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a b s t r a c t 

Fiber tractography is widely used to non-invasively map white-matter bundles in vivo using diffusion-weighted magnetic resonance imaging (dMRI). As it is the case for 
all scientific methods, proper validation is a key prerequisite for the successful application of fiber tractography, be it in the area of basic neuroscience or in a clinical 
setting. It is well-known that the indirect estimation of the fiber tracts from the local diffusion signal is highly ambiguous and extremely challenging. Furthermore, 
the validation of fiber tractography methods is hampered by the lack of a real ground truth, which is caused by the extremely complex brain microstructure that 
is not directly observable non-invasively and that is the basis of the huge network of long-range fiber connections in the brain that are the actual target of fiber 
tractography methods. As a substitute for in vivo data with a real ground truth that could be used for validation, a widely and successfully employed approach is the 
use of synthetic phantoms. In this work, we are providing an overview of the state-of-the-art in the area of physical and digital phantoms, answering the following 
guiding questions: “What are dMRI phantoms and what are they good for? ”, “What would the ideal phantom for validation fiber tractography look like? ” and “What 
phantoms, phantom datasets and tools used for their creation are available to the research community? ”. We will further discuss the limitations and opportunities 
that come with the use of dMRI phantoms, and what future direction this field of research might take. 
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. Introduction 

Diffusion-weighted magnetic resonance imaging (dMRI) can non-
nvasively reveal microstructural features of the brain by exploiting the
ignal attenuating effect of water molecules diffusing in the tissue. Trac-
ography utilizes the dMRI signal to virtually reconstruct white matter
athways. But the acquired dMRI image undergoes several processing
teps (e.g. denoising, motion correction, brain extraction) and local fiber
rientation estimation before applying the fiber tractography. Though
ractography is a well-established method to study the in vivo fiber bun-
le organization and has found widespread application in the clinical
omain and research ( Bressler and Menon, 2010 ; Casey et al., 2005 ;
iccarelli et al., 2008 ; Khundrakpam et al., 2013 ; Tamnes et al., 2018 ;
alesky et al., 2011 ), it is associated with many challenges and limita-
ions ( Jones and Cercignani et al., 2010 ; Tournier et al., 2011 ; Maier-
ein et al., 2017a , 2017b ). 

Many errors can be introduced in the tractography process when in-
erring the fiber orientation from local water molecules’ diffusion profile
nd tracking these local voxel-wise estimates to reconstruct the contin-
ous streamlines representing structural connections. Moreover, trac-
ography largely also relies on the data quality of the dMRI which is
rone to many issues and artifacts including head-motion, low signal-to-
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oise ratio (SNR), thermal noise, eddy-current artifacts, etc. Regardless
f the inherent limitations and challenges of tractography, it remains
he only non-invasive method to map connectomes using in vivo data
 Schilling et al., 2019 ) to facilitate our understanding of the brain under
arious conditions of human development and neurological disorders.
ence, with the continuous increase in the utilization of tractography, it

s necessary to validate the various algorithms used in the connectome
stimation process ( Fig. 1 ) and find the conditions where they succeed
nd fail. 

Any methodological evaluation generally involves comparing
gainst a gold standard, but the absence of the ground-truth for the
uman brain complicates the evaluation and validation of tractography.
he absence of the ground-truth for tractography is referred to as the un-
vailability of precise local microstructural properties, fiber bundle ar-
hitectures (crossing, fanning and branching configurations) and global
tructural connectivity for the human brain. In the context of validation,
phantom ” refers to a well-characterized standard that could be used for
valuating the performance or accuracy of MRI methods ( Fieremans and
ee, 2018 ). Conventional methods of tractography evaluation include
alidating against histological dissection ( Hau et al., 2017 ; Lawes et al.,
008 ; Stieltjes et al., 2001 ; Wu et al., 2016 ; Zemmoura et al., 2014 ) and
racer findings ( Calabrese et al., 2015 ; Dauguet et al., 2007 ; Dyrby et al.,
007 ; Girard et al., 2020 ; van den Heuvel et al., 2015 ; Knösche et al.,
ber 2021 
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Fig. 1. Overview of the validation process for tractography based connectome estimation. The generated phantom plays an important role as it serves as a ground- 
truth for the validation process, which could be used to evaluate one or multiple steps involved in mapping connectomes. The generated phantom could be used 
for evaluating the dMRI processing pipelines (e.g. head motion, noise and eddy-current artifact removal), local microstructural feature estimation, fiber tracts and 
connectome estimated by tractography. Subfigures adapted from ( Côté et al., 2013 ; Fillard et al., 2011 ; Neher et al., 2014 ). 
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015 ; Leergaard et al., 2010 ). Furthermore, tractography has been vali-
ated against circumstantial evidence ( Hubbard and Parker, 2009 ) from
unctional imaging ( Guye et al., 2003 ; Khalsa et al., 2014 ; Powell et al.,
006 ; Skudlarski et al., 2008 ) and lesion studies ( Mori et al., 2002 ;
ewton et al., 2006 ; Zhan et al., 2015 ). These conventional methods
ave provided valuable insights into the performance of tractography
lgorithms, however generating reference data in the form of phan-
oms provides control on the generation of the ground-truth and hence
an be extremely useful in validating various aspects of tractography
 Fig. 1 ). 

Physical phantoms for dMRI research are hardware objects gener-
ted using synthetic, natural or glass fibers filled with or soaked in a
iquid to approximate restricted diffusion in fibrous tissue. These phan-
oms undergo dMRI acquisition to generate data that can for example be
sed to validate fiber tractography. In contrast to physical phantoms that
re real world objects, numerical or digital phantoms are virtual objects
reated using computer simulations providing artificial dMR images as
ell as a real ground truth for all involved physical and biological as-
ects (e.g. diameter of the axonal fibers, anisotropic and isotropic diffu-
ivities). Unlike conventional validation methods, physical and digital
hantoms offer flexibility and control on the generation of ground-truth
hat could potentially be used to evaluate various aspects of tractogra-
hy (e.g. local fiber orientation, geometrical configuration of estimated
ber tracts, control parameters of tractography, etc.). 

Phantoms provide precise information of the underlying microstruc-
ural properties and hence, serve as validation tools not only to quanti-
atively and qualitatively evaluate the performance of tractography but
lso to identify the factors that influence its accuracy. While there are
any phantoms in the literature dedicated to validating tractography,

he search for the ideal dMRI phantom for the human brain is under-
ay. An ideal phantom is expected to possess the true axonal charac-

eristics, microstructural properties, an ideal model of signal genera-
ion, various fiber structures (short, long, deep and superficial fibers)
nd anatomical connections and true complexity of the human brain
crossing fibers) generated under a wide range of acquisition parame-
ers and artifacts with quantitative quality metrics that could be used
2 
or validating the tractography algorithms. Furthermore, it should have
ealistic magnetic properties such as surface relaxivity (relevant to mate-
ial wettability) or magnetic susceptibility (relevant to phantom materi-
ls). These characteristics are partially satisfied by existing phantoms
hich will be covered in this review. Though the current phantoms
ave inherent issues and drawbacks, these serve as a valuable refer-
nce system for studying the limitation and accuracy of tractography
lgorithms. 

This manuscript provides an overview of the methodologies, datasets
nd use-cases of the physical and digital phantoms for validating trac-
ography and artifact removal pipelines. We will discuss the characteris-
ics of these phantoms and how they can serve as potential ground-truth
or the validation process. Sections 2 and 3 introduce the two types of
hantoms (physical and digital respectively) and the cases where one
erves as a better ground-truth than the other will also be discussed
long with the gaps between the existing phantoms and the ideal phan-
om. Sections 2 and 3 also review the tools available for developing the
hantoms and the datasets available for evaluating the tractography that
an provide the tractography community an opportunity to validate and
ompare various aspects of the connectome estimation process ( Fig. 1 ).
urthermore, we address the artifacts that could be represented by these
hantoms and their potential use for evaluating the dMRI processing
ipelines in Section 3 . Ideally, these pipelines should remove the arti-
acts (e.g. thermal noise, eddy-current artifacts) that adversely affect the
rue water-diffusion signal, restoring the quality and integrity of dMRI
ata. Section 4 provides the future directions for phantom generation
nd tractography evaluation based on the limitations and challenges
iscovered by the validation studies. 

Overall, our goal is to provide an overview of the current state-
f-the-art phantoms and a guideline for the tractography users on
ow to use the current phantoms for evaluation purposes along with
heir associated benefits, challenges, considerations, and limitations.
 In this review, we will restrict our discussion to phantoms for
alidating tractography. The readers are referred to ( Fieremans and
ee, 2018 ) for phantoms to study the brain microstructures with
RI. 
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. Physical phantoms 

.1. What are physical dMRI phantoms? 

Physical phantoms for diffusion-weighted MRI are objects repro-
ucing the microstructural organization to be found in the cerebral
arenchyma whose geometry is perfectly mastered, thus allowing the
haracterization, testing and validation of biophysical models of the in-
racerebral water diffusion process as well as of available techniques
or inferring anatomical connectivity knowing the ground truth. Phys-
cal phantoms are based on the assembly of 4 components: (1) fibres
f axon-like geometry to create bundles similar to those found in the
rain’s white matter, (2) a liquid solution in which the fiber bundles are
mmersed, (3) a mechanical system to keep the fibres tightly clamped,
nd (4) a container to ensure the mechanical stability of the fiber bun-
les. 

.2. Why would you use physical phantoms? 

Physical phantoms allow real acquisitions to be made; they are de-
oid of any hypothesis on the diffusion process in question, unlike digital
hantoms which generally use analytical models or Monte-Carlo simu-
ations. In this sense, physical phantoms contribute to obtaining imag-
ng data that integrate both the physical reality of the diffusion process
nd the artifacts induced during the acquisition process. These artifacts
nclude physical noise, geometric distortions due to eddy currents and
eld heterogeneities, and intensity bias due to radio frequency hetero-
eneities. When physical phantoms are designed to preserve their phys-
cal properties over time, they can be helpful to tackle the robustness of
ocal models and tractography methods with respect to the MRI instru-
ent. Hence, the variability of the connectomes under imaging devices

hould be analyzed in isolation from the diffusion model and tractogra-
hy algorithms. Furthermore, they are useful in multicentre studies to
omogenize the diffusion MR imaging protocol in order to control and
educe the variability between imaging devices, but also to perform test-
etest studies on the same imaging device in order to check the stability
f its tuning over time. In a more general way, tractography physical
hantoms can be used for preventive maintenance when acquisitions
re carried out on a regular basis with a fixed imaging protocol. 

.3. What variations of physical phantoms are there, what aspects are 

mportant? 

There are three categories of physical phantoms for tractography
alidation: isotropic phantoms generally designed for quality control,
hantoms dedicated to benchmarking local models made up of a sin-
le configuration of fibres (crossing, splitting, kissing), and phantoms
edicated to benchmarking tractography algorithms of more complex
eometry and often made up of complex assemblies of fiber bundles.
x vivo biological phantoms can be considered as physical phantoms
 Campbell et al., 2006 ), but this review only focuses on non-biological
hantoms combining a liquid solution and a set of microscopically sized
olid elements introduced into the solution to act as obstacles mimicking
ell membranes (membranes of axonal fibres in this paper). 

The process of construction of tractography phantoms involves first
raiding of the artificial fiber population in chosen configurations
crossing, splitting, kissing or more complex configurations) and then
oaking of those fibers in a liquid/gel. In order for this process to be
erformed it is important to choose the correct liquid/gel; artificial fi-
res; the method for braiding; and the method for immersing the fibres
nto the liquid/gel. We will in this section give an overview of each of
hese steps. 

.3.1. Nature of the NMR visible component (liquids, gels) 

Physical phantoms for the benchmarking of diffusion models and
ractography methods are generally based on the use of liquid solu-
ions (including pure water, aqueous solutions, alkanes or mixtures) or
3 
els. The choice of the liquids/gels is crucial since it corresponds to the
MR visible component of the physical phantom, inducing the diffusion-
eighted magnetic resonance signal. Its apparent diffusion coefficient is
 key characteristic to create phantoms able to mimic the diffusion pro-
ess occurring in brain tissues and allow the use of the same diffusion
maging protocols as those used in vivo in humans. 

The simplest diffusion physical phantoms consist of containers filled
ith a liquid whose viscosity is carefully chosen to match the typical
pparent diffusion coefficient (ADC) of the human brain. Pure water
s the simplest to use, however, at 20 °C it has a diffusion coefficient of
.0 × 10 − 3 mm 

2 /s, which is much higher than the range of values - mea-
ured as ADC - found in the normal white matter (0.3-1 × 10 − 3 mm 

2 /s)
Tofts et al., 2000), and hence is not a good candidate. Ice-water has a
uch lower diffusion coefficient of about 1 × 10 − 3 mm 

2 /s, and has been
roposed as a temperature controlled phantom and used in multicenter
tudies (Chenevert et al., 2011). Alkanes (dodecane or tridecane) could
e used since their viscosity can induce a wide variety of apparent diffu-
ion coefficients (between 0.36 × 10 − 3 and 2.20 × 10 − 3 mm 

2 /s at 22 °C),
uch closer to the average diffusivity observed in brain tissue. But their

oxicity can be an issue and their multi resonance spectra causing chemi-
al shifts is not compatible with the use of echoplanar k-space sampling
rajectories. As suggested in Keenan et al. (2018a , 2018b) , the use of
olyvinylpyrolidone (PVP) solutions is indicated and here temperature
rovides a good way for calibrating diffusivity. A thorough overview of
ther liquids, water solutions and mixtures can be found in Table 1 in
ieremans and Lee (2018) . 

Gels have higher viscosity than water resulting in less motion
nd higher similarity to biological tissues (please see ( Fieremans and
eene, 2020 ) for a complete review). The stability of gels over time
ust be guaranteed, which is not always the case. A good example of

ommonly used but unstable gel is agarose which is prone to bacterio-
ogical attacks that damage it in the long term. A solution to this issue
s the addition of a small quantity of sodium azide to inhibit the growth
f bacteria and thus reduce the risk of long-term putrefaction. However,
he azide solution is carcinogenic and should therefore be handled with
pecial care. Many alternatives to agarose gel exist ( Hellerbach et al.,
013 ), such as food gels (gelatine, carrageenan, alginate, xanthan gum)
r polymers (sodium carbomer, polyacrylic acids, polyvinyl alcohol).
ne serious drawback of gels is that their high viscosity prevents com-
lex, highly dense, fiber configurations from being fully immersed, and
ence liquids are used much more readily. 

Magnetic properties of the liquids/gels should also be tuned to match
hose of brain tissues in order to be able to use diffusion-weighted PGSE
equences with echo times and repetition times similar to that of stan-
ard in vivo imaging protocols. Gadolinium chelates and manganese
hloride are usual contrast agents to modify the T1 and T2 relaxation
imes ( D’Arceuil et al., 2007 ; Pan et al., 2011 ). The T1 and T2 relaxation
imes also depend on the static field B0 and must therefore be calibrated
ifferently for 1.5T, 3T or 7T MRI instruments. Diffusion coefficients de-
end on temperature, and contrary to in vivo tissue whose temperature is
aturally regulated, it is important to measure the phantom temperature
uring each acquisition in order to be able to take into account its vari-
tions a posteriori . This is particularly the case for ice-water phantoms.
inally, it must be checked that the spectrum of the adopted solution
as only one resonance mode in order to avoid ghosting resulting from
he superimposition of images at various resonance frequencies in the
xcitation bandwidth, which is unfortunately the case for many liquids
ncluding alkanes and sucrose solutions. For an in-depth discussion of
agnetic properties of the diffusion phantoms please see Fieremans and

ee (2018) . 

.3.2. Type of matter used to create artificial fibers and beyond; are they 

imilar to that of brain tissues? 

In practice, the choice of artificial fibres is mainly guided by their
echanical, magnetic and surface properties in order to make them sim-

lar to white matter bundles. 
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Within the white matter, there is a great diversity in the shape and
ize of axonal fiber bundles. For example, the projection bundles are
ery long, have a low curvature and have a large cross-section like the
ortico-spinal bundle. In contrast, the U-shaped subcortical association
undles are only a few centimetres long, have a very strong curvature
hen they follow the shape of the bottom of a sulcus to connect its two

ides, and have a much smaller cross-section. Furthermore, a fiber diam-
ter can vary from a few tenths to about ten micrometres, with most ax-
ns within the range of 0.1–3.0 μm (Aboitiz et al., 1992; Liewald et al.,
014; Sepehrband et al., 2016). Creating artificial fibres at this scale
s extremely challenging. An additional constraint is that the diffusion
ime is on a clinical scanner typically up to 50 ms, and hence the up-
er bound for fiber diameter is approximately 10 μm ( Fieremans and
ee, 2018 ). This great variability in shape and size, combined with di-
ensions limits and sub-micron scales, complicates the construction of

ealistic phantoms of brain connectivity. 
Glass and plastic capillaries were the first to be proposed to de-

ign artificial fiber crossings and to simulate the diffusion spectrum
 Lin et al., 2003 ; Tournier et al., 2008 ). Their inner and outer diam-
ters (50 𝜇m/350 𝜇m) remain out of the range of real axons, thus im-
osing the use of much stronger diffusion sensitizations and larger dif-
usion times than conventional imaging protocols. Alternative materials
nclude textile fibres which can be divided into three categories: ani-
al, vegetable and synthetic fibres. Animal fibres (spider silk, sinew,
air, wool) and vegetable fibres (cotton, linen, hemp, rayon) are unfor-
unately characterised by diameters well over ten micrometres, are brit-
le, can absorb water (i.e. hydrophilic) and deteriorate with age. They
re therefore not suitable for the design of stable physical phantoms. 

Synthetic fibres (acrylic, polyamide, polyester, dyneema polyethy-
ene) are more resistant for diameters ranging from 5 to 50 𝜇m
nd are generally hydrophobic. They are therefore preferred for the
esign of diffusion MRI physical phantoms ( van dem Hagen Elis-
beth et al., 2002 ; Fieremans et al., 2008 ; Poupon et al., 2008 ;
orenz et al., 2008 ; Reischauer et al., 2009 ; Moussavi-Biugui et al.,
011a , 2011b ; Farrher et al., 2012 ; Bach et al., 2013 ; Burcaw et al.,
015 ; Lemberskiy et al., 2017 ; Fan et al., 2018a , 2018b ). However, care
ust be taken to ensure that their magnetic susceptibility is close to

hat of the liquid solution used so as not to induce local variations in
he static magnetic field that can bias the diffusion measurements when
he fibers are not aligned with the static magnetic field B0. This can be
chieved by doping the solution with magnesium chloride to match its
usceptibility with that of synthetic fibers ( Farrher et al., 2017 ). fiber
undles made from synthetic fibers induce a sufficient anisotropy pro-
le giving birth to orientation distribution functions (diffusion-ODF) or
ber orientation distributions (fiber-ODF or FOD) whose lobes perfectly
atch the directions of the underlying fiber populations. These synthetic
bres include the dyneema classically used in the design of ballistic jack-
ts and climbing ropes, which has most of the required characteristics:
lasticity, excellent mechanical strength, high degree of hydrophobic-
ty, small external diameter of around 10 𝜇m, magnetic susceptibility,
igh resistance to chemical attack, high stability over time ( Fig. 2 ). 

However, synthetic fibres have a major defect: they are solid fibers
nd therefore cannot simulate the existence of the two intra- and extra-
xonal compartments. In addition, their plain structure drastically re-
uces the proton density at the voxel level, causing severe SNR issues if
he voxel resolution is chosen below a couple of millimeters. 

More recently, innovative techniques have been proposed for the cre-
tion of hollow fibres. One is the electro-spinning technique which uses
wo concentric needles connected to the positive and negative poles of
 power supply. The process to create hollow fibres rely on a simulta-
eous injection of solutions of poly- 𝜀 -caprolactone into the larger diam-
ter needle, and of polyethylene oxide (PEO) into the smaller diameter
eedle ( Hubbard et al., 2015 ; Zhou et al., 2012 ) ( Fig. 3 ). Another is
he melt-spinning extrusion technique which allows the creation of hol-
ow multifilament polypropylene yarns using a vertical extruder with
4 
edicated spinnerets to design hollow fibers of specific cross-sections
 Guise et al., 2016 ) ( Fig. 4 ). 

The choice of injection or extrusion speed allows the internal and ex-
ernal diameters of the fibres created to be accurately controlled in both
echniques. Furthermore, since they are automated, they significantly
mprove the control of the positioning of the hollow fibres and offer the
ighest anisotropy values. 

.3.3. Technique used to wire the phantom (manual, semi-automatic, fully 

utomatic) 

Diffusion MRI physical phantoms proposed in the literature to bench-
ark tractography algorithms were often unique prototypes, and there-

ore manufactured using craft processes generally requiring some man-
al or semi-automated processes. In particular, the achievement of high
nisotropy values is conditioned on the one hand by the use of small
iameter fibres, but also by maximum compression of the fibres making
p the bundles in order to minimize the space left between the fibres and
o create highly restricted spaces. While a weak tightening can lead to
nisotropy below a level detectable in the presence of acquisition noise,
 strong tightening allows anisotropy levels of 0.40–0.60 to be achieved
ith solid fibres such as dyneema ( Fieremans et al., 2008 ). 

There are different strategies for braiding the fiber bundles and en-
uring a high level of tightness. The first strategy is based on mak-
ng negative masks of the bundles that serve as cradles for the fibres
 Fig. 5 ). When done manually, this strategy ensures that the geometry
f the outer shell of the fiber bundles is respected ( Poupon et al., 2008 ).
he positioning of the fibres in the bundles remains approximate if the
raiding operation is carried out manually, and can be improved if it
s automated. Fibres are available in the form of large or small locks.
n the case of fiber crossings, the locks of fibres belonging to the differ-
nt bundles can be assembled either bundle by bundle or by alternating
he layers of locks corresponding to the different bundles in order to
ntertwine the fibres. The second strategy is based on the use of heat-
hrinkable sleeves that compress fibres previously arranged within the
leeves ( Pullens et al., 2010 ). The geometry of the outer sheath is then
ess controllable and this second technique does not allow the fibres to
e compressed at the crossing points. 

.3.4. Immersion of the diffusion MRI physical phantoms in liquid solutions

Once the fibres have been correctly arranged and tightened by means
f a support or heat-shrinkable sleeves, the assembly is placed in a con-
ainer to be immersed in the chosen target solution. Care should also be
aken when filling the container. In order to avoid the creation of air
ubbles during the filling process, it is recommended to first de-gas the
olution and then fill the container with the solution from its bottom un-
er light vacuum conditions. After filling, the dMRI physical phantom is
ltimately sonicated to destroy remaining air bubbles that might have
een captured inside the fiber bundles ( Fig. 6 ). 

.4. What available tools/phantoms are there and how are they used? 

In the following we will provide an overview over some of the phan-
oms used for fiber tractography validation and connectomics. 

HQ Imaging ( http://hq-imaging.com/q-ball-crossing-phantom ) of-
ers several products including a phantom called "Q-ball-Crossing-
hantom" made of synthetic fibres and available for different fiber con-
gurations crossing at different angles of 45, 60 or 90° and with 2 pos-
ible fiber configurations ( Moussavi ‐Biugui et al., 2011 ) ( Fig. 7 ): 

- interleaved fiber strands for which the two fiber strands are inter-
leaved by alternating winding into the cutouts during the manufac-
turing, 

- stacked fiber strand for which the fiber strands are wound after each

other into the cutouts yielding so that they touch each other. 

http://hq-imaging.com/q-ball-crossing-phantom
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Fig. 2. example of synthetic fibres; (left) acrylic fiber of diameter 20 𝜇m; (right) dyneema fiber of diameter 10 𝜇m. Reproduced from 

https://www.irbpty.com/dyneema-sk78-and-sk99–1 . 

Fig. 3. Electro-spinning: Example of electrospun hollow fibers with different inner diameters according to the process flow. Reproduced from Hubbard et al. (2015) . 

 

C  

C  

m  

(  

p  

c  

s  

a  

t  

T  

o  

a  

t  

q  

a  

H  

s  

t  

o  

F  

N
 

c  

a  

T  

t  

t  

e  

s  

a  

s  

i  

a  

c  

t  

O

The “Fiber Cup phantom ” was built to meet the needs of the "Fiber
up" tractography challenge held in London in the frame of the MIC-
AI conference. This physical phantom was designed at NeuroSpin
ade from 17 𝜇m diameter acrylic fibres immersed in pure water

 Fillard et al., 2011 ). It mimics a coronal section of a human brain, de-
icts both long deep and superficial U-fiber bundles and embeds various
omplex fiber configurations including 2 crossings at 90° and 69.35°, 2
plittings at 45° and 24.35°, 1 kissing between a rectilinear fiber bundle
nd a semi-circular fiber bundle ( Fig. 8 ). The fiber density was close
o 1900 fibres/mm 

2 . Diffusion MRI dataset were acquired using a Tim
rio 3T MRI system (Siemens, Erlangen) and made available at vari-
us spatial resolutions (3 and 6 mm isotropic) and b-values (600, 1500
nd 2000 s/mm 

2 ). Competitors were invited to submit their application
o the Challenge, and 10 teams provided their results from which a first
ualitative and quantitative evaluation of the tractography methods was
chieved, showing the superiority of global tractography and advanced
ARDI models over streamline tractography algorithms with single ten-

or estimation. The original diffusion MRI dataset of the FiberCup phan-
om can be downloaded from the tractometer website. 1 A digital version
1 http://www.tractometer.org/original_fibercup/. 

5 
f the Fiber Cup phantom also exists that was designed using the Fiber-
ox tool, described later in the manuscript that is available from the
ITRC website. 2 

The Pullen Crossing Phantom includes X-shaped phantoms each
omposed of polyester yarn material being itself composed of 18 fil-
ments ( “fibers ”) with a diameter of 10 𝜇m ( Pullens et al., 2010 ).
wenty ‐five bundles of 400 yarns (7200 fibers) were interdigitated
o form crossings at 30°, 50° and 65° ( Fig. 9 ). Each leg was then
ightly maintained using a 14 mm diameter heat-shrinkable sleeve and
ach crossing was maintained using a 20 mm diameter heat-shrinkable
leeve. After shrinking, the diameter of each leg was reduced to 5.9 mm,
nd the size of the crossing reduced to 9.3 mm, resulting in a high den-
ity of around 8500 fibers/mm 

2 . The fiber bundles are then immersed
n a solution of de ‐mineralized water doped with manganese chloride to
djust T2 to a value comparable to human white matter T2 and sodium
hloride for resistive coil loading. The phantom was used to qualita-
ively evaluate DTI fiber tracking along with Q-ball and DOT (Diffusion
rientation Transform) reconstructions. 
2 https://www.nitrc.org/projects/diffusion-data. 

https://www.irbpty.com/dyneema-sk78-and-sk99-1
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Fig. 4. Melt-spinning: Hollow Polypropylene Yarns of inner diameter 12 𝜇m and outer diameter 34 𝜇m obtained by melt-spinning extrusion. Reproduced from 

( Guise et al., 2016 ). 

Fig. 5. example of 90° and 45° physical phantoms resulting from a manual wiring of acrylic fibers (outer diameter of 17 𝜇m) inside a container incorporating the 
negative mask of the target fiber bundles (Reproduced from Poupon et al., 2008 ). 

Fig. 6. Filling of a diffusion MRI tractography phantom under vacuum conditions and post-sonication to avoid the presence of air bubbles inside the fiber bundles. 

6 
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Fig. 7. HQ Imaging Q-ball crossing phantom. Reproduced from http://hq-imaging.com/q-ball-crossing-phantom . 

Fig. 8. Fiber Cup dMRI Phantom: (top-left) details of the phantom geometry; (top-right) representation of the various bundle trajectories and results stemming from 

the best method, e.g. global tractography ( Reisert et al., 2011 ); (bottom-left) phantom filled with distilled water inside its plexiglass container; (bottom-right) dMRI 
dataset acquired on a 3T MRI system a b = 0/650/1500s/mm 

2 . Reproduced from Fillard et al. (2011) . 

Fig. 9. Pullen Polyester Yarn Phantom: (top-left) details of the X-shaped phantom design from interdigitated hollow yarns; (right) picture of the phantom af- 
ter shrinking and immersion in water; (bottom-left) 3D rendering of the tractography experiments conducted from the 30° crossing phantom. Reproduced from 

Pullens et al. (2010) . 

7 

http://hq-imaging.com/q-ball-crossing-phantom
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Fig. 10. Guise Hollow Propylene Yarn Phantom: (top) details of the phantom geometry showing 2 frames with various fiber crossings and yarn densities; (bottom) 
picture of the phantom and 3D rendering of the tractography experiments conducted from the 2 frames Reproduced from Guise et al. (2016) . 
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The Guise Phantom includes a series of disks integrating fiber bun-
les composed of hollow propylene yarns with various configurations
 Guise et al., 2016 ). In its current release, the physical phantom has 2
isks: one frame with yarns assembled with different crossing angles
t 30°, 45° and 90° and one frame with bundles depicting different yarn
ensities at 20%, 40%, 60% and 100% ( Fig. 10 ). This phantom was used
o validate High-Definition Fiber Tractography. 

A similar phantom was recently used to show that the use of high
mplitude gradients (300 mT/m) achievable on the MGH Connectome
canner could measure the internal diameter of the fibers more accu-
ately than a more standard MRI with gradients that could not exceed
0 mT/m ( Fan et al., 2018a , 2018b ). 

Several phantoms composed of hollow electrospun fibres were de-
igned using the electro-spinning technique described earlier ( Grech-
ollars et al., 2018 ; Huang et al., 2021 ; Hubbard et al., 2015 ; Ye et al.,
014 ; Zhou et al., 2021 , 2018 , 2012 ) to mimic various axons with dif-
erent inner diameters and angular dispersions . The various biomimetic
eural fiber phantoms were immersed in a solution of cyclohexane
nd scanned using high field preclinical MRI systems at high b -values
 > 5000 s/mm 

2 ). More recently, there has been a number of follow-
p studies focusing on the stability/reproducibility of co-electrospun
xon phantom ( Grech-Sollars et al., 2018 ), hydrophilic modification of
xon phantom ( Zhou et al., 2018 ), novel co-polymers for axon phan-
om ( Zhou et al., 2021 ) and the use of brain phantom for validation of
icrostructural models ( Huang et al., 2021 ). 

Watanabe et al. (2006) proposed phantoms with parallel synthetic
bers along with curved and branched patterns to model the complex
onfiguration of WM fiber bundles. Phantoms with four kinds of tex-
ile fiber immersed in water were manufactured, which included cot-
on sewing yarn, monofilament nylon, rayon stitch yarn, and polyester
ewing yarn. Lorenz et al. (2008) also manufactured multiple phan-
oms with five different types of fibers (hemp, linen, viscose, polyamide
nd dyneema) to model parallel, crossing and bending geometries. The
forementioned phantoms were used to validate tensor tractography.
M

8 
ecent phantoms used 3D printing material to mimic the WM architec-
ure for dMRI ( Abu-Sardanah et al., 2018 ; Mushtaha et al., 2021 ). 

. Digital phantoms 

.1. What are digital dMRI phantoms? 

As described in Section 2 , physical phantoms in the context of this ar-
icle are actual real world objects that can be imaged in an MR scanner.
 digital dMRI phantom is the computer generated analogon of a phys-

cal phantom, i.e. it is a simulated approximation of a real world object
hat can be used to study (water-)diffusion effects in a substrate. In con-
rast to a physical phantom, such a digital phantom typically consists of
ultiple linked components: (1) a structural model defining the simu-

ated tissue, e.g. the cell shapes and types or the fiber configuration, (2)
 diffusion model describing the water diffusion in the structural model
hat determines the signal attenuation in the diffusion-weighted signal,
nd (3) some sort of algorithm that enables the simulation of MRI signals
nd/or images on the basis of the other two components. Depending on
ho you talk to, probably the signals or images that are simulated using

hese components are also denoted “phantom ”. 

.2. Why would you use digital phantoms? 

Each type of phantom, physical or digital, has its own advantages,
imitations and correspondingly appropriate use-cases. The most impor-
ant distinctive feature of digital phantoms is that they are the only way
o obtain dMRI data with a real ground truth. Even well defined physi-
al phantoms cannot provide such a perfect ground truth since a direct
orrespondence between measured signal and component of the phan-
om is not given and the different aspects that define the phantom itself
an only be controlled to a certain extent, e.g. due to mechanical limita-
ions or the statistical nature of the diffusion process. Digital phantoms
n the other hand are fully controllable and each aspect of the resulting
R signal can be explained by the phantoms components. 
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3 http://camino.cs.ucl.ac.uk/. 
Another important aspect of digital phantoms is that they are rela-
ively easy to manufacture since their creation process does not rely on
pecialized hardware and raw materials that might be difficult to handle
ut only on a suitable computation device. Depending on the complex-
ty of the simulation, this enables the cheap creation of large collectives
f digital phantom subjects, which are very difficult to reach with other
pproaches. 

Further, digital phantoms are theoretically not constrained in the
omplexity of their micro- and macro-structural complexity, which is the
ase for physical phantoms. An increased size and complexity of course
omes with an increase in computational cost, potentially requiring su-
ercomputing for high degrees of realism. 

.3. What would the ideal simulated dMRI dataset (for tractography) look 

ike? 

As introduced above, phantoms of any kind try to reproduce reality
s closely as possible while providing full explainability and controlla-
ility. Along this line, an ideal digital dMRI phantom would reproduce
he following aspects of reality perfectly: (1) a rich and complex micro-
nd macro-structure including different cell types and arrangements as
ell as short- and long-range fiber connections in realistic configura-

ions, (2) diffusion-properties similar to the ones found in the different
ypes of human brain tissue, as well as (3) the actual MR acquisition
tep including all its effects on the final imaging result. 

Due to various reasons, such a perfect reproduction of reality is of
ourse not possible. There are for example computational limitations,
.e. such a perfect simulation involving billions of cells and interacting
olecules is simply not calculable with any currently existing super-

omputer. Furthermore, even if such massive computations were possi-
le, the resulting simulation would only contain all aspects of what we
elieve to be an accurate picture of reality. Since our general knowl-
dge about the brain, while constantly increasing, is still limited, this is
n intrinsic and currently not resolvable limitation of numerical phan-
oms. And even under the assumption of complete knowledge about
verything there is to know about the brain in conjunction with un-
imited computational power, the design process of a correspondingly
omplex model comprising all this knowledge would doubtlessly still be
xtremely challenging. 

.4. What variations of dMRI simulations are there, what aspects are 

mportant? 

Depending on the use-case, the individual components of a dMRI
hantom introduced above play a different role, are variably important,
nd require a different degree of realism required for the application
t hand. The structural model can represent a highly variable geomet-
ic complexity, depending on the number of tissue types, the number,
tructure and constellation of individual fiber bundles, the realism of the
ber endings, and the complexity of the microstructure. The microstruc-
ure on the other hand can also consist of multiple cell types and other
tructures including axons, myelin or synaptic terminals, just to name a
ew and to give illustrations of different scales of complexity. 

Depending on the choice of structural model, different types of mod-
ls for the diffusion process can be employed. Simple structural mod-
ls, e.g. only defining the rough macroscopic course of a single fiber
undle, are not suitable to be employed in conjunction with a sophis-
icated model of the diffusion process, e.g. a Monte Carlo method that
equires exact definitions of the individual cell shapes and substrates
n every single simulated image voxel. On the other hand, many sub-
equent analyses probably don’t require such a sophisticated and also
ighly computationally intensive diffusion model that can only be em-
loyed in certain constrained settings. 

This is similar for the simulation of the MR acquisition where dif-
erent types of simulations with a different degree of complexity and
ealism can be chosen, e.g. using a k-space formalism, static equations
9 
r Bloch equations ( Drobnjak et al., 2010a , 2010b ; Neher et al., 2014 ).
n certain scenarios, e.g. to analyze the effects of specific artifacts or
ther MR effects on the resulting fiber tractography, a simulation of the
cquisition is surely necessary, but to which extent the simulation has to
eplicate the real acquisition process has to be decided for each use-case
new. 

In fiber tractography validation, typically the main focus is the
acroscopic structure since this directly influences the actual tractog-

aphy step. In this case, the simulation of the diffusion weighted signal
s often performed using simple parametric models, such as the diffu-
ion tensor, and the actual MR acquisition is not simulated at all. The
revious steps in the tractography pipeline, namely the image prepro-
essing and the local tissue modeling are typically analyzed and evalu-
ted independently, since a joint analysis of the complete pipeline leads
o a combinatorial explosion and a comprehensive study disentangling
he effects of the individual components is difficult to realize. Simu-
ated dMRI phantoms used for analyzing these steps of the tractography
ipeline are consequently focusing on the realistic simulation of the ac-
ual MRI acquisition and a complex microstructural and diffusion model
espectively. 

Nevertheless, over the last years, microstructural information be-
ame increasingly relevant for some novel tractography approaches, e.g.
y Daducci et al. (2015 a, 2015b , 2016 ), and therefore their realistic sim-
lation, including a more sophisticated diffusion model, beyond simple
ber crossings gained importance in the field of tractography. Also, the
valuation of fiber tractography matured to a research field of its own,
nd more comprehensive simulations for performing validation studies
ecame increasingly relevant, featuring not only a complex macroscopic
ber architecture but also a sophisticated simulation of the diffusion
rocess and of the actual MR acquisition. 

.5. What tools and methods are out there? 

In the following we want to provide an overview over some of the
ethods used for simulating diffusion-weighted MRI phantoms for dif-

erent purposes, namely fiber tractography, connectomics and artifact
orrection. 

.5.1. Simulating a diffusion-weighted signal 

The simulation of diffusion-weighted signals can be approached on
wo levels of complexity. The signal is either synthesized using complex
onte Carlo simulations of diffusing molecules in certain well-defined

tructures ( Laun et al., 2009 ; Grebenkov, 2011 ; Zhang et al., 2011 ;
insburger et al., 2018 , 2019 ; Palombo et al., 2019 ; Rafael-Patino et al.,
020 ) or a parametric diffusion signal model that allows for the an-
lytic calculation of the signal attenuation is employed ( Basser et al.,
994 ; Assaf and Basser, 2005 ; Zhang et al., 2012 ; Panagiotaki et al.,
012 ; Alexander et al., 2019 ) - for a comprehensive review of both
lease see ( Fieremans and Lee, 2018 ). Numerical simulations of the
iffusion process are computationally challenging and are therefore
ainly used to simulate diffusion in a single voxel. The multiple corre-

ation function tool (MCF) ( Laun, 2012 ) and UCL Camino Diffusion MRI
oolkit 3 are two openly available software packages that enable such
imulations. Recently, another open-source approach was introduced in
ee et al. (2021) that implements Monte Carlo simulations in 3D vox-
lized segmentations of cells in microscopy images. These approaches
ocus on the actual diffusion modeling and are frequently used for the
evelopment or evaluation of localized methods, such as signal recon-
truction or the analysis of microstructure. 

For methods that work on multiple voxels or a whole image simul-
aneously (e.g. fiber tractography, connectomics or tract-based spatial
tatistics), an artificial signal in hundreds and thousands of voxels has
o be synthesized. To this end, parametric models, which are computa-
ionally much more lightweight, are more appropriate and commonly
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Fig. 11. Anisotropic diffusion tensors (a) generated with the tend helix tool ( Teem, 2021 ), randomized fiber crossings (b) used by Cetingul et al. (2012) , and a 
crossing between two fanning and curved 2D tensor fields (c) used by Aganj et al. (2011) . Figures adapted from the respective works. 
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sed. Even though they are based on a quite simple model of the un-
erlying tissue, which is only valid in certain very specific situations,
arametric diffusion modeling proved to be very valuable for a large
umber of tasks. By far the most common way to model an anisotropic
iffusion-weighted signal is to employ a prolate tensor model. Further-
ore, a large variety of specialized models that characterize the dif-

usion in different tissue compartments has been introduced over the
ast years. Commonly, the diffusion process in white matter tissue is
artitioned into restricted anisotropic diffusion inside of the axons, hin-
ered anisotropic diffusion between the axons, a restricted compartment
odeling the diffusion of water trapped in other cell types and an addi-

ional isotropic compartment ( Assaf and Basser, 2005 ; Panagiotaki et al.,
012 ). To increase the degree of realism most simulations include ther-
al noise following a Rician distribution, which is correct for single-

hannel MR acquisitions ( Gudbjartsson and Patz, 1995 ). Furthermore,
ethods have been developed to simulate diffusion signal for a range

f different gradient waveforms, other than Single Diffusion Encoding
SDE), such as Oscillating Gradients, Double Diffusion Encoding and
eneralised Waveforms 4 ( Drobnjak et al., 2011 , 2010a , 2010b ; Ianu ş
t al., 2016 , 2013 ). 

.5.2. Simple simulations for creating white matter fiber phantoms 

The most common way to create multi-voxel macroscopic fiber struc-
ures suitable for tractography analyses described in the literature is
y using mathematical functions that model the course and shape of
ne or multiple fiber bundles in 2D or 3D. The earliest approaches of
his type modelled relatively simple geometric bodies, such as lines,
ircles, ellipses, helices and fiber crossings or other shapes defined
y simple mathematical functions ( Gössl et al., 2002 ; Tournier et al.,
002 ; Lori et al., 2002 , ; Lazar and Alexander, 2003 ; Kang et al.,
005 ; Kreher et al., 2005 ; Staempfli et al., 2006 ; Batchelor et al., 2006 ;
ganj et al., 2011 ; Cetingul et al., 2012 ; Wu et al., 2012 ) that define the

ocal anisotropic diffusion, typically embedded in an isotropic non-fiber
urrounding. Fig. 11 illustrates examples for this approach. 

Typical use-cases of these phantoms are to evaluate the effects of
oise, number of averages, voxel size, voxel aspect ratio, data type,
tepping algorithm/interpolation, step size, pathway anisotropy and sur-
ounding anisotropy on the outcome of local fiber tractography by as-
essing the number of prematurely ending tracts ( Lazar and Alexan-
er, 2001 ; Gössl et al., 2002 ; Chen and Song, 2008 ), tract disper-
ion with increasing distance from the seed region ( Lazar and Alexan-
er, 2003 ), the distance to a ground truth tract ( Lori et al., 2000 ,
002 , ; Lazar and Alexander, 2003 ) or the performance in crossings
 Kreher et al., 2005 ; Staempfli et al., 2006 ). Many studies only evaluated
 single tractography algorithm without comparison with the state of
4 http://mig.cs.ucl.ac.uk/index.php?n = Tutorial.MISST. 

10 
he art; others assessed the performance of streamline algorithms with
ifferent integration methods (FACT, Euler, Runge-Kutta) ( Lazar and
lexander, 2003 ) or compared tensorline and streamline approaches
 Lazar and Alexander, 2003 , 2001 ). Aganj et al. (2011) used two simu-
ated fanning and crossing 2D fiber bundles (see Fig. 11 (c)) to evaluate
heir global tractography approach based on a 3D Hough transform.
etingul et al. (2012) used 60 randomized phantoms of two crossing
bers (see Fig. 11 (b)) to quantify tractography errors as the symmetri-
al Chamfer distance between the estimated tract and the ground truth
enterline. Advanced simulations for creating white matter fiber phan-
oms 

Over the recent years, the means to create much more complex, vari-
ble and realistic macroscopic fiber structures improved a lot and an in-
reasing number of simulation methods were introduced and proved to
e very useful for the validation of fiber tractography ( Leemans et al.,
005 ; Delputte et al., 2006 ; Barbieri et al., 2010 ; Close et al., 2009 ;
aruyer et al., 2014 ; Neher et al., 2014 ). 

Leemans et al. (2005) introduced a mathematical framework for
he simulation of complex white matter DTI phantoms. This framework
odels white matter bundles by generating a set of points defining the

ract progression. These points are interpolated using a piecewise differ-
ntial 3D space curve, yielding an analytic definition of the fiber cen-
erline. By convolving this centerline with a circularly symmetric kernel
unction the physical extent of the white matter bundle is defined. The
ernel function also characterizes a non-constant fiber density within
he bundle that depends on the distance to the fiber centerline. To gener-
te the actual signal, a prolate tensor model characterized by a density-
ependent FA and MD, embedded into an isotropic background, is used.
he principal diffusion direction of the tensor is obtained directly from
he fiber centerline. Fig. 12 illustrates the approach. By summing several
undles, configurations like crossings or kissings can be generated. 

Delputte et al. (2006) used the approach by Leemans et al. (2005) to
enerate a synthetic dataset on the basis of a fiber tractogram obtained
rom a smoothed in vivo diffusion-weighted image. Each streamline
s treated as a centerline for one synthetic fiber bundle. Additionally
hey added Rician noise to the resulting dataset and used it to vali-
ate fiber tractography methods by calculating the distance between the
round truth fibers and the tractography results. Jeurissen et al. used the
ramework of Leemans and colleagues to measure tract dispersion of a
robabilistic CSD tractography algorithm based on the residual boot-
trap as a function of arc length along the trajectory for gold standard
 Jeurissen et al., 2011 ). 

A more comprehensive approach to simulate realistic dMRI im-
ges of the brain including multiple tissue types was pursued by
arbieri et al. (2010) . They used anatomical scans from the BrainWeb
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Fig. 12. Illustration of the phantom generation process proposed by 
Leemans et al. (2005) . Definition of the fiber centerline (a), convolution 
with different kernel functions resulting in varying fiber densities (b–d) and 
resulting principal directions of the tensor field (e). Figure adapted from 

Leemans et al. (2005) . 
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6 http://www.nitrc.org/projects/nfg/. 
roject 5 to determine WM, GM and cerebrospinal fluid (CSF) probabil-
ty maps. The values of these maps were used as input for the simulation
f the dMRI signal attenuation using the CHARMED model ( Assaf and
asser, 2005 ). To define the principal directions of the WM compart-
ent model, fiber bundles were defined manually using the approach

imilar to Leemans et al. (2005) . In voxels without such an explicit def-
nition of the local fiber direction, the principal diffusion direction was
hosen randomly with an additional smoothness constraint based on the
urrounding tissue. Fig. 13 illustrates the resulting tensor maps. 

Barbieri et al. were also the first to show the simulation of more
omplex artifacts than thermal noise in a fiber tractography phantom
y adding aliasing and N/2 ghosts. The incurrence of these artifacts was
ot achieved by simulating the actual physical process but simply by
dding intensity scaled and shifted copies of the artifact-free image to
tself (see Fig. 14 ). 

Close et al. published an open-source command-line tool called nu-
eric fiber generator (NFG) that generates random fiber structures with
 focus on the dense packing of fiber bundles that also occurs in vivo

 Close et al., 2009 ). To this end whole bundles are modeled by sin-
le thick strands with circular cross-section, which are initialized along
traight line segments between randomly generated points on the sur-
ace of a sphere. These straight tubes are optimized with respect to a
unction controlling the overlap between the individual bundles. The
arts of the bundles that are pushed outside of the sphere are subse-
uently removed. In a fourth step, the thus produced bent fiber strands
re subdivided into sub-bundles, each represented by a thinner strand
hat is also modeled as a tube with circular profile. These sub-bundles
re again optimized with respect to the same overlap-controlling func-
ion as the main bundles. This second optimization step causes the sub-
undles to better adapt to their surroundings, which causes intra-bundle
eformations and deviations from the circular profile shape. The whole
rocess is illustrated in Fig. 15 . The diffusion-weighted signal is then
enerated by placing a prolate tensor in each voxel covered by the fiber
trands, pointing in the direction of the closest sub-bundle. To simu-
ate regions containing, for example, CSF, spherical exclusion regions
an be placed, inside which no fiber bundles are allowed. The diffusion
nside of these exclusion regions is modeled with an isotropic tensor.
y initially generating the image with a high resolution and successive
5 http://www.bic.mni.mcgill.ca/brainweb/. 

11 
ownsampling, partial volume effects are simulated. Additionally Rician
oise can be added to the data. The NFG is openly available on nitrc. 6 

Caruyer et al. (2014) published their Phantomas dMRI simulation
ool, which enables the creation of spherical phantoms similar to Close
t al. but with some significant differences. The macroscopic structure
odelled with Phantomas consists of tubes with constant radius whose

ourse inside a sphere is determined by its center line which in turn is de-
ned by user controllable control-points connected by 3rd order piece-
ise polynomials. In contrast to Close et al., this approach focuses on

he full controllability and not on a dense and automatically optimized
ber structure. Spherical isotropic regions mimic CSF compartments in
he brain. Fig. 16 illustrates the macroscopic structure of a Phantomas
hantom. The third compartment modelled by Phantomas, gray matter,
s defined by the remaining empty space inside the sphere. By overlaying
he whole structure with an arbitrary voxel grid, the volume fractions of
he individual compartments in each voxel can be calculated. The signal
ttenuation caused by diffusion effects in WM is computed based on a
HARMED model, where the extra-axonal compartment is modeled by a
iffusion tensor and the intra-axonal compartment is modeled by a cylin-
er using a corresponding template diffusion profile. Phantomas further
alculates an approximation of the image contrast changes introduced
y compartment specific tissue relaxation with T1 and T2 relaxation
imes representative for in vivo brain tissue. While not simulating the
ctual MR acquisition with all of its effects, this is the first dMRI phan-
om tool usable for fiber tractography that simulates relaxation induced
ontrast changes. 

The Phantomas website features a web interface for defining the fiber
tructure and its source code is available openly on GitHub. 7 Phantom 𝛼s
as used to create the testing and training data of the 2nd HARDI Re-

onstruction Challenge, 8 organized at ISBI 2013. 
With the Fiberfox dMRI simulator, Neher et al. (2014) presented

n approach that unifies many aspects of the previous approaches in
ne comprehensive tool. Fiberfox simulates diffusion based on a flexible
ulti-compartment model enabling the simulation of intra- and extra-

xonal diffusion as well as CSF and gray matter using various parametric
ompartment models (stick, tensor, astrostick, ball or dot). The white
atter macrostructure is defined by conventional streamlines, as they

re produced by most tractography algorithms. This enables the direct
sage of realistic tracts in the form of native or curated whole brain trac-
ograms. Additionally, Fiberfox provides functionalities to manually cre-
te well defined artificial configurations such as crossing, kissing, twist-
ng or fanning fiber bundles as well as to create random configurations
imilar in style to the numeric fiber generator by Close et al. (2009) .
esides a high flexibility regarding the shape of the individual bundles
ith a variable cross-section, progression and density, the choice of a
hite matter model in the form of individual streamlines further enables
 rich sub-voxel structure. The non-fiber compartments are defined by
lassic volume fraction maps. 

Fiberfox further simulates the actual k-space acquisition, enabling a
traightforward and realistic introduction of MRI effects, such as com-
lex gaussian noise, eddy currents, inter-volume head motion, distor-
ions, spikes, aliasing, N/2 ghosts, signal drift, Gibbs ringing and re-
axation. This simulation of the MR acquisition can be controlled by a
umber of parameters typical for real MR scanners (e.g. TE, TR, partial
ourier factor, ETL, readout type, b -value and gradient directions) and
uman tissue in the form of compartment specific relaxation constants
T1, T2) and diffusivities. 

Fiberfox is included in the Medical Imaging Interaction Toolkit
MITK) and openly available as source code and binary application. 9 

he complete simulation is controllable via a graphical user interface
7 https://github.com/ecaruyer/phantomas. 
8 http://hardi.epfl.ch/static/events/2013_ISBI/. 
9 https://github.com/MIC-DKFZ/MITK-Diffusion/ 
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Fig. 13. Illustration of the DTI phantom pro- 
posed by Barbieri et al. (2010) . (a) shows a 
white matter strand embedded into a homoge- 
neous background. (b) shows the tensor image 
resulting from two crossing fiber strands em- 
bedded into a background signal with smoothly 
changing random orientation. Figure adapted 
from Barbieri et al. (2010) . 

Fig. 14. Barbieri et al. (2010) simulated alias- 
ing (a) and ghosting (b) artifacts by adding in- 
tensity scaled and shifted copies of the arti- 
fact free image to itself. Figure adapted from 

Barbieri et al. (2010) . 
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s well as batch-processing-friendly command line application. Multi-
le datasets generated with Fiberfox and usable for fiber tractography
alidation have been published and are openly available ( Neher et al.,
014 , 2017b ; Maier-Hein et al., 2015 , 2017a , 2017b ; Neher and Maier-
ein, 2019 , 2020a , 2021 ). The phantom simulated for the ISMRM Trac-

ography Challenge 2015 ( Maier-Hein et al., 2017a , 2017b ) is now
ne of the most widely used dMRI phantom datasets in the area of
ber tractography validation ( Neher et al., 2017a ; Poulin et al., 2017 ;
héberge et al., 2020 ; Benou and Riklin Raviv, 2019 ; Wegmayr et al.,
019 ). In the context of the challenge it was used to evaluate 96 dis-
inct tractography submissions from 20 research teams using the Trac-
ometer evaluation suite ( Côté et al., 2013 ). Building on the experiences
ade with this single brain-like phantom, Neher et al. recently pub-

ished a large dataset of 99 subjects with various realistically simulated
mage contrasts and variations of acquisition parameters that extends
he ISMRM challenge phantom in terms of the number of simulated im-
ges and subjects, the structural phantom complexity (71 major white
atter tracts) and the range of simulated MRI artifacts. Fig. 17 illustrates

ome of the phantoms created with Fiberfox. 
An approach to manually define artificial fiber bundles similar to

iberfox with a focus on polarized light imaging but also applicable to
MRI, the FAConstructor, was recently presented by Reuter et al. (2019) .
AConstructor is openly available on GitHub. 10 Another approach for
imulating dMRI images that is very similar to Fiberfox was presented
10 https://github.com/3d-pli/FAConstructor 
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12 
y the authors of D-BRAIN ( Perrone et al., 2016 ), albeit without the
ossibility to simulate realistic artifacts. 

.5.3. Simulating connectomic networks 

The majority of the described phantoms were developed with a fo-
us on the evaluation of local microstructural features and the geo-
etrical configuration of the fiber bundles reconstructed by tractog-

aphy. Another aspect of validation focuses only on the evaluation of
onnectivity estimated by tractography without regarding the shape or
ourse of the underlying bundles that form the connection ( Sarwar et al.,
020 ). The typical considerations for connectome mapping are the
resence/absence of a fiber bundle between pairs of regions and the
trength of the connecting fibers. For this purpose, Sarwar et al. simu-
ated 2d and 3d connectome phantoms where nodes/regions were po-
itioned on the circumference of the circle and surface of the sphere
espectively - Fig. 18 (a,b) ( Sarwar et al., 2019 ). The connectivity ma-
rices of these phantoms were simulated using generative models that
reserved the topological properties of the human brain, which in-
lude degree, betweenness centrality, clustering coefficient, character-
stic path length, global efficiency, modularity and interconnectivity be-
ween hubs ( Betzel et al., 2016 ). The predefined connections were then
odeled as curved tubular fiber bundles of fixed diameter. This connec-

ome phantom generation process is presented in Fig. 18 (c). The simu-
ated phantoms were used to compare the binary connectomes estimated
y deterministic and probabilistic tractography algorithms. The spher-
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Fig. 15. Illustration of the phantom generation process proposed by 
Close et al. (2009) : (a) initialization with straight tubes, (b) first optimization 
step to minimize overlap, (c) trimming of bundles to the sphere, (d) generation 
of sub-bundles, (e) optimization of sub-bundles to minimize overlap and to in- 
troduce sub-bundle heterogeneity and (f) trimming of sub-bundles to the final 
sphere. Figure adapted from Close et al. (2009) . 

Fig. 16. Illustration of the Phantomas phantom used for 2nd HARDI Recon- 
struction Challenge 5 , organized at ISBI 2013. It consists of 27 fiber bundles, 
on a 70 × 70 × 70 grid, with 3 spherical CSF regions abstractly mimicking a 
human brain. Figure created using the Phantomas web interface available on 
http://www.emmanuelcaruyer.com/phantomas.php . 
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13 
cal connectome phantoms and code for its generation is available on
itHub. 11 

To quantify the accuracy of tractography estimated connectomes,
ractometer evaluation suite ( Côté et al., 2013 ) proposed two evalua-
ion metrics, namely, number of valid (true positive) and invalid (false
ositive) bundles. These two metrics were used to evaluate the perfor-
ance of tractography algorithms for the physical and digital Fibercup
hantom ( Côté et al., 2013 ; Neher et al., 2015 ) and a digital phantom of
5 manually segmented human white matter bundles ( Maier-Hein et al.,
017a , 2017b ) . 

.5.4. Advanced MR acquisition simulations for artifact assessment 

Images acquired with dMRI are susceptible to a number of artifacts
 Bihan et al., 2006 ). For example, susceptibility differences at the air-
issue boundary lead to alterations of the B0 field that can cause spatial
isplacements of several pixels. Subject motion can lead to rigid offsets
etween images, and eddy currents (EC) lead to distortions of the image
n the phase encoding (PE) direction that vary according to the amount
f diffusion sensitisation used (typically summarised by the b -value) and
he direction it is applied in. These artifacts adversely affect analysis
f the DW data itself ( Irfanoglu et al., 2012 ), and prevent comparison
etween the DW images and others that do not contain them, such as
1- and T2-weighted images. They can further lead to spatial offsets
etween the dMR images in a dataset, further undermining the estimates
f microstructure obtained from them. 

To assess artifacts in tractography and support development and
alidation of dMRI artifact removal techniques it is necessary to have
umerical simulations. These need to be able to simultaneously model
iffusion-weighting contrast and MR physics realistic enough to model
rtifacts. The simplest numerical methods simply assign a single value of
iffusion-weighting contrast to each of the three tissue types, then com-
ine these signals using probabilistic segmentations to form an image
 Bastin, 2001 , 1999 ). Other methods use steady-state solutions of the
loch Equations for the well known pulse sequences to simulate Gibbs
inging ( Perrone et al., 2015 ) noise, partial volume effects, limited spa-
ial and angular resolution in the images ( Perrone et al., 2016 ). How-
ver, these methods do not solve directly Bloch Equations to simulate
he process of MR acquisition and hence fail to represent the diffusion
ignal sufficient enough to simulate some of the more complex artifacts
uch as motion, eddy currents of B0 susceptibility, which Diffusion MRI
mages are very prone to. Some of the simulators presented in the pre-
ious section can simulate a range of complex artifacts (e.g. Fiberfox)
owever they have mainly focused so far on fiber tractography and trac-
ography validation. There have not been many simulators specifically
esigned for assessing artifacts. 

DW-POSSUM simulator is one such simulator which, because it
olves Bloch equations directly, can simulate a range of very complex
rtifacts ( Drobnjak et al., 2006 ; Graham et al., 2016 ). It creates realistic
iffusion weighting maps from very high resolution HCP (Human Con-
ectome Project) images and combines these with Bloch equation based
imulation of MRI images. Bloch equations are solved over a grid with
patially varying values of MR parameters representing the object being
maged, allowing for the most realistic simulations capable of reproduc-
ion of a range of image artefacts including eddy currents, susceptibility,
ibbs ringing, ghosting, and chemical shift. An overview of the simu-

ation framework is shown in Fig. 19 . POSSUM also simulates arbitrary
ovement of the object throughout the acquisition of an image and can

alculate susceptibility-fields from the input object, taking into account
he changing of the susceptibility-induced field with object movement,
s well as being able to account for time-varying off-resonance fields,
uch as those caused by the patient breathing ( Drobnjak et al., 2010a ,
010b ). POSSUM and DW-POSSUM are included in FSL (FMRIB Soft-
are Library) and are openly available as source code and binary ap-
11 https://github.com/sarwart/deterministic-vs-probabilistic. 

http://www.emmanuelcaruyer.com/phantomas.php
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Fig. 17. Illustration the 71 tracts used for the 99 brains Fiberfox simulation (a), exemplary axial slices of one simulated subject of the 99 brains dataset with various 
artifacts (b), and an exemplary phantom with randomized bundle configuration generated using Fiberfox (c). Figure (a) adapted from Wasserthal et al. (2018) . 
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lication. 12 The complete simulation is controllable via a graphical user
nterface as well as batch-processing-friendly command line application.
ultiple datasets generated with DW-POSSUM are openly available. 13 

Due to its realistic modeling of complex artifacts outlined above
W-POSSUM has been used for a range of applications in assessing ar-

ifacts and has contributed directly to development and validation of
rtifact correction algorithms. Graham et al. showed that one of the
ost commonly used correction techniques, eddy_correct 10 , introduces
 systematic error that is significant enough to undermine any analysis
erformed on data corrected using this scheme ( Graham et al., 2016 ).
ndersson et al. (2017) then used it to demonstrate that eddy frame-
ork provides a much better alternative, and gave an idea of the level
f correction that it can be expected to achieve for commonly acquired
atasets. DW-POSSUM was subsequently used also to evaluate eddy’s
bility to correct for slice outlier artefacts ( Andersson et al., 2016 ). 

Susceptibility-by-movement artefact is a phenomenon that is notori-
usly difficult to study in real data. The susceptibility artefact is caused
y an off-resonance field induced by differences in magnetic suscep-
ibility at the air-tissue interface, which cause geometric distortions
hen data is acquired with an EPI sequence. If the subject moves in the

canner, then the susceptibility field and, in turn, the distortions alter.
hilst the static case is well characterised and studied in the literature

 Bihan et al., 2006 ), comparatively little work has been done to assess
he impact of this dynamic case, when the subject moves, and as a result
he artefact is rarely considered when acquiring and processing data. 

POSSUM’s ability to model the interaction between the movement
nd susceptibility artefact made it a natural test bed to assess the im-
act of the susceptibility-by-movement artefact. POSSUM can use an air-
issue segmentation to obtain a first-order solution to Maxwell’s equa-
12 http://www.fmrib.ox.ac.uk/fsl/. 
13 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/POSSUM. 
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14 
ions, providing a set of basis functions that describe how the suscep-
ibility field changes with subject movement. This in turn assisted the
evelopment of new methods to correct the artefact: ( Andersson et al.,
018 ) proposed a technique to correct for the artefact, and was able to
se data simulated with DW-POSSUM (Graham et al. Plos One 2017),
longside real data, to carefully validate the effectiveness of the tool.
urther application of the motion model of DW-POSSUM led to correc-
ion of slice-to-volume motion ( Andersson et al., 2017 ). 

. Summary and future directions 

Phantoms are a necessary tool for creation, optimization and valida-
ion of every Diffusion MR imaging pipeline, in particular tractography.
hey are so essential that, to a certain degree, all tractography research
as been using some form of phantom, from in-house builds to more
ell known publicly accessible ones. So what is an ideal Diffusion MR

ractography phantom of the future? Although the answer here depends
ltimately on the study in question, one would argue that ultimately
ach scientist on the diffusion MR imaging pipeline wants a simulation
ystem that can produce realistic anatomical simulated MR images for
 variety of different scanning conditions and is fully controllable, ac-
urate, robust, simple to use, fast and easily accessible to all. The devel-
pment of such a phantom is a very complex task, and both numerical
nd physical phantoms have their separate complexities. 

.1. Physical phantoms 

Physical phantoms are a useful resource for studying the advantages
nd limitations of both local models of the diffusion process and various
ber tracking algorithms. However, their level of realism with respect to
he biological reality of brain white matter remains limited, especially
or phantoms made from solid synthetic fibres. Hollow fibres, obtained
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Fig. 18. (a) 2D and (b) 3D dMRI phantoms with predefined connectivity. (c) Schematic of a 2D phantom generation for a 10 ‐node connectome, where nodes are 
defined on the circumference of a circle (colored segments). The connectivity matrix is predefined for phantoms using generative models, where the connections are 
realised by simulating tubular fiber bundles. Hence, the simulated dMRI has predefined connectivity which can be used for validating the performance of connectome 
estimated by tractography algorithm. Figures adapted from Sarwar et al. (2019) . 
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14 http://www.emmanuelcaruyer.com/phantomas.php. 
15 
y melt-spinning or electro-spinning techniques, allow a substantial ad-
ance in realism by endowing the fibres with an intra-axial compart-
ent and by allowing local deformations that allow deviation from a
ure cylindrical shape. Some microstructural details are still missing,
uch as the control of the thickness of the fiber membrane to allow
he creation of a myelin sheath that interrupts at regular intervals to
ive rise to synthetic Ranvier’s nodes. Membranes made of polyethy-
ene or polyester are impermeable which prevents any transfer between
he intra-axial and extra-axial compartments and work will have to be
arried out on the choice of polymers to be used to control their perme-
bility. Moreover, the cerebral white matter is also populated by glial
ells and microdisks which are not modelled today and which will have
o be taken into account in the future. 

Manufacturing of physical phantoms for diffusion MRI still remains a
andmade production and would deserve industrial developments to au-
omate this process in order to be able to create reproducible phantoms
ith a high degree of realism. Such realistic phantoms would proba-
ly stem from back and forth designs between digital phantoms and
ardware phantoms to create the ultimate tool for the benchmarking of
ractography methods. 

Despite innovations in the processes used to construct such as
lectro-spinning or melt-spinning extrusion techniques, it is unlikely
hat the level of realism will reach that of real brain white matter tissues.
hysical phantoms will mostly remain quality control objects used in the
rame of multicenter studies. The dramatic increase in supercomputer
omputing power and the recent introduction of simulators to create ge-
metric white matter models with a much higher degree of realism than
hantoms will undoubtedly further promote the use of digital phantoms
n the coming decade. 
15 
.2. Digital phantoms 

Digital dMRI phantoms for fiber tractography validation and artifact
orrection as well as the tools to create them have come a long way over
he last decades. They evolved from simply shaped 2D tensor maps to
imulations of the actual MR acquisition of a whole brain including com-
lex tissue configurations and realistic MRI effects and artifacts. While
onclusions drawn from simulation-based analyses always have to be
nterpreted extremely carefully and while the state of the art in gener-
ting these phantoms is still far from the perfect phantom described in
he beginning of this chapter, this discipline has reached a rather mature
tage. 

Multiple impressive tools to create simulated dMRI phantoms are
penly available to and actively used by the tractography community,
or example Phantomas, 14 Fiberfox in MITK Diffusion 15 or POSSUM as
art of FSL, 16 where Phantomas and Fiberfox are particularly suitable
or tractography studies and POSSUM for artifact correction. A number
f phantom datasets in this area has been published and used in larger
ractography evaluation studies or it is possible to use them in such a
ay, for example the recently published 99 simulated brains dataset
 Neher and Maier-Hein, 2020a , 2020b , 2021 ), the other Fiberfox sim-
lations ( Maier-Hein et al., 2017a , 2017b , 2015 ; Neher et al., 2017b ;
eher and Maier-Hein, 2019 ), the DW-POSSUM data sets 11 or the Phan-

omas examples. 17 
https://github.com/MIC-DKFZ/MITK-Diffusion/. 
16 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/POSSUM. 
17 https://github.com/ecaruyer/phantomas/tree/master/examples. 
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Fig. 19. A conceptual overview of DW-POSSUM. The 
framework takes four main inputs: a geometric object that 
specifies the proton density and location of WM, GM and 
CSF along with their T1 and T2 values; a representation 
of diffusion-weighting; and a PGSE sequence, detailing RF 
pulses and gradients. Adapted from Graham et al. (2016) . 
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In the future, some aspects will be particularly important for the field
f fiber tractography validation and artifact correction using simulated
MRI data: 

Realism: There is still room for improvements in the area of simula-
ions in terms of realism. One particular challenge will be to unify three
spects of a realistic numerical simulation: the cellular microstructure
nd the corresponding diffusion processes, a tissue macrostructure rep-
esentative for the human brain; and a comprehensive approximation of
 real MR acquisition. There is research already in this direction trying
o combine tractography and microstructure together ( Daducci et al.,
015a , 2015b ) and future work will consist in developing novel types
f ultra-realistic numerical phantoms. Such phantoms should rely on
he simulation of highly realistic geometries taking into account all
ell types populating white matter: myelinated and unmyelinated ax-
nal fibers, glial cells including microglia, oligodendrocytes and astro-
ytes, microvasculature, and even neurons. Furthermore, a range of dif-
erent pathologies need to be included in simulations, and these have
nly just been started to be explored, e.g. tumor growth models in
ackson et al. (2020) and epilepsy models in ( Nielsen et al., 2021 ).
nother aspect is that the synthesis of the diffusion signal attenuation
hould be based on least-assumption approaches to avoid modeling bias.
onte-Carlo simulations are not assumption-free, but they are the least

ssumption-intensive and can be most easily modified to better fit the
iophysical reality. Finally, simulations need to be up-to-date with the
ew developments in the field of MR imaging. MR imaging is evolving
apidly and we are seeing much more powerful hardware systems with
16 
xtremely strong magnetic fields, strong gradient coils, much higher res-
lutions, etc. These developments are pushing the boundaries of the MR
maging field in identifying new contrasts, however, they also bring with
hem a range of new challenges such as more prominent effects or pres-
nce of totally new artefacts. Future simulation systems and phantoms
eed to be flexible and continually develop in order to keep up with
hese new developments. 

Computational prowess : With the evolving degrees of complexity and
ealism of simulation systems there is a strong need for powerful compu-
ational hardware and simulation speed. Incorporating all of the realistic
canner and object effects creates a huge demand on the computational
emory and time. The input object itself that describes the MR proper-

ies of the simulated brain/body can take thousands of GB of memory.
o run a single MRI simulation of full Bloch equations with all of the
eatures described can take hours. These problems are possibly the most
ressing and have so far prevented many of the simulators from sim-
lating fully realistic DIffusion MR images. New developments in GPU
rogramming, and increasing power of computers will be crucial here
n driving future research and developing new ways of parallelising and
peeding up the simulation process. 

Available data : There is still a lack of large and variable openly avail-
ble simulated datasets, including various image contrasts, anatomies,
athologies as well as variable MR acquisition settings. Such large and
ariable datasets become increasingly important with the rise of ma-
hine learning and AI in the area of dMRI research. In this context,
eaching a consensus in the community on how to evaluate, with what
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ools, on which data and with which metrics ( Maier-Hein et al., 2018 ;
einke et al., 2018 ) is a non-trivial task and will gain increasing impor-

ance. 

.3. Assessing artifacts, quality control and AI 

One of the very important aspects of artifact assessment in Diffusion
RI is quality control (QC). QC involves ensuring a dataset meets a

ertain set of standards before the dataset is given the clearance for
nclusion in subsequent analyses. Diffusion MRI has unique challenges
hat make manual QC particularly difficult, including a greater number
f artefacts than other MR modalities and a greater volume of data.
he gold standard is manual inspection of the data, but this process

s time-consuming and subjective. The current trend towards acquiring
ncreasingly large datasets means the time required for human QC is
ecoming prohibitive. The HCP ( Van Essen et al., 2012 ) acquired data
or 1200 subjects with almost 300 dMR volumes per subject and the UK
iobank will eventually acquire imaging data for 100,000 subjects with
ver 100 vol per subject ( Miller et al., 2016 ). 

Recently supervised learning approaches based on convolutional
eural networks (CNNs) have been shown to be competitive with man-
al inspection. However, CNNs tend to have many parameters requiring
ptimization — often in the millions — meaning they typically require
arge, manually labelled datasets for training which can be very chal-
enging as is itself time-consuming to produce and still introduces an
lement of subjectivity. One potential way to address these issues is to
se simulated data. Simulation could circumvent the need for human
abeling by producing realistic datasets, along with ground-truth labels,
or training machine learning tools on. In the case of QC, a simulator that
as capable of producing datasets containing artefacts, such as motion,

ould be used to produce a training set. Little research has been done to
nvestigate the feasibility of a simulation-based approach to training su-
ervised learning tools. DW-POSSUM was first to demonstrate that the
eed for manual labeling can be greatly reduced by training on simu-
ated data, and using a small amount of labelled data for a final calibra-
ion step ( Graham et al., 2018 ). They demonstrate its potential for the
etection of severe movement artefacts, and compare performance to a
lassifier trained on manually-labelled real data. 

Work such as this suggests that hybrid approaches, combining large
mounts of simulated data with smaller amounts of real, labelled data,
ffer the opportunity to develop performance machine learning tools
hilst drastically reducing the need for labelled data. Similar examples
re also being developed outside of Diffusion MRI: ( Borges et al., 2019 )
imulate MR scans with varying sequence parameters in order to de-
elop segmentation tools that are invariant to MR-physics; ( Billot et al.,
020 ) simulate data containing extreme contrast variations was used to
rain modality-agnostic segmentation tools; ( Shaw et al., 2020 ), the au-
hors show that simulated data with movement artefacts can be used to
rain networks to remove movement artefacts from data. These suggest
 trend in which with the rise of larger and larger data sets and develop-
ent and use of machine learning techniques that go with it, the need

or numerical simulations will become even greater. 

.4. Outlook 

The impact of the human connectome project on science, healthcare
nd society in general is highly dependent on validity, robustness and
uality of the data which can only truly be measured with ground truth
btained from the phantoms. It is hence extremely important to address
he challenges mentioned above and create phantoms that can be used
eliably for validation of tractography and assessment of artifacts. Ad-
itionally, we as a research community should also work harder to es-
ablish stronger collaborations between the scientists that work on data
rocessing methods and those that work on validation and phantoms.
his would align the speed of the two and improve the work of both,
17 
hantoms would inform methods development and validation and phan-
om development would be more guided and focused on the needs that
an create the most impact. In the future that is becoming more and
ore digital, data sets ever so larger and AI, with its need for highly

ontrollable large ground truth training data sets, becoming a norm, the
eed and importance of physical and numerical phantoms and simula-
ions will only grow. 
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