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ABSTRACT 
In this paper a variable structure system based upon sliding 

mode control with time varying sliding surface and variable 
boundary layer is introduced to synchronize two different 
chaotic systems with uncertain parameters. The method is 
applied to Lur'e-Genesio chaotic systems, as drive-response 
systems to investigate the effectiveness and robustness of the 
controlling method. In addition the simulation is repeated with a 
conventional sliding mode to compare the performance of the 
proposed sliding mode technique with a simple sliding mode 
control. The results show the high quality and improved 
performance of the method presented in the paper for 
synchronization of different drive-response chaotic systems. 

 
INTRODUCTION 

In the last few years, synchronization in chaotic dynamical 
systems has received a great deal of interests among scientists 
from various fields [1–2]. The results of chaos synchronization 
are utilized in biologic synchronization, chemical reaction 
synchronization, secret communication and cryptography, 
nonlinear oscillation synchronization and some other nonlinear 
fields. The first idea of synchronizing two identical chaotic 
systems with different initial conditions was introduced by 
Pecora and Carrols [3-5], and the method was realized in 
electronic circuits. The methods for synchronization of the 
chaotic systems have been advanced in recent years, and many 
different methods have been applied theoretically and 
experimentally to synchronize the chaotic systems [6-8]. A basic 
configuration for chaos synchronization is the drive-response 
pattern, where the response chaotic system must track the drive 
chaotic trajectory. A number of methods based on this 
configuration have been proposed. More recently some 
techniques have been investigated for synchronization in hyper-
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chaotic systems [9,10], and a generalized method for 
synchronization of chaotic systems has been proposed [11,12]. 
Besides, using the active control methods some different 
synchronization problems have been investigated [13,14]. For 
example a coupled Lorenz system has been synchronized in [5], 
and also some active control methods have been applied to 
Chen and Rosseler systems to obtain a synchrony behavior from 
them [15]. In [16,17], generalized synchronization method with 
parametric adaptive control has been introduced. Also linear 
and nonlinear feedback control methods have been studied for 
chaos synchronization applications. Recently discontinuous 
control method has been increasingly developed for chaos 
synchronization [18,19]. In [20,21] an ∞H robust 
synchronization methods for chaotic Lur’e systems via static 
state error feedback and dynamic output error feedback has 
been proposed. In [22], an adaptive control approach has been 
presented. The impulsive robust control method has been 
proposed in [23,24] for the synchronization of uncertain Lur’e 
systems and the coupled chaotic systems. In [25] a new 
controller based on delay feedback has been presented for chaos 
synchronization. Various controlling methods such as variable 
structure methods [26], parametric adaptive control [27], 
observer based control [28,29], and so on, have been 
successfully applied for chaos synchronization. Most of the 
mentioned works have been applied for two identical chaotic 
systems. In practice it is difficult to find two exactly identical 
chaotic systems. Hence, the synchronization of two different 
chaotic systems plays a significant role in practical applications 
[30,31]. This problem will be more challenging and difficult if 
the parameters of two chaotic systems have some uncertainties 
or the environment apply some random noise to the dynamic 
systems or measured output. Actually in practice, it hardly 
occurs that the both master and slave systems have the same 
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configuration or the measured signals are not influenced by 
some stochastic noises. In [32] a nonlinear controller based on 
Lyapunov theorem has been used to design a controller for 
chaos synchronization of two different systems. 

In this paper we use a sliding mode controller with time 
varying sliding surface and variable boundary layer to 
synchronize the behavior of two different chaotic systems 
which have some uncertainties in their parameters. It is 
assumed that the response system is exercised by some 
bounded random process. Using the variable boundary layer 
one can eliminate both the chattering phenomena in the sliding 
surface and the steady state error that appears due to boundary 
layer. It causes a smooth behavior in convergence of the 
tracking error to zero. In addition using time varying sliding 
surface the rate of convergence can be controlled to obtain a 
desired convergence performance. The method presented in 
this paper is applied to a Lur'e like and a Genesio chaotic 
systems as the drive and the response systems, respectively. 
The results of the proposed method for synchronization are 
compared with the ones obtained from a conventional sliding 
mode controller. 

 

SYNCHRONIZING CONTROL DESIGN 
Consider the following system described by: 

),()( txfx n = (1) 

where nnxxxx ℜ∈= − ),,,( )1(…� is the state vector, and 

ℜ→ℜ×ℜ +nf : is a nonlinear, and sufficiently smooth 
function. Equation (1) is considered as a drive system. It is 
assumed that the function f is not exactly known, and its 

approximate value is denoted by f̂ , and we have 

),(),(ˆ),( txFtxftxf <− (2) 
where ( , )F x t is a known bounded function. The controlled 
response system is given by: 

)(),(),()( tutybtygy n δ++= (3) 

where nnyyyy ℜ∈= − ),,,( )1(…� is the state vector, ℜ∈u is 

the control variable of the system, ℜ→ℜ×ℜ +nbg :,  are 
sufficiently smooth functions, and )(tδ denotes the noise 
disturbing the system. Similarly, the functions g and b have 
some uncertainties and theirs nominal values are shown by ĝ

and b̂ . It is also assumed that the function b is a positive 
definite function which has a strictly positive lower bound mb :

),(),(ˆ),( tyGtygtyg <− (4) 
0),(),( >> tybtyb m (5) 

∆<)(tδ (6) 
The functions f and g are not the same.  
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The synchronization problem is to design a controller u which 
synchronizes the states of both the drive and the response 
systems. 
By subtracting (1) from (3) it is obtained that: 

utybtxftyge n ),(),(),()( +−= (7) 

where xye −= . The aim of synchronization is: 

0)(lim =
∞→

te
t (8) 

Let a time varying sliding surface be: 

)()()(
1

tet
dt

d
tS

n−







 += λ (9) 

The goal is to design a controller that makes the system 
reach to the sliding surface as smoothly as possible. Eventually 
it is shown that in the sliding surface the system trajectories 
approach to the origin. To this end define a Lyapunov function 
as 2

2
1 )(tSV = , where V is a positive definite function. Now the 

derivative of the Lyapunov function along the error trajectories 
are obtained as: 
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Now using the equation (7) it is obtained that: 
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The controller u must be designed such that the trajectories of 
the error dynamics approach to the sliding surface in a finite 
time. In the sliding surface the dynamics of the system is 
degenerated to: 

0)()( 1
0

1)(1 == ∑ −
=

−−−n

m
mnmn

m teCtS λ (12) 
 So in the sliding surface we have a time-varying linear system. 

)(tλ must be chosen in such a way that the dynamic system on 
the sliding surface be stable.  So one may define a dynamics for 

)(tλ as: 

0
0

( )
( ) , 0, ( 0)

0
t t T

t t
otherwise

ηλ
λ η λ λ

<
= > = =


� (13) 

where 0T is an arbitrary constant time. Equation (13) implies 
that the rate of convergence in the sliding surface increases as 
time goes on. To obtain the negative definiteness condition of 
V� , one can define the controller u as: 
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Substituting equation (14) in (11), results in: 
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Do
2 1 ( 1) 1
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 So setting: 
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(16) 
where θ is an arbitrary positive number, it is easily seen that: 

)(tSV θ−≤� (17) 
So the sliding surface attracts the system trajectories in a finie 
time, and the trajectories of the system approach to the sliding 
surface globally.  
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The designed controller is not continuous due to using sign 

function in definition of u. The discontinuity of the controller 
results in undesired nonlinear phenomena, chattering, which 
may cause some difficulties in numerical or practical 
applications of the controller. One of the natural solutions to 
eliminate this problem is to define a boundary layer for sliding 
surface. Here we define a time varying boundary layer for the 
sliding surface. The thickness of boundary layer is denoted by 

)(tε that is time varying, and it is defined as: 

, ( , ( )){ }nz dist z S t εΒ = ∈ℜ ≤ (18) 
where, 

( , ( )) inf , ( ){ }dist z S t z p p S t= − ∈  (19) 
The controller law is defined in such a way that the boundary 
layer becomes an attracting set, 
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where  
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=
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)(1

ξ
ξ (21) 

ε is the thickness of the boundary layer around the sliding 
surface. To investigate the attraction of the boundary layer we 
substitute the controller law of equation (20) in equation (15). 
When ε>))(,( tSedist ,
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So for ε>))(,( tSedist  we have: 

)(tSV θ−≤� (23) 
It follows that the sliding surface is attracting, consequently the 
boundary layer will become attracting, because the sliding 
surface is a subset of boundary layer.  
Definition of a boundary layer for sliding surface results in 
some steady state errors, because the controller law within the 
boundary layer does not necessarily make the trajectories attract 
to the sliding surface. If we define a contracting dynamics for 
the boundary layer thickness, the steady state error can 
approach to zero, also due to existence of the boundary layer 
the discontinues behavior of the controlling signal is eliminated. 
Here a simple contracting dynamics for the thickness of the 
boundary layer is proposed as: 

0)0(, εεµεε ==−= t� (24) 
It must be noted that similar to a conventional sliding mode 
control method, one can define the integral of the state error as 
a new state to get a better performance for synchronization. To 
this end, the sliding surface of the system turns into: 

∫





 += t

n

det
dt

d
tS

0
)()()( ττλ (25) 

The controller law can be rewritten as:
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Remark 1: The variable boundary layer in a sliding mode 
control increases the system dimension, and this implies that 
some extra analysis is necessary to be accomplished about the 
system stability. Generally if the boundary layer thickness is 
constant, the control laws in equation (19) or equation (26) 
make the boundary layer be an attracting set. On the other hand 
it must be noted that the variations of boundary layer structure 
due to equation (24) does not affect on the sliding surface and 
its corresponding Lyapunov function or its derivative. In other 
words the attraction of the boundary layer is independent of its 
structural variations due to equation (24). So the stability of the 
closed loop system with variable boundary layer is achieved.  
 
Remark 2: To achieve properly the objective of chattering 
reduction in addition to steady state error decrease, when the 
variable boundary layer is used, one must carefully adjust the 
coefficient µ in equation (24). It must be noted that the rate of 
decreasing the boundary layer thickness must be less than the 
rate of convergence of the system trajectories to the boundary 
layer or the sliding surface. 
 

SYNCHRONIZATION OF TWO DIFFERENT  
CHAOTIC SYSTEMS 

We use the proposed method to synchronize two different 
chaotic systems. One is the Lur'e-like system considered as the 
drive system. The other is the chaotic Genesio system 
considered as the controlled response system. Our aim is to 
design a controller and make the controlled response system 
track the trajectories of the drive system. 

Lur'e-like system, as the drive system, is considered as 
follows: 
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where 
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For 4.71 −=a , 1.42 −=a , 13 −=a , and 6.3=k , the system 
shows chaotic response. The chaotic Genesio system is 
described by the set of three order differential equations: 

uyybybyby
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yy

++−−−=

=
=

2
13322113

32

21

�
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(29) 

where 1 5.6b = , 92.22 =b , and 2.13 =b are the parameters 
of the system, and u is the control action. The behavior of both 
systems for 4.71 −=a , 1.42 −=a , 13 −=a , 6.51 =b , 74.22 =b

and 1.13 =b , and 0=u are shown in the phase space in 
figures 1, and 2. 
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Figure 1. The chaotic attractor of the Lur'e system with 
4.71 −=a , 1.42 −=a , 13 −=a , and 6.3=k

Figure 2. The chaotic attractor of the Genesio system with 
6.51 =b , 74.22 =b and 1.13 =b

We subtract (27) from (29) and get the error equation as 
follows: 
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where 111 xye −= , 222 xye −= , and 333 xye −= . Suppose 
that there are some uncertainties for constants and functions of 
the Genesio and Lur'e like equations. These uncertainties are 
modeled as some continuous random variables which are added 
to the nominal values of the system parameters and functions, 
e.g. 
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D

where )(tn j
i are uniform random variables between -1 and +1, 

and iρ , iυ , and iϑ are constant weight coefficients. Besides, 
the system dynamics of the Genesio system is excited with a 
random input, )(tδ which has a uniform probability density 
function in the interval ),( ∆+∆− . The bounds of the 
coefficients are 
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Let: 
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ˆˆˆ),( ybybybtyG υυυ ++= (35) 
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The time varying sliding surface of the error dynamics is written 
as: 

∫+++= t
detetetetS
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Let a Lyapunov function, 2
2
1 )(tSV = , and using the variable 

boundary layer method explained in the previous section, the 
controlling law is designed such that the derivative of the 
Lyapunov function before reaching to the boundary layer is 
negative definite. 
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The control action is obtained as: 
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where equation (42), are equal, and 0→χ as ∞→t , so we must 
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So 
)()( tStV θ−≤� (40) 

The derivation of the Lyaounov function along the error 
trajectory is negative definite, so it implies that the error 
trajectories converge to the boundary layer in a finite time. On 
the other hand, by defining a dynamics for the boundary layer in 
the form of: 

0,)0(, 0 >==−= µεεµεε t� (41) 
the boundary layer will approach to the sliding surface, hence 
the trajectories of the error dynamics must move toward the 
sliding surface. Assuming that the distance between the error 
trajectory at time t, and the sliding surface is denoted by χ and 
manipulating some calculations it is obtained that: 
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Inside the boundary layer we have )(tεχ ≤ , and due to 
attraction of boundary layer and the dynamics of the boundary 
layer thickness,χ must approach to zero, as a function of time. 
It must be noticed that because the coefficients )(tλ increase, 
and the degree of the numerator and the denumerator of χ , in 
have, 

0)()(9)(91.lim 642 =+++
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ttt
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Near the sliding surface, the error dynamics has the below 
dynamics, 
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where χ~ has the property of, 
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Equation (44) can be rewritten in the form of state space. 
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Using the linear control theory, due to asymptotically stability 
of the system we have )0,0,0(),,( 210 1 →= ∫ eedee

t τ , because 

0~ →χ . Hence the synchronization of two different chaotic 
systems is completely achieved. 

For two different chaotic systems, which have different 
structures and parameter mismatches, the proposed controller 
can synchronize the states of the drive and the response 
systems. 
 
Remark: The system parameters used for simulation are chosen 
in such a way that both systems have chaotic response. For the 
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Lur’e and the Genesion dynamical system, the selected 
parameters are conventional and well-known [21], and for these 
conventional parameters the chaotic attractor of both systems in 
the state space occupy approximately the same region but their 
behaviors are completely different. It must be noted that the 
synchronizing algorithm is not dependent on the chaotic 
systems used for simulation and for synchronization, it is 
enough that the condition in equation (17) is satisfied. 

SIMULATION RESULTS 
In this section, numerical simulations are given to examine 

the effectiveness of the proposed method. In these numerical 
simulations, the fourth order Runge-Kutta with step size 0.001 
is used. The parameters are selected as follows: 4.71 −=a ,

1.42 −=a , 13 −=a , 6.51 =b , 74.22 =b , 1.13 =b ,

1.0=== iii ϑυρ , with initial values 4)0(1 =x , 3)0(2 −=x ,

8)0(3 =x , 3.2)0(1 =y , 7.0)0(2 =y , 2.0)0(3 =y , 4.0)0( =ε ,
and 1)0( =λ . The simulation results are illustrated in figures 3 
to 5. Figure 5, shows the synchronization results of applying a 
conventional sliding mode control with a constant boundary 
layer and time-invariant sliding surface. It is seen that the 
performance of the system is improved in the case of variable 
boundary layer and time-varying sliding surface. 

 

0 1 2 3 4 5
-2

-1

0

e 1

0 1 2 3 4 5

0

2

4

e 2

0 1 2 3 4 5
-8
-6
-4
-2
0

Time (sec)

e 3

(a)

(b)

(c)

 
Figure 3. Dynamics of synchronization error for two 
different chaotic systems with random type mismatch, 
using time-varying sliding surface and boundary layer,  
(a) 111 xye −= , (b) 222 xye −= , and (c) 333 xye −=
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Figure 4. Variations of the controller parameters in 
synchronization of two different chaotic systems with 
random type mismatch, using time-varying sliding surface 
and boundary layer, (a) boundary layer thickness: )(tε , (b) 
sliding surface eigen-values: )(tλ , and (c) controller, u.

Figure 5. Dynamics of synchronization error for two 
different chaotic systems with random type mismatch, 
using constant sliding surface and constant boundary layer, 
(a) 111 xye −= , (b) 222 xye −= , and (c) 333 xye −=

CONCLUSION 
We have provided a nonlinear control method based on 

variable structure systems to synchronize two different 
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dynamic systems with random uncertainties. The variable 
structure control method introduced in this paper is the sliding 
mode control with variable sliding surface and variable 
boundary layer. The advantages of the proposed method in 
compare to the conventional sliding mode are that the variable 
sliding surface and variable boundary layer adjust and increase 
the rate of convergence to the sliding surface, decrease the 
steady state error that is generated in conventional sliding 
mode with constant boundary layer and raise the robustness of 
system against uncertainties. 

Simulation results show the high performance of the 
proposed method in synchronization of two different chaotic 
systems which have random uncertainties in their parameters. 
The drive and the response systems used for simulation are the 
Lur'e and the Genesio chaotic systems. Furthermore the 
simulation results of applying a conventional sliding mode 
control show the improvement of controller performance when 
the presented sliding mode method is exercised to the systems 
in compare to a conventional sliding mode control.
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