191 research outputs found

    Analysis of a Model for Ship Maneuvering

    Get PDF
    We analyze numerically and theoretically steady states and bifurcations in a model for ship maneuvering provided by MARIN, and in a simplified model that combines rudder and propeller into an abstract ‘thruster’. Steady states in the model correspond to circular motion of the ship and we compute the corresponding radii. We non-dimensionalize the models and thereby remove a number of parameters, so that, due to a scaling symmetry, only the rudder (or thruster) angle remains as a free parameter. Using ‘degree theory’, we show that a slight modification of the model pos- sesses at least one steady state for each angle and find certain constraints on the possible steady state configuration. We show that straight motion is unstable for the Hamburg test case and use numerical continuation and bifurcation software to compute a number of curves of states together with their stability, and the corresponding radii of the ship motion. In particular, straight forward motion can be stabilised by increasing the rudder size parameter, and the smallest possible radius is ∼ 119 m. These analyses illustrate methods and tools from dynamical systems theory that can be used to analyse a model without simulation. Compared with simulations, the numerical bifurcation analysis is much less time consuming. We have implemented the model in MATLAB and the bifurcation software AUTO

    Measuring the mixing efficiency in a simple model of stirring:some analytical results and a quantitative study via Frequency Map Analysis

    Get PDF
    We prove the existence of invariant curves for a TT--periodic Hamiltonian system which models a fluid stirring in a cylindrical tank, when TT is small and the assigned stirring protocol is piecewise constant. Furthermore, using the Numerical Analysis of the Fundamental Frequency of Laskar, we investigate numerically the break down of invariant curves as TT increases and we give a quantitative estimate of the efficiency of the mixing.Comment: 10 figure

    Homoclinic orbits: Since Poincaré till today

    Get PDF
    The history and the contemporary results in homoclinic orbits are reported

    Qualitative Analysis of Polycycles in Filippov Systems

    Full text link
    In this paper, we are concerned about the qualitative behaviour of planar Filippov systems around some typical minimal sets, namely, polycycles. In the smooth context, a polycycle is a simple closed curve composed by a collection of singularities and regular orbits, inducing a first return map. Here, this concept is extended to Filippov systems by allowing typical singularities lying on the switching manifold. Our main goal consists in developing a method to investigate the unfolding of polycycles in Filippov systems. In addition, we applied this method to describe bifurcation diagrams of Filippov systems around certain polycycles

    Global bifurcations close to symmetry

    Get PDF
    Heteroclinic cycles involving two saddle-foci, where the saddle-foci share both invariant manifolds, occur persistently in some symmetric differential equations on the 3-dimensional sphere. We analyse the dynamics around this type of cycle in the case when trajectories near the two equilibria turn in the same direction around a 1-dimensional connection - the saddle-foci have the same chirality. When part of the symmetry is broken, the 2-dimensional invariant manifolds intersect transversely creating a heteroclinic network of Bykov cycles. We show that the proximity of symmetry creates heteroclinic tangencies that coexist with hyperbolic dynamics. There are n-pulse heteroclinic tangencies - trajectories that follow the original cycle n times around before they arrive at the other node. Each n-pulse heteroclinic tangency is accumulated by a sequence of (n+1)-pulse ones. This coexists with the suspension of horseshoes defined on an infinite set of disjoint strips, where the first return map is hyperbolic. We also show how, as the system approaches full symmetry, the suspended horseshoes are destroyed, creating regions with infinitely many attracting periodic solutions
    corecore