18 research outputs found

    Literature study on the controlled synchronization problem

    Get PDF

    Literature study on the controlled synchronization problem

    Get PDF

    SYNCHRONIZATION OF CHAOTIC SYSTEMS USING VARIABLE STRUCTURE CONTROLLERS

    Get PDF
    ABSTRACT In this paper a variable structure system based upon sliding mode control with time varying sliding surface and variable boundary layer is introduced to synchronize two different chaotic systems with uncertain parameters. The method is applied to Lur'e-Genesio chaotic systems, as drive-response systems to investigate the effectiveness and robustness of the controlling method. In addition the simulation is repeated with a conventional sliding mode to compare the performance of the proposed sliding mode technique with a simple sliding mode control. The results show the high quality and improved performance of the method presented in the paper for synchronization of different drive-response chaotic systems

    Output feedback robust synchronization of networked Lur'e Systems with incrementally passive nonlinearities

    Get PDF
    In this paper we deal with robust synchronization problems for uncertain dynamical networks of identical Lur’e systems diffusively interconnected by means of measurement outputs. In contrast to stabilization of one single Lur’e system with a passive static nonlinearity in the negative feedback loop, in the present paper the feedback nonlinearities are assumed to be incrementally passive. We assume that the interconnection topologies among these Lur’e agents are undirected and con- nected throughout this paper. A distributed dynamical protocol is proposed. We establish sufficient conditions for the existence of such protocol that robustly synchronizes the Lur’e dynamical network. The protocol parameter matrices are computed in terms of the system matrices defining the individual agent, but also the second smallest and largest eigenvalues of the Laplacian matrix associated with the interconnection topology

    Output feedback robust synchronization of networked Lur'e Systems with incrementally passive nonlinearities

    Get PDF
    In this paper we deal with robust synchronization problems for uncertain dynamical networks of identical Lur’e systems diffusively interconnected by means of measurement outputs. In contrast to stabilization of one single Lur’e system with a passive static nonlinearity in the negative feedback loop, in the present paper the feedback nonlinearities are assumed to be incrementally passive. We assume that the interconnection topologies among these Lur’e agents are undirected and con- nected throughout this paper. A distributed dynamical protocol is proposed. We establish sufficient conditions for the existence of such protocol that robustly synchronizes the Lur’e dynamical network. The protocol parameter matrices are computed in terms of the system matrices defining the individual agent, but also the second smallest and largest eigenvalues of the Laplacian matrix associated with the interconnection topology

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance
    corecore