13 research outputs found

    Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences

    Get PDF
    Grey and white matter mimicking phantoms are important for assessing variations in diffusion MR measures at a single time point and over an extended period of time. This work investigates the stability of brain-mimicking microfibre phantoms and reproducibility of their MR derived diffusion parameters. The microfibres were produced by co-electrospinning and characterized by scanning electron microscopy (SEM). Grey matter and white matter phantoms were constructed from random and aligned microfibres, respectively. MR data were acquired from these phantoms over a period of 33 months. SEM images revealed that only small changes in fibre microstructure occurred over 30 months. The coefficient of variation in MR measurements across all time-points was between 1.6% and 3.4% for MD across all phantoms and FA in white matter phantoms. This was within the limits expected for intra-scanner variability, thereby confirming phantom stability over 33 months. These specialised diffusion phantoms may be used in a clinical environment for intra and inter-site quality assurance purposes, and for validation of quantitative diffusion biomarkers

    Coaxial electrospun biomimetic copolymer fibres for application in diffusion magnetic resonance imaging

    Get PDF
    OBJECTIVE: The use of diffusion magnetic resonance imaging (dMRI) opens the door to characterise brain microstructure because water diffusion is anisotropic in axonal fibres in brain white matter and is sensitive to tissue microstructural changes. As dMRI becomes more sophisticated and microstructurally informative, it has become increasingly important to use a reference object (usually called imaging phantom) for validation of dMRI. This study aims to develop axon-mimicking physical phantoms from biocopolymers and assess their feasibility to validate dMRI measurements. APPROACH: We employed a simple and one-step method-coaxial electrospinning-to prepare axon-mimicking hollow microfibres from polycaprolactone-b-polyethylene glycol (PCL-b-PEG) and poly(D, L-lactide-co-glycolic) acid (PLGA), and used them as building elements to create axon-mimicking phantoms. Electrospinning was firstly conducted using two types of PCL-b-PEG and two types of PLGA with different molecular weights in various solvents with different polymer concentrations for determining their spinnability. The polymer/solvent-concentration combinations with good fibre spinnability were used as the shell material in the following co-electrospinning process in which the polyethylene oxide (PEO) polymer was used as the core material. Following microstructural characterisation of both electrospun and co-electrospun fibres using optical and electron microscopy, two prototype phantoms were constructed from co-electrospun anisotropic hollow microfibres after inserting them into water-filled test tubes. MAIN RESULTS: Hollow microfibres that mimic the axon microstructure were successfully prepared from the appropriate core and shell material combinations. dMRI measurements of two phantoms on a 7 tesla (T) pre-clinical scanner revealed that diffusivity and anisotropy measurements are in the range of brain white matter. SIGNIFICANCE: This feasibility study showed that co-electrospun PCL-b-PEG and PLGA microfibres-based axon-mimicking phantoms could be used in the validation of dMRI methods which seek to characterise white matter microstructure

    Direct jet coaxial electrospinning of axon-mimicking fibers for diffusion tensor imaging

    Get PDF
    Hollow polymer microfibers with variable microstructural and hydrophilic properties were proposed as building elements to create axon-mimicking phantoms for validation of diffusion tensor imaging (DTI). The axon-mimicking microfibers were fabricated in a mm-thick 3D anisotropic fiber strip, by direct jet coaxial electrospinning of PCL/polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide (PEO) as core. Hydrophilic PCL-PSi fiber strips were first obtained by carefully selecting appropriate solvents for the core and appropriate fiber collector rotating and transverse speeds. The porous cross-section and anisotropic orientation of axon-mimicking fibers were then quantitatively evaluated using two ImageJ plugins—nearest distance (ND) and directionality based on their scanning electron microscopy (SEM) images. Third, axon-mimicking phantom was constructed from PCL-PSi fiber strips with variable porous-section and fiber orientation and tested on a 3T clinical MR scanner. The relationship between DTI measurements (mean diffusivity [MD] and fractional anisotropy [FA]) of phantom samples and their pore size and fiber orientation was investigated. Two key microstructural parameters of axon-mimicking phantoms including normalized pore distance and dispersion of fiber orientation could well interpret the variations in DTI measurements. Two PCL-PSi phantom samples made from different regions of the same fiber strips were found to have similar MD and FA values, indicating that the direct jet coaxial electrospun fiber strips had consistent microstructure. More importantly, the MD and FA values of the developed axon-mimicking phantoms were mostly in the biologically relevant range

    Validating pore size estimates in a complex microfiber environment on a human MRI system

    Get PDF
    PURPOSE: Recent advances in diffusion-weighted MRI provide "restricted diffusion signal fraction" and restricting pore size estimates. Materials based on co-electrospun oriented hollow cylinders have been introduced to provide validation for such methods. This study extends this work, exploring accuracy and repeatability using an extended acquisition on a 300 mT/m gradient human MRI scanner, in substrates closely mimicking tissue, that is, non-circular cross-sections, intra-voxel fiber crossing, intra-voxel distributions of pore-sizes, and smaller pore-sizes overall. METHODS: In a single-blind experiment, diffusion-weighted data were collected from a biomimetic phantom on a 3T Connectom system using multiple gradient directions/diffusion times. Repeated scans established short-term and long-term repeatability. The total scan time (54 min) matched similar protocols used in human studies. The number of distinct fiber populations was estimated using spherical deconvolution, and median pore size estimated through the combination of CHARMED and AxCaliber3D framework. Diffusion-based estimates were compared with measurements derived from scanning electron microscopy. RESULTS: The phantom contained substrates with different orientations, fiber configurations, and pore size distributions. Irrespective of one or two populations within the voxel, the pore-size estimates (~5 Îźm) and orientation-estimates showed excellent agreement with the median values of pore-size derived from scanning electron microscope and phantom configuration. Measurement repeatability depended on substrate complexity, with lower values seen in samples containing crossing-fibers. Sample-level repeatability was found to be good. CONCLUSION: While no phantom mimics tissue completely, this study takes a step closer to validating diffusion microstructure measurements for use in vivo by demonstrating the ability to quantify microgeometry in relatively complex configurations

    Physical and digital phantoms for validating tractography and assessing artifacts

    Get PDF
    Fiber tractography is widely used to non-invasively map white-matter bundles in vivo using diffusion-weighted magnetic resonance imaging (dMRI). As it is the case for all scientific methods, proper validation is a key prerequisite for the successful application of fiber tractography, be it in the area of basic neuroscience or in a clinical setting. It is well-known that the indirect estimation of the fiber tracts from the local diffusion signal is highly ambiguous and extremely challenging. Furthermore, the validation of fiber tractography methods is hampered by the lack of a real ground truth, which is caused by the extremely complex brain microstructure that is not directly observable non-invasively and that is the basis of the huge network of long-range fiber connections in the brain that are the actual target of fiber tractography methods. As a substitute for in vivo data with a real ground truth that could be used for validation, a widely and successfully employed approach is the use of synthetic phantoms. In this work, we are providing an overview of the state-of-the-art in the area of physical and digital phantoms, answering the following guiding questions: “What are dMRI phantoms and what are they good for?”, “What would the ideal phantom for validation fiber tractography look like?” and “What phantoms, phantom datasets and tools used for their creation are available to the research community?”. We will further discuss the limitations and opportunities that come with the use of dMRI phantoms, and what future direction this field of research might take

    Quantitative MRI and 3D-Printing for Monitoring Periprosthetic Joint Infection

    Get PDF
    Joint replacements are becoming increasingly commonplace with over 130,000 joint arthroplasties being performed annually in Canada. Although joint replacement surgery is highly successful, implants do occasionally fail and need to be replaced via costly and difficult revision surgery. Periprosthetic joint infection (PJI) has recently become the leading reason for revision of both hip and knee replacements, which is unfortunate because PJI is difficult to diagnose and treat effectively; diagnosis is made particularly difficult by the lack of established non-invasive (imaging) means of evaluating PJI. This thesis aims to demonstrate that magnetic resonance imaging (MRI) has potential for diagnosing and monitoring PJI through advances in implant design and novel application of quantitative imaging. The recent proliferation of metal 3D-printing has already inspired the clinical use of 3D-printed porous metal devices due to their favorable osseointegration and mechanical properties. This thesis explores an important MRI benefit to porous implants: their decreased effective magnetic susceptibility and proportional decrease in imaging artifacts. This is relevant to PJI because MRI is already well-established in diagnosing musculoskeletal infections, but metals cause image obscuring signal loss. This work shows that 3D-printed porous metal structures are likely to avoid this limitation, as their effective magnetic susceptibility is linearly proportional to porosity; if true, MRI will be able to diagnose PJI as easily as non-prosthetic joint infections. This thesis describes a novel use for two important parameters measured by quantitative MRI: effective relaxation rate (R2*) and magnetic susceptibility (QSM; quantitative susceptibility mapping). This work seeks to address an important unmet need in PJI treatment – the ability to monitor drug release during localized antibiotic delivery – by exploiting these parameters’ proportionality to gadolinium concentration. This idea is centered around using gadolinium-based MRI contrast agents as a surrogate small-molecule that acts as a proxy for drugs to study diffusion-controlled release. An initial implementation of this concept showed promising results, including the ability to fit the data to a mathematical model of drug release. This shows the potential of MRI as a non-invasive means of monitoring localized antibiotic treatment of PJI post-revision

    Tuneable 3D biocompatible scaffolds for biological and biophysical solid-tumour microenvironment studies; applications in Ovarian Cancer

    Get PDF
    Recently, three-dimensional (3D) tumour models mimicking the tumour microenvironment and reducing the use of experimental animals have been developed generating great interest to appraise tumour response to treatment strategies in cancer therapy. As tumours have distinct mechanics compared to normal tissues, biomaterials have also been utilized in 3D culture to model the mechanical properties of the tumour microenvironment, and to study the effects of extracellular matrix (ECM) mechanics on tumour development and progression. Mechanical cues regulate various cell behaviours through mechanotransduction, including proliferation, migration, and differentiation. In the context of cancer, both stromal cells (cancer associated fibroblasts) and tumour cells remodel the ECM and change its mechanical properties, and the altered mechanical niche in turn is likely to influence tumour progression. In this study, bovine derived collagen type I and Jellyfish derived marine collagen sources, were tested as biomaterial candidates for cancer studies, moulded to porous scaffolds with tuneable mechanical properties. The resulting interconnected network of collagen fibre constructs, fabricated using lyophilisation provide good control of scaffolding architecture, pore sizes range, high porosity levels, high level of cell viability and low production cost. Importantly these sponge scaffolds were, in the form of 3D models, compatible with a host of cellular and molecular biology assays used to investigate mechanical and biological effects of collagen crosslinking and (hyaluronic acid) HA inclusion on both fibroblasts and ovarian cancer cells. Stromal cells and cancer cells respond differently to the altered stiffness of their local microenvironment. Fibroblasts, once activated with TGF1, converge toward a ‘senescent-like phenotype’, blocking migration and matrix remodelling and promote tumour progression, probably through the secretion of tumour-promoting signals, in stiffer mechanical environments. Cancer cells, of both epithelial and mesenchymal phenotype, respond to increased local matrix stiffness by increasing proliferation while, at the same time, becoming more susceptible to treatment. Mechanically informative scaffolds resemble the physical characteristics of both normal and pathological ovarian tissue mechanics, where ovarian cancer originates. Physical changes observed in the later stage of ovarian cancer disease progression may therefore be fundamental for the increased cancer proliferation that drives metastatic progression, however opening an interesting window for cancer treatment. Bio-physical inclusive models not only lead the path to unveil complex interactions of biophysical and biological signals in the tumour microenvironment, but they represent a highly informative and effective platform to test novel target therapies with effective costs and high throughput. They can accommodate coculture systems and potentially patients-derived cell cultures, providing a platform to test current and new drugs and to evaluate drug efficacy following a precision medicine approach

    RadioLab tra presente e futuro

    Get PDF
    Il progetto nazionale dell’INFN sul monitoraggio ambientale del radon ha coinvolto per oltre un decennio scuole su tutto il territorio nazionale. Recentemente, alcune attività hanno coinvolto molte sedi rafforzandone l’efficacia e l’impatto su studenti e insegnanti. Tra queste ricordiamo il sondaggio sulla conoscenza del radon, la scuola estiva nazionale e le attività di calibrazione con protocolli comuni. La pandemia ha interrotto bruscamente le attività in presenza e l’organizzazione scolastica post-lockdown richiede di ripensare alcune azioni per ampliare la diffusione della consapevolezza di questa problematica tra i cittadini, ora che il recepimento della normativa europea sul radon `e giunto a compimento
    corecore