts the simulation results for T = 0.1, T = 0.3 and T = 0.4 consider-

ing the following initial condition:

xp(0) =

[
−4
−3

]
x̂(0) =

[
0
0

]
For T = 0.5 the optimization problem becomes unfeasible. The upper plots in the figures
depict the state of the plant and of the observer. One can see that the state of the closed-
loop system effectively converges to the origin. The middle plots depict the control signal.
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The bottom plots depict the instants where the events occurred. The heights of the bars in
the bottom plot represent the inter-event times tk− tk−1 and the horizontal line represents
the dwell-time T . One can see that the event-trigger mechanism effectively postpones the
occurrence of events with respect to the dwell-time. The number of events generated in
the time interval [0, 10] seconds is 20, 19 and 16, respectively.

7.6.2 Co-design

Considering the dwell-time T = 0.1, we solve the co-design optimization problem
(7.49) with additional conditions λmax(Qδ) < 103λmin(Qδ) and λmax(Qε) < 103λmin(Qε)
to prevent Qδ and Qε from becoming ill-conditioned, obtaining the following results:

L =

[
−5.217
−10.02

]
Qδ =

[
3.109 1.937
1.937 1.213

]

Qε =

 2.66 0.07092 2.442 · 10−6

0.07092 1.659 1.01 · 10−6

2.442 · 10−6 1.01 · 10−6 0.002665


Figure 7.3 depicts the simulation results for T = 0.1, T = 0.3 and T = 0.4 consider-

ing the following initial condition:

xp(0) =

[
−4
−3

]
x̂(0) =

[
0
0

]
As in the emulation case, for T = 0.5 the optimization problem becomes unfeasible.
The numbers of events generated in the time interval [0, 10] seconds are 18, 17 and 15,
respectively, representing a slight improvement with respect to the emulation case: an
average reduction of around 9% in the number of events when the co-design is used.

7.7 Conclusion

In this chapter we addressed the design of observer-based event-triggered control for
Lur’e systems with sector-bounded nonlinearities that depend on the system state. Emula-
tion design and co-design of the event-trigger parameters and the observer gains have been
addressed for global asymptotic stabilization. The proposed techniques use only available
information and a state observer to recover the remaining plant state variables. Sufficient
conditions in the form of LMIs associated to convex optimization problems have been
proposed to design the observer and event-trigger parameters so that the asymptotic sta-
bility of the origin of the closed-loop system is ensured while aiming at reducing the
number of events. The approach allows to design the event-trigger with a dwell time T
imposing a minimum inter-events time, which prevents the Zeno behavior occurrence.
The stability analysis is carried out considering two intervals, the first one corresponding
to the dwell time, i.e. t ∈ [tk, tk + T ), and the second one corresponding to the actual
evaluation of the trigger condition, i.e t ∈ [tk +T, tk+1). During the dwell time, a looped-
functional approach is used to certify that the total variation of an underlying Lyapunov
function is negative, i.e. V (x(tk+T ))−V (x(tk)) < 0. Regarding the second interval, the
trigger condition is designed to ensure that the time derivative of the Lyapunov function
is negative, i.e. V̇ (x(t)) < 0,∀t ∈ [tk + T, tk+1). The looped-functional approach also
permits to derive conditions that guarantee the asymptotic stability of a periodic sampled
implementation of the controller; a result that was presented as a corollary.
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To the extent of the author’s knowledge, the use of looped-functionals to address the
design of observer-based event-triggered controllers for nonlinear systems is original. The
most similar work in the literature seems to be (ZHANG; HAN, 2017), which addresses
nonlinear systems and models the event-triggered closed-loop as a system with a time-
varying delay, but does not use a looped-functional approach and assumes access to the
entire state of the system. Besides that, (ZHANG; HAN; YU, 2016) presents a survey on
networked control systems which also encompasses works that model the closed-loop as a
system with a time-varying delay, but none of the referred works uses a looped-functional
either.

Stability conditions that allow the co-design of the controller gain K and the event-
trigger parameters Qδ, Qε were also presented in this chapter. They can be used as part
of an interactive approach to set the system parameters: Start from a given K, computed
using the method presented in (CASTELAN; TARBOURIECH; QUEINNEC, 2008) for
instance. Then solve the optimization problem proposed here for the co-design of L.
Now, considering this value of L, use the conditions from Remark 7.1 to refine the values
of K, Qδ, Qε.

In this chapter, only global stabilization has been addressed. The regional stabilization
imposes additional difficulties to ensure the sector condition for function ρ(a, b) = f(a+
b) − f(b) and the boundedness of the trajectories during the dwell-time. So far, these
difficulties could not be overcome and the regional stabilization is still an open problem.

The full co-design, i.e. the co-design of Qδ, Qε, K and L is still an open problem
either. In fact, designing K and L simultaneously is an open problem even when linear
plants and continuous-time control are considered.

We ended the chapter with a numerical example that illustrated the potential of the
proposed methods and highlighted a slight superiority of results achievable in the co-
design context with respect to the number of events generated.

The results presented in this chapter were submitted for publication as (MOREIRA
et al., 2018b).

It is worth noticing that the looped-functional approach used here can also elegantly
solve the problem of the co-design of the observer gain L and the event-trigger parameters
Qδ and Qε in the context of Lur’e systems where the nonlinearity depends only on the
plant input, that is, in the context of the problem addressed in Chapter 6. The main
drawback in that case were the exponential terms involvingL that appear as a consequence
of the exact discretization process. With the use of the looped-functional approach, there
is no need of system discretization and one can follow the same steps presented in this
chapter to obtain linear stability conditions considering the co-design of L for the class of
systems studied in Chapter 6.
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8 FINAL REMARKS

8.1 Conclusions

In this thesis we studied the problems of designing event-trigger controllers in emu-
lation and in co-design contexts for two different classes of nonlinear systems: rational
systems and Lur’e type systems. For both cases, we proposed triggering strategies based
on weighted relative error criteria and Lyapunov theory techniques were used to derive
asymptotic stability conditions in LMI form. These conditions were then cast into convex
optimization problems which allow the selection of the system parameters aiming at re-
ducing the number of control updates needed. This reduction has the benefits of leading to
fewer data transmissions in a NCS implementation and can also yield less actuator wear
in some cases.

In the case of rational systems, we considered static state-feedback control and an
event generator that has access to the entire plant state. Differential-algebraic representa-
tions (DARs) were used to obtain stability conditions in LMI form and this constitutes one
of the contributions of this thesis. Indeed, the use of DARs in the event-triggered control
field seems to be entirely new. Besides the use of DARs, approaches based on quasi-LPV,
T-S fuzzy systems and LFRs could be used. These alternatives, however tend to lead to
more conservative solutions. In the case of quasi-LPV and T-S, the relations among the
varying parameter and the state are not taken into account, leading to additional conser-
vatism. Moreover, for some rational plants these approaches lead to models which are
not affine with respect to the parameter, leading to a more complex design methodology.
The LFR can be seen as particular case of DAR (see (COUTINHO; GOMES DA SILVA
JR., 2010)) and leads to one specific DAR for each plant, which does not allow to explore
different representations, potentially leading to more conservative results.

Quadratic and rational underlying Lyapunov functions were considered in the stability
conditions. It was illustrated that the use of more complex Lyapunov functions can lead
to better results in terms of the number of events, but requires more calculation in design
time and does not scale well when the order of the system increases. The size of the LMIs
rapidly increases when more complex Lyapunov functions are considered. Moreover,
even when considering relatively simple bi-quadratic Lyapunov functions, the number of
variables involved increases with the order of the system, leading to large optimization
problems, difficult to solve with available equipment even for third-order systems.

It was also shown that the triggering strategy proposed in this case has an implicit
minimum inter-event time and, therefore, Zeno behavior is not an issue. On the other
hand, if one considers, in the context of rational systems, event generators that have access
only to the plant and controller outputs, it is not possible to exclude the possibility of Zeno
behavior and the design of event-triggered controllers with these constraints for rational
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systems is still an open problem.
In the case of Lur’e type systems, we addressed the problem of designing event-

triggered controllers that have access only to the plant and controller outputs. In this
case, a state observer was used to recover the missing information and a dwell time was
introduced in the triggering strategy to avoid Zeno behavior. We considered systems
where the nonlinearities depend only on the control input and systems where the nonlin-
earity depends on the state. In the first case, the exact time-discretization of the system is
considered to ensure stability in the presence of the dwell time, while in the second case
we employed a looped-functional approach. The application of looped-functionals in the
context of event-triggered control is also a contribution of this thesis.

When compared to the existing literature on event-triggered control, the methodology
proposed here has the following advantages:

• It is a systematic methodology for designing the event generator (in an emulation
design context) or the event generator and the control gains or the observer gains
(in a co-design context). The synthesis is systematically carried out by solving
convex optimization problems and there is no need to choose arbitrary values for
the parameters.

• It does not need a priori knowledge of a Lyapunov function for the system. The
method computes a Lyapunov function implicitly while solving the optimization
problems. Hence, it is potentially less conservative than methods which assume a
fixed one.

• All event generator parameters are free (in the sense that they are not fixed a priori)
and taken into account in the optimization process. Therefore, one can expect less
conservative results than methods which consider parameter values that are fixed or
that need to be arbitrated by the designer.

Finally, it is important to note that the co-design methodology proposed here can also
be seen as a possible systematic solution to the problem of designing sampled-data control
with certified stability. Recalling that, in general, exact discrete-time models of nonlin-
ear systems cannot be obtained and approximated ones, generated by numerical approx-
imations, are not always reliable when designing sampled-data control systems (NEŠIĆ;
TEEL; KOKOTOVIĆ, 1999), as they can lead to unstable closed-loop systems even when
the continuous-time corresponding closed-loop system is stable, the importance of this
result becomes clear.

8.2 Future work perspectives

In this section we summarize the problems that remain open and present some addi-
tional potential future extensions for the research presented in this thesis.

• Consider, for rational plants, the case where the event generator does not have ac-
cess to the entire state of the system. Both output-feedback and observer-based
state-feedback could be addressed. The main challenge is to avoid Zeno behavior,
which could potentially be handled by the use of dwell time and a looped-functional
approach.
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• In the cases where an observer is used, address the co-design of the event-trigger
parameters, the control law and the observer gain. The main challenge in this case
is to obtain convex stability conditions when all these parameters are variables. In
fact, the simultaneous design of the control law and the observer gain is an open
problem even when continuous-time controllers and linear systems are considered,
that is, this is an open problem not only in the event-triggered control field.

• Address the regional stabilization case for Lur’e systems where the nonlinearity
depends on the state. If the looped-functional approach is employed, the challenge
is to ensure the boundedness of the trajectories during the dwell time so that the
sector condition is valid during this period.

• Consider measurement errors and delays in the data processing/transmission. Prac-
tical implementations of the control systems discussed in this thesis will be affected
by these imperfections. Therefore it is important to address them from a theoretical
point of view.

• Consider state-dependent parameters in the event generators. Currently, the param-
eters Qx, Qε and Qδ are constant matrices. Relaxing this constraint so that they can
be matrix functions of the system state could potentially lead to further reductions
on the number of events.

• Use the looped-functional approach to address the co-design of the observer gain
L in the context of Lur’e systems where the nonlinearity depends on the input.
This is a tough problem to address using exact discretization of the system due
to the exponential terms involving the observer gain L. Nevertheless, this issue
can be overcome by considering a looped-functional approach to ensure the overall
decreasing of the Lyapunov function in the dwell time interval.

• Consider performance criteria in the design problems. Only stabilization has been
considered so far. The inclusion of minimum exponential decay rate, for instance,
could be coded as additional LMIs in the stability conditions. One could also con-
sider H∞ optimization as performance criteria.
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APPENDIX A DYNAMICAL SYSTEMS STABILITY

One of the most fundamental requirements in control systems is stability. If the closed-
loop system is not stable, other usual requirements as, for example, reference tracking,
disturbance rejection, etc. cannot be fulfilled. Therefore, this appendix recalls some con-
cepts and theorems related to the stability analysis of dynamical systems.

A.1 Stability of an equilibrium point

Nonlinear systems, differently from the linear ones, can have many equilibrium points
and even other types of critical elements, like periodic trajectories and chaotic attractors.
Hence, when nonlinear systems are considered, stability is a concept related to the critical
element and not to the entire system (KHALIL, 1996; SASTRY, 1999). In this thesis,
only type of critical elements that we are interested in are the equilibrium points. As
explained, for instance, in (KHALIL, 1996; SASTRY, 1999), we can study the stability
of an arbitrary equilibrium point by applying a change of coordinates that translates the
equilibrium of interest to the origin. Thus, we define:

Definition 2. (KHALIL, 1996) Let the origin be an equilibrium point for system ẋ = f(x),
with f : D → Rn locally Lipschitz in a domainD ⊂ Rn containing the origin. The origin
is:

• Stable if, for each ε > 0, there is a δ > 0 such that ||x(0)|| < δ =⇒ ||x(t)|| <
ε, ∀t ≥ 0.

• Unstable if it is not stable.

• Asymptotically stable if it is stable and δ can be chose such that ||x(0)|| < δ =⇒
limt→∞ x(t) = 0.

Once one determines that an equilibrium is asymptotically stable, comes the question
of how far from this equilibrium one can start a trajectory such that it converges to the
equilibrium. This concept leads to the definition of region of attraction:

Definition 3. (KHALIL, 1996) The region of attraction (RA) of the origin (assumed to
be the equilibrium being addressed) is the set of all initial states x0 ∈ Rn for which
x(0) = x0 =⇒ x(t)→ 0 when t→∞.

The exact characterization of the region of attraction is, in general a complex task
(KHALIL, 1996; GENESIO; TARTAGLIA; VICINO, 1985). Therefore, it is useful to
approximate the region of attraction by sets which have analytical representations like el-
lipsoids and polyhedra (TARBOURIECH et al., 2011). Such sets can be used as estimates
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of the region of attraction and are called Regions of Asymptotic Stability (RAS), formally
defined as follows:

Definition 4. (TARBOURIECH et al., 2011) A Region of Asymptotic Stability (RAS) of a
equilibrium point is a region of the state space that contains the equilibrium and that is a
subset of the region of attraction of that equilibrium.

A.2 Lyapunov stability criterion

A classical method to analyse the stability of equilibrium points is the direct Lyapunov
method, summarized in the following theorem:

Theorem A.1. (KHALIL, 1996) Let x = 0 be an equilibrium of system ẋ = f(x), with
f : D → Rn locally Lipschitz in a domain D ⊂ Rn containing the origin. If there exists
a function V : B ⊂ D → R continuously differentiable such that:

V (0) = 0; V (x) > 0, ∀x 6= 0 (A.1)

V̇ (x) < 0, ∀x 6= 0 (A.2)

then x = 0 is a asymptotically stable equilibrium.

A function V that satisfies the conditions in Theorem A.1 is called a Lyapunov func-
tion. If D = Rn, both conditions of the theorem are valid in the entire state space and V
has bounded level surfaces 1, the origin is globally asymptotically stable, that is, its region
of attraction is the entire state space.

If instead of ensuring (A.2), one can ensure only V̇ (x) ≤ 0, ∀x 6= 0, the origin
is guaranteed to be stable. It can still be asymptotically stable and tools like LaSalle’s
invariance principle can be applied to such cases. More details regarding this topic can be
found in (KHALIL, 1996) and (SASTRY, 1999).

A.3 Regions of asymptotic stability associated to a Lyapunov func-
tion

In the context of regional stabilization, i.e. when one cannot ensure the global stability
of the origin, estimates of the region of attraction can be obtained from the following
criterion:

Theorem A.2. (KHALIL, 1996) Consider a Lyapunov function V (x) satisfying conditions
of Theorem A.1 for all x ∈ B. Then any bounded surface level of V , Lc = {x ∈ Rn :
V (x) ≤ c}, contained in B is a region of asymptotic stability of the origin and can be
used as an estimate of its region of attraction.

It is important to note that this estimates are, in general, conservative in the sense that
they are smaller than the region of attraction. Moreover, different Lyapunov functions
lead to different estimates, with different degrees of conservativeness (KHALIL, 1996).

1The level surfaces being limited is guaranteed if V is radially unbounded, i.e., ||x|| → ∞ =⇒
V (x)→∞.
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