106 research outputs found

    Periodic solutions to the Cahn-Hilliard equation in the plane

    Full text link
    In this paper we construct entire solutions to the Cahn-Hilliard equation −Δ(−Δu+Wâ€Č(u))+W"(u)(−Δu+Wâ€Č(u))=0-\Delta(-\Delta u+W^{'}(u))+W^{"}(u)(-\Delta u+W^{'}(u))=0 in the Euclidean plane, where W(u)W(u) is the standard double-well potential 14(1−u2)2\frac{1}{4} (1-u^2)^2. Such solutions have a non-trivial profile that shadows a Willmore planar curve, and converge uniformly to ±1\pm 1 as x2→±∞x_2 \to \pm \infty. These solutions give a counterexample to the counterpart of Gibbons' conjecture for the fourth-order counterpart of the Allen-Cahn equation. We also study the x2x_2-derivative of these solutions using the special structure of Willmore's equation

    On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow

    Get PDF
    In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R^3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.Comment: 37 pages, 6 figures, To Appear in SIAM J. Math. Ana

    On the Plateau-Douglas problem for the Willmore energy of surfaces with planar boundary curves

    Full text link
    For a smooth closed embedded planar curve Γ\Gamma, we consider the minimization problem of the Willmore energy among immersed surfaces of a given genus g≄1\mathfrak{g}\geq1 having the curve Γ\Gamma as boundary, without any prescription on the conormal. By general lower bound estimates, in case Γ\Gamma is a circle we prove that such problem is equivalent if restricted to embedded surfaces, we prove that do not exist minimizers, and the infimum equals ÎČg−4π\beta_\mathfrak{g}-4\pi, where ÎČg\beta_\mathfrak{g} is the energy of the closed minimizing surface of genus g\mathfrak{g}. We also prove that the same result also holds if Γ\Gamma is a straight line for the suitable analogously defined minimization problem on asymptotically flat surfaces.\\ Then we study the case in which Γ\Gamma is compact, g=1\mathfrak{g}=1 and the competitors are restricted to a suitable class C\mathcal{C} of varifolds including embedded surfaces. We prove that under suitable assumptions minimizers exists in this class of generalized surfaces

    Geometric partial differential equations: Surface and bulk processes

    Get PDF
    The workshop brought together experts representing a wide range of topics in geometric partial differential equations ranging from analyis over numerical simulation to real-life applications. The main themes of the conference were the analysis of curvature energies, new developments in pdes on surfaces and the treatment of coupled bulk/surface problems

    Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

    Get PDF
    In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP.Diese Dissertation beschĂ€ftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen ZustĂ€nden von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell fĂŒr Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen fĂŒr die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusĂ€tzlich physikalischen EinflĂŒssen wie Biegung und OberflĂ€chenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische PhĂ€nomene, wie zum Beispiel ZellmotilitĂ€t oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen fĂŒr ZellmotilitĂ€t wird ein biologisches Netzwerk-Modell fĂŒr GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als FlĂŒssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe VorgĂ€nge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare PhĂ€nomene zeigen. Um das Diffuse-Interface-Modell fĂŒr eine Zelle auf die Beschreibung mehrerer Zellen zu ĂŒbertragen, werden mehrere Phasenfelder eingefĂŒhrt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die AnnĂ€herung von Leukozyten an die BlutgefĂ€ĂŸwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese AnnĂ€herung sich in bestimmten Gebieten des kardiovaskulĂ€ren Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlĂ€sst. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell fĂŒr die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollstĂ€ndig unterdrĂŒckt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP

    An Energy Formulation of Surface Tension or Willmore Force For Two-Phase Flow

    Get PDF
    The motion of a biological cell in liquid is a rich subject for modeling. In the early 1970’s, it was realized by Canham that biological vesicles with lipid bilayer membranes reach a steady state shape that minimizes bending. Helfrich soon after mathematically quantified the related bending energy and showed that the shapes from minimizing this bending energy match the types of shapes observed in nature. The resulting Canham-Helfrich energy, consisting of bending energy and a constant surface area and volume constraint, is a major component of any model of cellular motility. To this end, we consider the cellular vesicle to be a closed interface between two fluids and we present a finite element model for a two-phase flow coupling the minimization of some given energy defined on the interface to the incompressible flow of the two fluids, which is then advected according to the resulting velocity field. We provide a general framework for incorporating the energies on the interface and then focus on three applications of energy on the interface: the first is surface tension minimizing the surface area energy, the second minimizes the bending energy without explicit surface area or volume constraints, the third minimizes the Canham-Helfrich energy including the constraints. We present a semi-implicit model for bending energy which uses an implicit levelset formulation for the interface and couples the forces from the interface to the two phase incompressible Navier-Stokes system through the use of an approximate Dirac delta function defined on a band around the interface. By using energies to describe the motion, our model is immediately provided with a sense of energy stability. We provide various numerical simulations and validations of flow under these three energies in two and three dimensions. Our simulations confirm that enforcing the volume constraint in the incompressible flow is vital to achieve the desired steady state shapes

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications
    • 

    corecore