393 research outputs found

    Relaxation oscillations, pulses, and travelling waves in the diffusive Volterra delay-differential equation

    Get PDF
    The diffusive Volterra equation with discrete or continuous delay is studied in the limit of long delays using matched asymptotic expansions. In the case of continuous delay, the procedure was explicitly carried out for general normalized kernels of the form Sigma/sub n=p//sup N/ g/sub n/(t/sup n//T/sup n+1/)e/sup -t/T/, pges2, in the limit in which the strength of the delayed regulation is much greater than that of the instantaneous one, and also for g/sub n/=delta/sub n2/ and any strength ratio. Solutions include homogeneous relaxation oscillations and travelling waves such as pulses, periodic wavetrains, pacemakers and leading centers, so that the diffusive Volterra equation presents the main features of excitable media

    Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy

    Get PDF
    Background\ud \ud Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud Results\ud \ud By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud Conclusions\ud \ud We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud Reviewers\ud \ud This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel

    Hopf Bifurcation in a Modified Leslie-Gower Two Preys One Predator Model and Holling Type II Functional Response with Harvesting and Time-Delay

    Get PDF
    In this paper, a modified Leslie-Gower two preys one predator model and Holling type II functional response with harvesting and time-delay were discussed. Model analysis is carried out by determining fixed points, then analyzing the stability of the fixed points and discussing the existence of the Hopf bifurcation. In some conditions that occur in nature indicate the occurrence of hunting of prey and predator species by humans. Therefore, this model is modified by adding the assumption that prey and predators are being harvested. Another modification given to the model is the use of time delays.The delay time term is for taking into account the case that the members of the predator species need time from birth to predation for being active predators. The first case is a model without time delay, it is obtained that 3 fixed points are unstable and 7 fixed points are stable. One of them is the interior fixed point tested with the Routh-Hurwitz criteria. The second case is a model with a delay time, the critical delay value is obained. Hopf bifurcation occurs when the delay time value is equal to the critical delay value and also fulfills the transversality condition. Observations on the model simulation are carried out by varying the value of the delay time. When the Hopf bifurcation occurs, the graph on the solution plane shows a constant oscillatory movement. If the value of the delay time given is less than the critical value of the delay, the controlled system solution goes to a balanced state. Then when the delay time value is greater than the critical delay value, the system solution continues to fluctuate causing an unstable system condition

    Partial differential equations for self-organization in cellular and developmental biology

    Get PDF
    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field
    corecore