4,498 research outputs found

    Theoretical Study of Pest Control Using Stage Structured Natural Enemies with Maturation Delay: A Crop-Pest-Natural Enemy Model

    Full text link
    In the natural world, there are many insect species whose individual members have a life history that takes them through two stages, immature and mature. Moreover, the rates of survival, development, and reproduction almost always depend on age, size, or development stage. Keeping this in mind, in this paper, a three species crop-pest-natural enemy food chain model with two stages for natural enemies is investigated. Using characteristic equations, a set of sufficient conditions for local asymptotic stability of all the feasible equilibria is obtained. Moreover, using approach as in (Beretta and Kuang, 2002), the possibility of the existence of a Hopf bifurcation for the interior equilibrium with respect to maturation delay is explored, which shows that the maturation delay plays an important role in the dynamical behavior of three species system. Also obtain some threshold values of maturation delay for the stability-switching of the particular system. In succession, using the normal form theory and center manifold argument, we derive the explicit formulas which determine the stability and direction of bifurcating periodic solutions. Finally, a numerical simulation for supporting the theoretical analysis is given.Comment: 28 pages, 9 figure

    Bifurcation analysis for a delayed food chain system with two functional responses

    Get PDF
    A delayed three-species food chain system with two types of functional response, Holling type and Beddington-DeAngelis type, is investigated. By analyzing the distribution of the roots of the associated characteristic equation, we get the sufficient conditions for the stability of the positive equilibrium and the existence of Hopf bifurcation. In particular, using the normal form theory and center manifold theorem, the properties of Hopf bifurcation such as direction and stability are determined. Finally, numerical simulations are given to substantiate the theoretical results

    Stability and Bifurcation Analysis of a Delayed Three Species Food Chain Model with Crowley-Martin Response Function

    Get PDF
    In this paper we have studied the dynamical behaviors of three species prey-predator system. The interaction between prey and middle-predator is Crowley-Martin type functional response. Positivity and boundedness of the system are discussed. Stability analysis of the equilibrium points is presented. Permanence and Hopf-bifurcation of the system are analyzed under some conditions. The effect of discrete time-delay is studied, where the delay may be regarded as the gestation period of the super-predator. The direction and the stability criteria of the bifurcating periodic solutions are determined with the help of the normal form theory and the center manifold theorem. Extensive numerical simulations are carried out to validate our analytical findings. Implications of our analytical and numerical findings are discussed critically

    Effect of Time-Delay on a Ratio-Dependent Food Chain Model

    Get PDF
    This paper aims to study the effect of time-delay on a tritrophic food chainmodel with Michaelis-Menten type ratio-dependent functional responses. Boundednessof the time-delayed system is established. A simple criterion for deterministic extinctionis derived. It has been shown that the time-delay may introduce instability in the systemthrough Hopf bifurcation. Computer simulations are carried out to explain the analyticalfindings. It is discussed how these ideas illuminate some of the observed properties ofreal populations in the field, and explores practical implications

    Hopf Bifurcation in a Modified Leslie-Gower Two Preys One Predator Model and Holling Type II Functional Response with Harvesting and Time-Delay

    Get PDF
    In this paper, a modified Leslie-Gower two preys one predator model and Holling type II functional response with harvesting and time-delay were discussed. Model analysis is carried out by determining fixed points, then analyzing the stability of the fixed points and discussing the existence of the Hopf bifurcation. In some conditions that occur in nature indicate the occurrence of hunting of prey and predator species by humans. Therefore, this model is modified by adding the assumption that prey and predators are being harvested. Another modification given to the model is the use of time delays.The delay time term is for taking into account the case that the members of the predator species need time from birth to predation for being active predators. The first case is a model without time delay, it is obtained that 3 fixed points are unstable and 7 fixed points are stable. One of them is the interior fixed point tested with the Routh-Hurwitz criteria. The second case is a model with a delay time, the critical delay value is obained. Hopf bifurcation occurs when the delay time value is equal to the critical delay value and also fulfills the transversality condition. Observations on the model simulation are carried out by varying the value of the delay time. When the Hopf bifurcation occurs, the graph on the solution plane shows a constant oscillatory movement. If the value of the delay time given is less than the critical value of the delay, the controlled system solution goes to a balanced state. Then when the delay time value is greater than the critical delay value, the system solution continues to fluctuate causing an unstable system condition

    A Review of Chaos Control Strategies for Tri-trophic Food Chain Ecological Systems

    Get PDF
    The existence of chaos in ecological models is quite obvious due to the presence of nonlinear terms. Controlling chaotic phenomena in ecological systems remains a difficult task due to their unpredictability, and thus chaos control is one of the main objectives for constructing mathematical models in ecology today. Our aim in this paper is to review chaos control strategies for the tri-trophic food chain models by using various ecological factors. The factors include additional food, prey refuge, the Allee effect, the fear effect, and harvesting. We establish the essential conditions for the existence of ecologically feasible equilibrium points in the food chain ecological systems and their local stability. This paper provides a unified overview of recent research on the chaos control of ecological systems. The theoretical results suggest a way to control populations of species in ecological systems for fishing and pest management in farming. Numerical examples are performed to justify and compare the theoretical findings through phase portraits and bifurcation diagrams
    • …
    corecore