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Abstract

In this paper we have studied the dynamical behaviors of three species prey-predator system. The
interaction between prey and middle-predator is Crowley-Martin type functional response. Posi-
tivity and boundedness of the system are discussed. Stability analysis of the equilibrium points is
presented. Permanence and Hopf-bifurcation of the system are analyzed under some conditions.
The effect of discrete time-delay is studied, where the delay may be regarded as the gestation
period of the super-predator. The direction and the stability criteria of the bifurcating periodic so-
lutions are determined with the help of the normal form theory and the center manifold theorem.
Extensive numerical simulations are carried out to validate our analytical findings. Implications of
our analytical and numerical findings are discussed critically.

Keywords: Food web; Prey-predator species; Stability; Permanence; Hopf-bifurcation;
Time-delay
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710 A. Mondal et al.

1. Introduction

In the last few decades, the study of ecological modeling has become most interesting to theoret-
ical biologists and mathematicians due to its rich dynamics, and it contributes important realiza-
tions into complex biological systems. Earlier, single species models ( Ricker (1954), Vandermeer
(2010)) and two species models such as predator-prey, plant-pest or plant-herbivore were studied
extensively (Arditi et al. (1989), Berreta and Kuang (1998), Berrymem (1992), Hsu et al. (2001),
Xiao and Ruan (2001)). Biomathematicians almost remained silent on the dynamical behaviors of
three species systems for a long time. The explanation may be the lack of mathematical equip-
ments to handle the increasing number of differential equations. However, urge for including more
species had been noticed day by day and hence more emphasis should be made to review the com-
plex behaviour presented by deterministic models consists of three or more tropic levels. In fact,
different tritropic models have become issue of significant attention in their own right. Some math-
ematical models for tritropic food chains have been developed and analyzed in recent past but still
theoretical studies on such systems are mostly inadequate. Some theoretical works on food chain
models may be found in the works of many researchers (Freedman and Waltman (1977), Gard
and hallam (1980), Freedman and Ruan (1992), Takeuchi et al. (1992), Ruan (1993), Boer et al.
(1999), Kuznetsov et al. (2001), Hsu et al. (2001), Maiti et al. (2005, 2006), Pathak et al. (2009)).

The crucial element in prey-predator interaction is “predator functional response on prey popu-
lation”, which describes the number (biomass) of prey consumed per predator per unit time. De-
pending upon behavior of populations, more suitable functional responses have been developed
as a quantification of the corresponding responsiveness of the predation rate to change in prey
biomass at various population of prey. Functional response has a vital role on the stability and
bifurcation dynamics of the underlying system. Several functional responses have been developed:
Volterra functional response (Holling type-I), Michaelis- Menton type (Holling type-II), Holling
type-III, Holling type-IV, Ratio dependent, Beddington - DeAngelis, Crowley-Martin (Berreta and
Kuang (1998), Haiyin and Takeuchi (2011), Hsu et al. (2001), Liu et al. (2010), Oaten and Murdoch
(1975), Ruan and Xiao (2001), Upadhyay and Naji (2009)). Holling I, II, III and IV type functional
responses are prey dependent (i.e. functional response is a function of only prey’s biomass) while
Ratio dependent, Beddington - DeAngelis, Crowley-Martin response functions depend on prey
and predator both (i.e. functional response is a function of both the prey’s and predator’s biomass).
Mathematicians and ecologists have studied extensively on the dynamical behaviour of predator-
prey models with Holling type-I, II, III and IV functional responses. Sklaski and Gillian (2001)
explains in their work that predator- (and prey-) dependent functional responses can produce better
description of predator feeding over a range of predator-prey abundance. It is observed through
experiments that decrease in feeding rate of consumers (middle-predators) per unit consumer is
due to mutual interference among predators (Hassell (1971), Tripathi et al. (2015)).

The prey-predator system with Beddington-DeAngelis functional response approve that handling
and interference are complete activities (Dong et al. (2013), Haiyin and Takeuchi (2011), Tripathi
et al. (2015)). According to Crowley and Martin (1989) when predator biomass is high, predator’s
predation rate decreases (interference among the predator individuals), in spite of prey biomass
is high (in presence of handling or searching of the prey by predator individual). There are very
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few literatures available on prey-predator model with Crowley-Martin functional response (Dong
et al. (2013), Crowley and Martin (1989), Sklaski and Gillian (2001), Upadhyay and Naji (2009),
Upadhyay et al. (2010)). The Crowley-Martin (C-M) functional response is predator dependent.
The instantaneous per capita feeding rate is given by

f(x, y) =
ax

(1 + bx)(1 + cy)
, (1)

where the positive parameters a, b, c are considered as effects of capturing rate, handling time
and magnitude of interference among predators respectively on the feeding rate. Compare to
Beddington-DeAngelis functional response, C-M response has an additional term that models mu-
tual interference among predators. Moreover, C-M type functional response allows for interference
among predators nevertheless whether an individual predator is directly handling prey or searching
for prey. Thus, the ecological model with C-M functional response gives momentum to Michaelis-
Menton model and Beddington-DeAngelis model.

It is generally understood that the introduction of time delay into the population model is more
realistic to model the interaction of the prey. In reality, time delays occur in almost every biological
situation so that to ignore them is to ignore reality (Gopalsamy (1992), Hassard et al. (1981), Kuang
(1993), Macdonald (1989)). It has been accepted that delay can have very complex impact on the
dynamics of a system. Time delay due to gestation is a common example and it represents the time
duration for conversion of prey biomass into predator biomass. The reproduction of predator after
consuming prey in not instantaneous, but takes some discrete time (lag) required for gestation.
The presence of gestation delay in predator growth affects the abundance of predator. Because the
growth rate of predator species depends upon the amount of biomass added in predator population
biomass as affect of prey killing. Thus, the main objective in studying delay differential equations
is to assess the qualitative or quantitative differences that arise from including time-delays in an
explicit way compare to the results with their non-delayed counterpart (Berreta and Kuang (1998),
Celik (2008), Chen et al. (2007), May (1974), Qu and Wei (2007), Wangersky and Cunnigham
(1957)).

In this work we have developed a mathematical model with a three-dimensional food-web sys-
tem consisting a prey population (X), a middle-predator (Y ) feeding on the prey and a super-
predator (Z) feeding only on Y species. Here it is assumed that the interaction of the prey species
(X) with the middle-predator (Y ) is governed by Crowley-Martin functional response. A Holling
type-II functional response is taken to represent the interaction between middle predator (Y ) and
super-predator (Z). It is assumed that there is no interaction between prey and super-predator. The
construction of our model system is sketched in Section 2. The rest of the paper is organized as
follows. In Section 3, positivity and boundedness of the basic deterministic model is discussed.
Section 4 deals with the existence and stability of equilibria. Permanence of the system is studied
in section 5. Hopf bifurcation around the interior equilibrium has been analyzed in Section 6. The
effect of discrete time-delay is studied in Section 7. Direction and stability of the Hopf Bifurcation
is discussed in Section 8. In Section 9, computer simulation of a variety of numerical solutions of
the system is presented. Section 10 consists of the general discussions on the obtained analytical
results and biological implications of our mathematical findings.

3
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2. The Mathematical Model

Before introducing the mathematical model, let us perform brief sketch of the construction of the
underlying model which indicates the biological relevance of the model.

1. Consider three species, namely the prey with population density (biomass) X at time T , the
middle-predator with population density (biomass) Y at time T and the super-predator having
population density (biomass) Z at time T .

2. Behavior of the entire community is assumed to arise from the coupling of the following interac-
tions: Z preys only on Y and Y preys on X (see below). A distinctive feature of such a community
is the so called ‘domino effect’: if one species dies out, all the species at the higher trophic level
die out as well.

species X
↓

species Y
↓

species Z

The feeding relationship in the food chain

3. It is assumed that in the absence of predator the prey population biomass grows according to a lo-
gistic curve with carrying capacity K (K > 0) and with an intrinsic growth rate constant r (r > 0).

4. It is also assumed that the prey-predator interaction is governed by Crowley-Martin (simply
written as C-M) response function of the form:

βxy

(1 +Ax)(1 +By)
, (2)

which was first proposed by Bazykin (1988). It is very important in theoretical ecology on its own
right. Here β,A and B are positive parameters that describe the effects of capture rate, handling
time, and the magnitude of interference among middle-predators on the feeding rate, respectively.
This is a function of the biomass of both prey and predator due to predator interference. If the
prey biomass is high, then also predator feeding rate can decrease by higher predator biomass.
Therefore, the effects of predator interference on feeding rate remain important all the time whether
an individual predator is handling or searching for a prey at a given instant of time (Zhou (2014)).
This represents the per capita feeding rate of predator.

Depending on parameters A and B, the following cases arise:

(i) When A = 0, B = 0, the C-M functional response reduces to the Holling type-I (or Volterra)
functional response.

(ii) When A > 0, B = 0, the C-M functional response reduces to the Holling type-II functional
response.

4
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(iii) When A = 0, B > 0, it expresses a saturation response of the middle-predator.

5. On the other hand, Holling type-II functional response is considered for the interaction of species
(Y,Z).

These considerations lead to a food chain model under the framework of the following set of
nonlinear ordinary differential equations:

dX

dT
= rX

(
1− X

K

)
− βXY

(1 +AX)(1 +BY )
,

dY

dT
=

β1XY

(1 +AX)(1 +BY )
−D1Y −

γY Z

M + Y
,

dZ

dT
=

γ1Y Z

M + Y
−D2Z,

(3)

with

X(0) = X0 > 0, Y (0) = Y0 > 0, Z(0) = Z0 > 0.

The model parameters β, γ, β1, γ1, D1, D1 and M are all assumed to be positive with following
biological meanings:

β: Capturing rate (or predation coefficient) of middle-predator,

γ: Capturing rate (or predation coefficient) of super-predator,

β1: Conversion rate of prey into middle-predator after predation,

γ1: Conversion rate of middle predator into super-predator after predation,

D1: Per capita death rate of middle-predator,

D2: Per capita death rate of super-predator,

M : Half saturation constant for middle-predator.

To reduce the number of parameters, we use the following scaling (non-dimensionalization):

x =
X

K
, y =

Y

K
, z =

Z

K
and t = rT.

Then, the system (3) takes the form (after some simplifications):
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dx

dt
= x(1− x)− a1xy

(1 + a2x)(1 + a3y)
,

dy

dt
=

a4xy

(1 + a2x)(1 + a3y)
− d1y −

a5yz

1 + a6y
,

dz

dt
=

a7yz

1 + a6y
− d2z,

(4)

with

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0,

where

a1 =
βK

r
, a2 = AK, a3 = BK, a4 =

β1K

r
, a5 =

γK

Mr
, a6 =

K

M
,a7 =

γ1K

Mr
, d1 =

D1

r
, d2 =

D2

r
.

3. Positivity and Boundedness

Positivity and boundedness of a model guarantee that the model is biologically well posed. For
positivity of the system (4) , we have the following theorems.

Theorem 3.1.

All solutions of system (4) that start in R3
+ remain positive forever.

Proof:

From the first equation of system (4), we get

x(t) = x(0) exp

[∫ t

0

{
1− x(θ)− a1y(θ)

(1 + a2x(θ))(1 + a3y(θ))

}
dθ

]
⇒ x(t) > 0.

From the second equation of system (4), we get

y(t) = y(0) exp

[∫ t

0

{
a4x(θ)

(1 + a2x(θ))(1 + a3y(θ))
− d1 −

a5z(θ)

1 + a6y(θ)

}
dθ

]
⇒ y(t) > 0.

From the third equation of system (4), we get

z(t) = z(0) exp

[∫ t

0

{
a7y(θ)

1 + a6y(θ)
− d2

}
dθ

]
⇒ z(t) > 0.

This proves the theorem. �

Theorem 3.2.

All solutions of system (4) that start in R3
+ are uniformly bounded.

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 2, Art. 8

https://digitalcommons.pvamu.edu/aam/vol13/iss2/8



AAM: Intern. J., Vol 13, Issue 2 (December 2018) 715

Proof:

Since

dx

dt
≤ x(1− x),

we have

lim
t→∞

supx(t) ≤ 1.

Suppose

W1 = x+
a1

a4
y +

a1a5

a4a7
z

∴
dW1

dt
= x(1− x)− a1d1y

a4
− a1a5d2z

a4a7

⇒ dW1

dt
≤ x− a1d1y

a4
− a1a5d2z

a4a7

∴
dW1

dt
≤ 2x−RW1, where R = min{1, d1, d2}.

Hence,
dW1

dt
+RW1 ≤ 2x ≤ 2, for large t, since lim

t→∞
supx(t) ≤ 1.

Applying a theorem on differential inequalities, we obtain

0 ≤W1(x, y, z) ≤ 2

R
+
W1(x(0), y(0), z(0))

eRt
⇒ 0 ≤W1 ≤

2

R
as t→∞.

Thus, all solutions of system (4) enter into the region:

B =

{
(x, y, z) : 0 ≤W1 <

2

R
+ ε, for any ε > 0

}
.

This proves the theorem. �

4. Equilibria and their Stability

System (4) may have the following equilibrium points.

(A) The trivial equilibrium point E0(0, 0, 0): It always exists.

(B) The axial equilibrium point E1(1, 0, 0): This predator free equilibrium exists unconditionally.

(C) The boundary equilibrium point E2(x̂, ŷ, 0) of system (4) is given by

b1x̂
3 + b2x̂

2 + b3x̂+ a1d1 = 0,

7
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and

ŷ =
x̂(a4 − a2d1)− d1

d1(a3 + a2a3x̂)
,

where

b1 = a2a3a4, b2 = a3a4(1− a2) and b3 = a1a2d1 + a4(a1 − a3).

(D) The interior equilibrium point E∗(x∗, y∗, z∗) of system (4) is given by

x∗ =
a2 − 1

2a2
+

√(
a2 − 1

2a2

)2

+ b4,

y∗ =
d2

a7 − d2a6
,

and

z∗ =
1 + a6y

∗

a5

{
a4x
∗

(1 + a2x∗)(1 + a3y∗)
− d1

}
,

where

b4 = 1− a1d2

a7 + d2(a3 − a6)
.

This interior equilibrium exists only when

(i) a7 > d2a6, (ii) a3 > a1 and (iii) a4x
∗ > d1(1 + a2x

∗)(1 + a3y
∗).

Now we study the local stability behaviour of the equilibrium points by computing corresponding
variational matrix:

V (x, y, z) =

v11 v12 0

v21 v22 v23

0 v32 v33

 ,
where

v11 = 1− 2x− a1y

(1 + a2x)2(1 + a3y)
, v12 = − a1x

(1 + a2x)(1 + a3y)2
,

v21 =
a4y

(1 + a2x)2(1 + a3y)
, v22 =

a4x

(1 + a2x)(1 + a3y)2
− d1 −

a5z

(1 + a3y)2

v23 = − a5y

(1 + a6y)
, v32 =

a7z

(1 + a6y)2
, v33 =

a7y

(1 + a6y)
− d2.

8
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At E0, the variational matrix V (E0) becomes

V (E0) =

1 0 0

0 −d1 0

0 0 −d2

 .
The corresponding eigenvalues are 1,−d1,−d2 and hence, we have the following theorem:

Theorem 4.1.

E0 is unstable.

At E1, the variational matrix V (E1) is given by

V (E1) =

−1 − a1

a2+1 0

0 a4

a2+1 − d1 0

0 0 −d2

 .
The corresponding eigenvalues are −1, a4

a2+1 − d1and− d2.

Theorem 4.2.

E1 is locally asymptotically stable if
a4

a2 + 1
< d2.

At E2, the variational matrix V (E2) is given by

V (E2) =

1− 2x̂− a1ŷ
(1+a2x̂)2(1+a3ŷ) − a1x̂

(1+a2x̂)2 0
a4ŷ

(1+a2x̂)2(1+a3ŷ)
a4x̂

(1+a2x̂)(1+a3ŷ)2 − d1 − a5ŷ
1+a6ŷ

0 0 a7ŷ
1+a6ŷ

− d2

 .
If the corresponding eigenvalues are λ1, λ2 and λ3, then λ1 and λ2 are roots of the quadratic equation

λ2 + C1λ+ C2 = 0,

and

λ3 =
a7ŷ

1 + a6ŷ
− d2,

where

C1 = x̂− a1a2x̂ŷ

(1 + a2x̂)2(1 + a3ŷ)
+

a3a4x̂ŷ

(1 + a2x̂)(1 + a3ŷ)2
,

and

C2 =
a3a4x̂ŷ

(1 + a2x̂)(1 + a3ŷ)2
+

a1a4x̂ŷ

(1 + a2x̂)3(1 + a3ŷ)3
{1− a2a3x̂ŷ}.

9
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If a3a4(1 + a2x̂) > a1a2(1 + ŷ) and a2a3x̂ŷ < 1, then C1 and C2 are positive. Therefore, all roots of
λ2 +C1λ+C2 = 0 are negative or having negative real parts. Also, if a7ŷ < d2(1 + a6)ŷ, then E2 is
locally asymptotically stable. Hence, we have the following theorem:

Theorem 4.3.

E2 is locally asymptotically stable if

a3a4(1 + a2x̂) > a1a2(1 + ŷ), a2a3x̂ŷ < 1 and a7ŷ < d2(1 + a6)ŷ.

At E∗, the variational matrix V (E∗) is given by

V (E∗) =

m11 m12 0

m21 m22 m23

0 m32 0

 ,
where

m11 = −x∗ +
a1a2x

∗y∗

(1 + a3y∗)(1 + a2x∗)2
, m12 = − a1x

∗

(1 + a2x∗)(1 + a3y∗)2
,

m21 =
a4y
∗

(1 + a2x∗)2(1 + a3y∗)
, m22 = − a3a4x

∗y∗

(1 + a3y∗)2(1 + a2x∗)
+

a5a6y
∗z∗

(1 + a6y∗)2
,

m23 = − a5y
∗

(1 + a6y∗)
, m32 =

a7z
∗

(1 + a6y∗)2
.

The corresponding characteristic equation is given by

λ3 +D1λ
2 +D2λ+D3 = 0,

where

D1 = −(m11 +m22), D2 = (m11m22 +m23m32 −m12m21) and D3 = m11m23m32.

By Routh-Hurwitz’s criterion, all eigenvalues of V (E∗) have negative real parts if

(i) D1 > 0, (ii) D3 > 0, and (iii) D1D2 −D3 > 0.

Thus, we have the following theorem.

Theorem 4.4.

E∗ is locally asymptotically stable if D1 > 0, D3 > 0 and D1D2 −D3 > 0.

Theorem 4.5.

Let E∗ exists and D =

{
(x, y, z) ∈ R3

+ : y >
a5a6a7d2x

∗y∗ − a3(a5d2z
∗ + a7d1y

∗)

a3a6a7d1x∗y∗

}
, then the equi-

librium point E∗ is globally asymptotically stable in D.

10
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Proof:

Let us consider the following positive definite function about E∗:

V (x, y, z) = M
(
x− x∗ − x∗ ln

x

x∗

)
+

(
y − y∗ − y∗ ln

y

y∗

)
+N

(
z − z∗ − z∗ ln

z

z∗

)
,

where M and N are positive constants to be specified later on. Differentiating V with respect to t
along the solution of (4), a little algebraic manipulation yields:

dV

dt
=−M

{
1− a1a2y

∗

(1 + a2x)(1 + a2x∗)(1 + a3y∗)

}
(x− x∗)2 +

{
a7N − a5(1 + a6y

∗)

(1 + a6y)(1 + a6y∗)

}
×

(y − y∗)(z − z∗)−
{
a3a6a7d1x

∗y∗y − a5a6a7d2x
∗y∗ + a3(a5d2z

∗ + a7d1y
∗)

(1 + a3y)(1 + a2x∗)(1 + a3y∗)(1 + a6y)(1 + a6y∗)

}
+

{
a4(1 + a3y

∗)−Ma1(1 + a2x
∗)

(1 + a2x)(1 + a2x∗)(1 + a3y)(1 + a3y∗)

}
(x− x∗)(y − y∗).

Let us choose M = a4(1+a3y∗)
a1(1+a∗

2) and N = a5(1+a6y∗)
a7

. It is noted that the existence of E∗ implies
1 − a1a2y∗

(1+a2x)(1+a2x∗)(1+a3y∗) >
a2x∗

1+a2x
> 0. Therefore, dVdt is negative definite in D. Consequently, by

the LaSalle Theorem (Harrison (1979), LaSalle (1976)) is globally asymptotically stable in D. �

5. Permanence of the System

To prove the permanence of the system (4), we shall use the Average Liapunov functions (Gard
and Hallam (1979)).

Theorem 5.1.

Suppose that the system (4) satisfies the following conditions:

(i)
a4

a2 + 1
> d1,

(ii) a7ŷ
1+a6ŷ

> d2.

Then the system (4) is permanent.

Proof:

Let us consider the average Lyapunov function in the form V (x, y, z) = xθ1yθ2zθ3 where each
θi (i = 1, 2, 3) is assumed to be positive. In the interior of R3

+, we have

V̇

V
= ψ(x, y, z) = θ1

[
(1− x)− a1y

(1 + a2x)(1 + a3y)

]

+θ2

[
a4x

(1 + a2x)(1 + a3y)
− d1 −

a5z

1 + a6y

]
+ θ3

[
a7y

1 + a6y
− d2

]
.

11
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To prove permanence of the system we shall have to show that ψ(x, y, z) > 0 for all boundary
equilibria of the system. The values of ψ(x, y, z) at the boundary equilibria E0, E1, and E2 are the
following:

E0 : θ1 − θ2d1 − θ3d2,

E1 : θ2( a4

a2+1 − d1)− θ3d2,

E2 : θ3

{
a7ŷ

1+a6ŷ
− d2

}
.

Now, ψ(0, 0, 0) > 0 is automatically satisfied for some θi > 0 (i = 1, 2, 3). Also, if the inequalities
(i)-(ii) hold, ψ is positive atE1 andE2. Therefore, the system (4) is permanent. Hence the theorem.�

Remark.

The conditions

E1 : a4

a2+1 − d1 > 0;

E2 : a7ŷ
1+a6ŷ

− d2 > 0,

guarantee that the boundary equilibrium points E1 and E2 are unstable.

6. Hopf Bifurcation at E∗(x∗, y∗, z∗)

The characteristic equation of the system (4) at E∗(x∗, y∗, z∗) is given by

λ3 +D1(a4)λ2 +D2(a4)λ+D3(a4) = 0, (5)

where

D1(a4) =
a3a4x

∗y∗

(1 + a3y∗)2(1 + a2x∗)
− a5a6y

∗z∗

(1 + a6y∗)2
+ x∗ − a1a2x

∗y∗

(1 + a3y∗)(1 + a2x∗)2
,

D2(a4) =
a5a7y

∗z∗

(1 + a6y∗)3
+

a3a4x
∗2y∗

(1 + a3y∗)(1 + a2x∗)
+

a1a2a5a6x
∗y∗2z∗

(1 + a3y∗)(1 + a2x∗)2(1 + a6y∗)2

+
a1x
∗y∗

(1 + a3y∗)3(1 + a2x∗)3
− a1a2a3a4x

∗2y∗2

(1 + a3y∗)3(1 + a2x∗)3
− a5a6x

∗y∗z∗

(1 + a6y∗)2
,

and

D3(a4) =
a5a7y

∗z∗

(1 + a6y∗)3

(
a1a2x

∗y∗

(1 + a3y∗)(1 + a2x∗)2
− x∗

)
.

In order to see the instability of system (4) let us consider a4 as bifurcation parameter. For this
purpose let us first state the following theorem.

Theorem 6.1 (Hopf Bifurcation Theorem (Murray (1989))).

If Di(a4), i = 1, 2, 3 are smooth functions of a4 in an open interval about a∗4 ∈ R such that the
characteristic equation (5) has
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(i) a pair of complex eigenvalues λ = α(a4) ± iβa4 (with α(a4), β(a4) ∈ R) so that they become
purely imaginary at a4 = a∗4 and dα

da4
|a4=a∗

4
6= 0,

(ii) the other eigenvalue is negative at a4 = a∗4, then a Hopf bifurcation occurs around E∗ at a4 = a∗4
(i.e., a stability change of E∗ accompanied by the creation of a limit cycle at a4 = a∗4).

Theorem 6.2.

System (4) possesses a Hopf bifurcation around E∗ when a4 passes through a∗4 provided
D1(a∗4), D2(a∗4) > 0 and D1(a∗4)D2(a∗4) = D3(a∗4).

Proof:

For a4 = a∗4, the characteristic equation of system (4) at E∗ becomes

(λ2 +D2)(λ+D1) = 0,

providing roots λ1 = i
√
D2, λ2 = −i

√
D2 and λ3 = −D1. Thus, there exists a pair of purely

imaginary eigenvalues and a strictly negative real eigenvalue. Also Di(i = 1, 2, 3) are smooth
functions of a4.

So, for a4 in a neighbourhood of a∗4, the roots have the form λ1(a4) = p1(a4) + ip2(a4),

λ2(a4) = p1(a4)− ip2(a4), λ3 = −p3(a4), where pi(a4), i = 1, 2, 3 are real.

Next we shall verify the transversality conditions:
d

da4
(Re(λi(a4)))|a4=a∗

4
6= 0, i = 1, 2.

Substituting λ = pi(a4) + ipi(a4) into the characteristic equation (5), we get

(p1 + ip2)3 +D1(p1 + ip2)2 +D2(p1 + ip2) +D3 = 0. (6)

Now, let us take derivative of both sides of (6) with respect to a4:

3(p1+ip2)2(ṗ1+iṗ2)+2D1(p1+ip2)(ṗ1+iṗ2)+Ḋ1(ṗ1+iṗ2)2+D2(ṗ1+iṗ2)+Ḋ2(ṗ1+iṗ2)+D3 = 0. (7)

Equating real and imaginary parts from the both sides of (7), we get

B1ṗ1 −B2ṗ2 +B3 = 0, (8)

and

B2ṗ1 +B1ṗ2 +B4 = 0, (9)

where

B1 = 3(p2
1 − p2

2) + 2D1p1 +D2, B2 = 6p1p2 + 2D1p2,

B3 = Ḋ1(p2
1 − p2

2) + Ḋ2p1 + Ḋ3 and B4 = 2Ḋ1p1p2 + Ḋ2p2.

13
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From (8) and (9), we get

ṗ1 = −B2B4 +B1B3

B2
1 +B2

2

. (10)

Now,

B3 = Ḋ1(p2
1 − p2

2) + Ḋ2p1 + Ḋ3 6= Ḋ1(p2
1 − p2

2) + Ḋ2p1 + Ḋ1D2 + Ḋ2D1.

At a4 = a∗4:

Case I:

p1 = 0, p2 =
√
D2,

B1 = −2D2, B2 = 2D1

√
D2, B3 6= Ḋ2D1, B4 = Ḋ2

√
D2.

Therefore,

B2B4 +B1B3 6= 2D1D2Ḋ2 − 2D1D2Ḋ2 = 0.

So, B2B4 +B1B3 6= 0 at a4 = a∗4, when p1 = 0, p2 =
√
D2.

Case II:

p1 = 0, p2 = −
√
D2,

B1 = −2D2, B2 = −2D1

√
D2, B3 6= Ḋ1Ḋ2, B4 = −Ḋ2

√
D2.

Therefore,

B2B4 +B1B3 6= 2D1D2Ḋ2 − 2D1D2Ḋ2 = 0.

So, B2B4 +B1B3 6= 0 at a4 = a∗4, when p1 = 0, p2 = −
√
D2.

Therefore,

d

da4
(Re(λi(a4)))|a4=a∗

4
= −B2B4 +B1B3

B2
1 +B2

2

|a4=a∗
4
6= 0,

and

−p3(a∗4) = −D1(a∗4) < 0.

Hence, by theorem (5), the result follows. �
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7. Effect of time-delay

In recent years, it is well understood that many of the processes, both natural and manmade, in
biology, medicine, etc., involve some of the past histories which lead to introduce time-delays in
the underlying model system. Time-delays occur so often, in almost every circumstances, that to
ignore them is to ignore reality. The time-delay or lag can represent gestation time, incubation
period, transport delay, or can simply lump complicated biological processes together, accounting
only for the time required for these processes to occur. Kuang (1993) clearly mentioned that ani-
mals must take time to digest their food before further activities and responses. Hence, any model
of species dynamics without time delay is an approximation at the best. In the last few decades,
mathematical models based on delay differential equations (DDEs) have become more popular,
appearing in many areas of mathematical biology. In general, delay differential equations (DDEs)
exhibit much more complicated dynamics compare to ordinary differential equations (ODEs). A
time-delay could cause a stable equilibrium to become unstable and cause the population to fluc-
tuate. Detailed explanation on importance and usefulness of time-delay in realistic models may be
found in the classical books of Macdonald (1989), Gopalsamy (1992), and Kuang (1993). Let us
consider the model (4) with a discrete time-delay as follows:

dx

dt
= x(1− x)− a1xy

(1 + a2x)(1 + a3y)
,

dy

dt
=

a4xy

(1 + a2x)(1 + a3y)
− d1y −

a5yz

1 + a6y
,

dz

dt
=

a7y(t− τ)z

1 + a6y(t− τ)
− d2z,

(11)

with

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0.

System (11) has same equilibrium points as in system (4) mentioned in section 4. The
eigenvalues corresponding to the variational matrix of the boundary equilibrium points
E0(0, 0, 0), E1(1, 0, 0), E2(x̂, ŷ, 0) are same as in the case without delay. Consequently, the boundary
equilibrium points of (4) and (11) behave alike with respect to local stability.

We now study the stability behavior of E∗(x∗, y∗, z∗) in presence of delay (τ 6= 0). Let us linearize
system (11) using the following transformations:

x = x∗ + u, y = y∗ + v, z = z∗ + w.

Then, the linear system is given by

dV

dt
= A1V (t) +B1V (t− τ), (12)

with

V = [u, v, w]T ,
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A1 =

 c11 c12 0

c21 c22 c23

0 0 0

 , B1 =

0 0 0

0 0 0

0 d32e
−λτ 0

 ,
where

c11 = −x∗ +
a1a2x

∗y∗

(1 + a3y∗)(1 + a2x∗)2
, c12 = − a1x

∗

(1 + a2x∗)(1 + a3y∗)2
,

c21 =
a4y
∗

(1 + a2x∗)2(1 + a3y∗)
, c22 = − a3a4x

∗y∗

(1 + a3y∗)2(1 + a2x∗)
+

a5a6y
∗z∗

(1 + a6y∗)2
,

c23 = − a5y
∗

(1 + a6y∗)
, d32 =

a7z
∗

(1 + a6y∗)2
.

Let us choose solution of (11) in the form: V (t) = ρeλt, 0 6= ρ ∈ R3. Then, the characteristic
equation is

λ3 + P1λ
2 + P2λ+ P3(λ+ P4)e−λτ = 0, (13)

where

P1 = −(c11 + c22), P2 = c11c22 − c12c21, P3 = −c23d32 and P4 = c11c23d32.

The system (11) is asymptotically stable in presence of delay if (i) equation (13) has no purely
imaginary roots and (ii) it is asymptotically stable for τ = 0. Otherwise, there exists τ = τ0, where
change of stability occurs. For τ = 0, E∗ is asymptotically stable if conditions of Theorem 4.4.
are satisfied. Now we want to determine if the real part of some roots increases to reach zero and
eventually becomes positive as τ varies or vice versa (that is, real parts of all roots decrease and
become negative). For this we substitute λ = η+ iω in (13) and separating real and imaginary parts,
we get

η3 − 3ηω2 + P1 (η2 − ω2) + P2η + P3 {(η + P4) cos ωτ + ω sin ωτ} e−ητ = 0, (14)

and

3η2ω − ω3 + 2ηωP1 + P2ω + P3 {ω cos ωτ − (η + P4) sin ωτ} e−ητ = 0. (15)

Now, we check whether equation (13) have purely imaginary roots or not. So, we set η = 0. Then,
(14) and (15) become

−P1ω
2 + P3 {P4 cos ωτ + ω sin ωτ} = 0, (16)

and

−ω3 + P2ω + P3 {ω cos ωτ − P4 sin ωτ} = 0. (17)

Eliminating τ from (16) and (17), we get the equation for determining ω as

ω6 + (p2
1 − 2P2)ω4 + (P 2

2 − P 2
3 )ω2 − P 2

4P
2
3 = 0. (18)
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Substituting ω2 = α in (18), we get a cubic equation given by

α3 +R1α
2 +R2α+R3 = 0, (19)

where

R1 = (P 2
1 − 2P2), R2 = (P 2

2 − P 2
3 ), R3 = −P 2

4P
2
3 .

Since R3 < 0, so equation (19) has at least one positive root.

Theorem 7.1.

Equation α3+R1α
2+R2α+R3 = 0 has exactly three positive roots if β2

1−4β3
0 ≤ 0, R1 < 0 andR2 >

0, otherwise it has only one positive real root, where β0 = R2
1− 3R2, and β1 = 3R1β0−R3

1 + 27R3.

Proof:

Since β2
1−4β3

0 ≤ 0, so the equation (19) has three real roots. Now R3 < 0 implies that it has at least
one positive root. Other two roots are real and positive or real and negative. Let α0 be a positive
real root of equation (19). Then, other two roots of the equation (19) are obtained from

α2 + (R1 + α0)α+R2 +R1α0 + α2
0 = 0. (20)

Now we prove that equation (20) have two positive roots if R1 < 0. If possible, let R1 > 0. Then,
sum of two positive roots is equal to −(R1 + α0) < 0, which is impossible. Hence, R1 < 0. So by
Decartes’ rule of sign equation (20) has three positive real roots if R2 > 0. Hence, the theorem. �

Theorem 7.2.

Let α0 be a positive real root of equation (19). Then, (19) has

(i) exactly one real positive root, two imaginary roots if γ(α0) > R2
1 − 3R2,

(ii) one positive, two negative real roots if γ(α0) < R2
1−3R2, R2 +R1α0 +α2

0 > 0 and R1 +α0 > 0,

(iii) three positive real roots if γ(α0) < R2
1 − 3R2, R2 + R1α0 + α2

0 > 0 and R1 + α0 < 0, where
γ(α) = 3α2 + 2αR1 +R2.

Proof:

Since R3 < 0, so it has at least one positive real root α0 (say).

Other two roots of (19) are obtained from

α2 + (R1 + α0)α+R2 +R1α0 + α2
0 = 0.

Then,

α =
−(R1 + α0)±

√
R2

1 − 3R2 − γ(α0)

2
.

Thus, if (i) holds, then equation (19) have one real positive root, two imaginary roots. If (ii) holds,
then it has one positive, two negative roots. Finally, if (iii) holds, then (19) has three positive real
roots. �
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Now we state a lemma which was proved by R Ruan and Wei (2003).

Theorem 7.3.

Consider the exponential polynomial:

Q(λ, e−λτ1 , ..., e−λτm) = λn +Q
(0)
1 λn−1 + ...+Q

(0)
n−1λ+Q(0)

n

+
[
Q

(1)
1 λn−1 + ...+Q

(1)
n−1λ+Q(1)

n

]
e−λτ1

+...+
[
Q

(m)
1 λn−1 + ...+Q

(m)
n−1λ+Q(m)

n

]
e−λτm ,

where τi ≥ 0 (i = 1, 2, ..,m) and Q(i)
j (i = 0, 1, ...,m; j = 1, 2, ..., n) are constants. As (τ1, τ2, .., τm)

vary, the sum of the orders of the zeros of Q(λ, e−λτ1 , ..., e−λτm) on the open half plane can change
only if a zero appears on or crosses the imaginary axis.

Then, we show the existence of Hopf bifurcation near E∗ by taking τ as bifurcation parameter.

Theorem 7.4.

Let E∗ exists and the equation (19) has exactly one positive root, say α0 = ω2
0. Then, there exists a

τ = τ∗ such that E∗ is asymptotically stable when τ ∈ [0, τ∗) and unstable when τ > τ∗, where

τ∗j =
1

ω0
arccos

ω2
0(ω2

0 + P1P4 − P2)

P3(ω2
0 + P 2

4 )
+

2jπ

ω0
, j = 0, 1, 2 · · · (21)

and τ∗ = min
j≥0

τ∗0 . In other words, system (11) exhibits a supercritical Hopf bifurcation near E∗ for

τ = τ∗.

Proof:

For τ = 0, the real parts of all the roots of the characteristic equation (13) are negative. Now, the
equation (13) has exactly one pair of purely imaginary roots when τ = τ∗j .

It is easy to see that when τ 6= τ∗j , j = 0, 1, 2, · · · , equation (13) has no root with zero real part, and
it has exactly one pair of purely imaginary roots when τ = τ∗j . Now, τ∗ is the minimum value of
τ∗j for j = 0, 1, 2, · · · and so, by Lemma 7.3., we conclude that all roots of (13) have negative real
parts when τ ∈ [0, τ∗). That is, E∗ is stable for τ < τ∗.

When τ = τ∗, the characteristic equation (13) has a pair of purely imaginary roots and the under-
lying system loses its stability. It is noted that[

dη

dτ

]
τ=τ∗

=
α0γ(α0)

A2
3 +B2

3

=
ω2

0γ(ω2
0)

A2
3 +B2

3

,

where

A3 = −3ω2
0 + P2 + P3(1− P4τ

∗) cosω0τ
∗ − P3ω0τ

∗ sinω0τ
∗,

B3 = −2P1ω0 + P3(1− P4τ
∗) sinω0τ

∗ + P3ω0τ
∗ cosω0τ

∗.
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Since equation (19) has only one positive root α0, therefore, other two roots of the equation are
either negative or complex conjugates. Now we prove that, in both cases, γ(ω2

0) > 0.

First we assume that other two roots of (13) are negative, say −α3,−α4 (so that α3 > 0, α4 > 0).

Then,

f(α) ≡ α3 +R1α
2 +R2α+R3 = (α− α0)(α+ α3)(α+ α4),

γ(ω2
0) = f ′(α0) = 3α2

0 + 2R1α0 +R2 = (α0 + α3)(α0 + α4) > 0. (22)

Next we assume that other two roots of (13) are complex conjugates, say α5 ± iα6. Then,

f(α) = α3 +R1α
2 +R2α+R3 = (α− α0){(α− α5)2 + α2

6},

γ(ω2
0) = f/(α0) = 3α2

0 + 2R1α0 +R2 = (α0 − α5)2 + α2
6 > 0.

So by Rouche’s Theorem, when τ > τ∗, the characteristic equation (13) will have at least one root
with positive real part, then the underlying system becomes unstable. That is, system (11) exhibits
a Hopf-bifurcation near E∗ for τ = τ∗. �

Theorem 7.5.

Let E∗ exists with D1 > 0, D3 > 0 and D1D2 − D3 > 0. Let the equation (19) has three positive
real roots α0 = ω2

0, α1 = ω2
1, α2 = ω2

2 such that ω2
1 is lying between ω2

0 and ω2
2. Also let

τ
(i)
j =

1

ωi
arccos

ω2
i (ω

2
i + P1P4 − P2)

P3(ω2
i + P 2

4 )
+

2jπ

ωi
, i = 0, 1, 2; j = 0, 1, 2, · · · ,

τ+
k = min{τ (i)

k : i = 0, 1, 2}, τ−k = τ
(1)
k , τ∗k = max{τ (i)

k : i = 0, 1, 2}, k = 0, 1, 2, ....

(i) If τ+
0 < τ−0 < τ+

1 < τ−1 < · · · < τ+
k < τ∗0 < τ−k , then E∗ is asymptotically stable when

τ ∈ [0, τ+
0 ), (τ−0 , τ

+
1 ), · · · , (τ−k−1, τ

+
k ) and unstable when τ ∈ [τ+

0 , τ
−
0 ), [τ+

1 , τ
−
1 ), · · · , [τ+

k−1, τ
−
k−1),

τ ≥ τ+
k .

(ii) If τ+
0 < τ−0 < τ+

1 < τ−1 < · · · < τ+
k < τ−k < τ∗0 < τ+

k+1, then E∗ is asymptotically stable
when τ ∈ [0, τ+

0 ), (τ−0 , τ
+
1 ), · · · , (τ−k−1, τ

+
k ), (τ−k , τ

∗
0 ) and unstable when τ ∈ [τ+

0 , τ
−
0 ), [τ+

1 , τ
−
1 ), · · · ,

[τ+
k , τ

−
k ), τ ≥ τ∗0 .

(iii) If τ+
0 < τ−0 < τ+

1 < τ−1 < · · · < τ+
k < τ+

k+1 < τ−k , then E∗ is asymptotically stable when
τ ∈ [0, τ+

0 ), (τ−0 , τ
+
1 ), · · · , (τ−k−1, τ

+
k ), and unstable when τ ∈ [τ+

0 , τ
−
0 ), [τ+

1 , τ
−
1 ), · · · , [τ+

k−1, τ
−
k−1),

τ ≥ τ+
k .

Proof:

For τ = 0, real parts of all roots of the characteristic equation (13) are negative (see Theorem 4.4.).

Now the equation (19) has exactly three positive roots. In other words, equation (13) has purely
imaginary roots when τ = τ+

k , τ = τ−k , τ = τ∗k , k = 0, 1, 2, · · · . Since τ+
k < τ−k < τ∗k , by Lemma , we

19

Mondal et al.: Food Chain Model with Crowley-Martin Response Function

Published by Digital Commons @PVAMU, 2018



728 A. Mondal et al.

conclude that real parts of all roots of the characteristic equation (13) still remain negative when
τ < τ+

0 . That is, E∗ is stable in [0, τ+
0 ). When τ takes any one of the values among τ+

k , τ
−
k , τ

∗
k , the

system loses its stability.

Now, we have the following two possible cases:

a)

[
dη
dτ

]
τ=τ+

k

= α0γ(α0)

A2
0(τ+

k )+B2
0(τ+

k )
= ω2

0γ(ω2
0)

A2
0(τ+

k )+B2
0(τ+

k )
,

[
dη
dτ

]
τ=τ∗

k

= α2γ(α2)
A2

2(τ∗
k )+B2

2(τ∗
k ) = ω2

2γ(ω2
2)

A2
2(τ∗

k )+B2
2(τ∗

k ) ,

or

b)

[
dη
dτ

]
τ=τ+

k

= α2γ(α2)

A2
2(τ+

k )+B2
2(τ+

k )
= ω2

2γ(ω2
2)

A2
2(τ+

k )+B2
2(τ+

k )
,

[
dη
dτ

]
τ=τ∗

k

= α0γ(α0)
A2

0(τ∗
k )+B2

0(τ∗
k ) = ω2

0γ(ω2
0)

A2
0(τ∗

k )+B2
0(τ∗

k ) .

Also [
dη

dτ

]
τ=τ−

k

=
α1γ(α1)

A2
1(τ−k ) +B2

1(τ−k )
=

ω2
1γ(ω2

1)

A2
1(τ−k ) +B2

1(τ−k )
.

Here,
Ai(τ) = −3ω2

i + P2 + P3(1− P4τ) cosωiτ − P3ωiτ sinωiτ, i = 0, 1, 2,

and

Bi(τ) = −2P1ωi + P3(1− P4τ) sinωiτ + P3ωiτ cosωiτ, i = 0, 1, 2.

Since, ω2 (i = 0, 1, 2) are roots of (19), so we rewrite the left side of equation (19) as

f(α) = α3 +R1α
2 +R2α+R3 =

2∏
i=0

(α− ω2
i ).

Then,

γ(α) =
df

dα
= 3α2 + 2R1α+R2 = (α− ω2

0)(α− ω2
1) + (α− ω2

0)(α− ω2
2) + (α− ω2

1)(α− ω2
2).

So,

γ(ω2
0) > 0, γ(ω2

1) < 0, γ(ω2
2) > 0.

Hence, real part of at least one root of equation (13) becomes positive when τ > τ+
k and τ < τ−k and

all roots of (13) have negative real part when τ ∈ (τ−k−1, τ
+
k ). Hence, if the conditions of (i) hold,

then system is stable when τ ∈ (τ−0 , τ
+
1 ), · · · , (τ−k−1, τ

+
k ) and unstable when τ ∈ [τ+

0 , τ
−
0 ), [τ+

1 , τ
−
1 ),

· · · , [τ+
k−1, τ

−
k−1).

It is easy to see that,
[
dη
dτ

]
τ=τ+

k

is positive. Also
[
dη
dτ

]
τ=τ∗

0

is positive. So the system is unstable

when τ ≥ τ+
k .

Hence, (i) is proved.

In an analogous manner, (ii) and (iii) can be proved. �
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8. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained the conditions under which the Hopf bifurcation occurs. In
this section, we shall derive the direction of the Hopf bifurcation and sufficient conditions of the
stability of bifurcating periodic solution from the positive equilibrium E∗ of the system (4) at the
critical value τ = τ∗. We will utilize the approach of the normal form method and center manifold
theorem introduced by Hassard et al. (1981).

Let x1 = x−x∗, x2 = y−y∗, x3 = z−z∗, τ = τ∗+µ,where τ∗ is defined by (21) and µ ∈ R.Dropping
the bars for simplification of notation, system (11) can be written as functional differential equation
(FDE) in C = C([−1, 0],R3) as

˙x(t) = Lµ(xt) + f(µ, xt), (23)

where x(t) = (x1, x2, x3)T ∈ R3, and Lµ : C → R, f : R× C → R are given, respectively, by

Lµ(ψ) = (τ∗ + µ)

 c11 c12 0

c21 c22 c23

0 0 0


ψ1(0)

ψ2(0)

ψ3(0)

+ (τ∗ + µ)

0 0 0

0 0 0

0 d32 0


ψ1(−1)

ψ2(−1)

ψ3(−1)

 , (24)

f(µ, ψ) = (τ∗ + µ)


−ψ2

1(0)− a1ψ1(0)ψ2(0)
(1+a2ψ1(0))(1+a3(0)ψ2(0))

a4ψ1(0)ψ2(0)
(1+a2ψ1(0))(1+a3(0)ψ2(0)) −

a5ψ2(0)ψ3(0)
(1+a6ψ2(0))

a7ψ2(−1)ψ3(0)
(1+a6ψ2(−1))

 . (25)

By the Riesz representation theorem, there exists a (3 × 3) matrix, η(θ, µ)(−1 ≤ θ ≤ 0), where
elements are bounded variation function such that

Lµψ =

∫ 0

−1
dη(θ, µ)ψ(θ), for ψ ∈ C. (26)

In fact, we can choose

η(θ, µ) = (τ∗ + µ)

 c11 c12 0

c21 c22 c23

0 0 0

 δ(θ)− (τ∗ + µ)

0 0 0

0 0 0

0 d32 0

 δ(θ + 1), (27)

where δ is the Direc delta function defined by

δ(θ) =

{
0, θ 6= 0,

1, θ = 0.
(28)

For ψ ∈ C1([−1, 0],R3), define the operator A(µ) as
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A(µ)ψ(θ) =

{
dψ(θ)
dθ , θ ∈ [−1, 0),∫ 0
−1 dη(µ, s)ψ(s), θ = 0,

(29)

R(µ)ψ(θ) =

{
0, θ ∈ [−1, 0),

f(µ, ψ), θ = 0.

Then, the system (23) is equivalent to

ẋ(t) = A(µ)xt +R(µ)xt, (30)

where xt(θ) = x(t+ θ) for θ ∈ [−1, 0]. For φ ∈ C1([0, 1], (R3)∗), define

A∗φ(s) =

{−dφ(s)
ds , s ∈ [−1, 0),∫ 0
−1 dη

T (t, 0)φ(−t), s = 0,
(31)

and a bilinear inner product

< φ(s), ψ(θ) >= φ̄(0)ψ(0)−
∫ 0

−1

∫ θ

ξ=0
φ̄(ξ − θ)dη(θ)ψ(ξ)dξ, (32)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. we know that ±iτ∗ are eigenvalues
of A(0). Thus, they are also eigenvalues of A∗. We first need to compute the eigenvalues of A(0)

and A∗ corresponding to +iτ∗ω0 and −iτ∗ω0 respectively.

Suppose that q(θ) = (1, q1, q2)T eiθω0τ∗ , is the eigenvector of A(0) corresponding to iτ∗ω0. Then,
A(0)q(θ) = iτ∗ω0q(θ). It follows from the definition of A(0) and (24),(26) and (27) that

τ∗

 iω0 + c11 c12 0

c21 iω0 + c22 c23

0 d32e
−iω0τ∗

iω0

 q(0) =

0

0

0

 . (33)

Thus, we can easily obtain

q(0) = (1, q1, q2)T , (34)

where

q1 =
iω0 + c11

c12
and q2 =

d32

c12
(iω0 + c11)e−iω0τ∗

.
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Similarly, let q∗(s) = D(1, q∗1, q
∗
2)T eisω0τ∗ be the eigenvector of A∗ corresponding to −iω0τ

∗. By the
definition of A∗, we can compute

q∗(s) = D(1, q∗1, q
∗
2)T eisω0τ∗

= D

(
1,

(−iω0 + c11)

c12
,
d32

c12
(−iω0 + c11)e−iω0τ∗

)
. (35)

In order to assure < q∗(s), q(θ) >= 1, we need to determine the value of D. From (32), we have

< q∗(s), q(θ) > = D̄(1, q̄∗1, q̄
∗
2)(1, q1, q2)T −

∫ 0
−1

∫ θ
ξ=0 D̄(1, q̄∗1, q̄

∗
2)eiω0τ∗(ξ−θ)dη(θ)(1, q1, q2)T eiω0ξτ∗

dξ

= D̄{1 + q1q̄
∗
1 + q2q̄

∗
2 −

∫ 0
−1(1, q̄∗1, q̄

∗
2)θeiω0θτ∗

dη(θ)(1, q1, q2)T }
= D̄{1 + q1q̄

∗
1 + q2q̄

∗
2 + τ∗q∗2q1d32e

−iω0τ∗}.
(36)

Thus, we can choose D̄ as

D̄ = 1
{1+q1q̄∗1+q2q̄∗2+τ∗q∗2q1d32e

−iω0τ
∗}

D = 1
{1+q̄1q∗+q̄2q∗+τ∗q∗2q1d32e

iω0τ
∗} .

(37)

In the remainder of this section, we use the theory of Hassard et al. (1981) to compute the condi-
tions describing center manifold C0 at µ = 0. Let xt be the solution of (30) when µ = 0.

Define

z(t) =< q∗, xt >,W (t, θ) = xt(θ)− 2Re{z(t)q(θ)}. (38)

On the center manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ), (39)

where

W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ ... (40)

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that W is
real if xt is real. We only consider real solutions. For solution xtC0 of (30). Since µ = 0, we have,

ż(t) = iω0τ
∗z + q̄∗(0)f(0,W (z, z̄, θ)) + 2Rezq(θ) =def iω0τ

∗z + q̄∗(0)f(z, z̄). (41)

We rewrite this equation as

ż(t) = iω0τ
∗z(t) + g(z, z̄), (42)
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where
g(z, z̄) = q̄∗(0)f0(z, z̄)

= g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2z̄
2 + ....

(43)

We have xt(θ) = (x1t(θ), x2t(θ), x3t(θ)) and q(θ) = (1, q1, q2)T eiθω0τ∗ so from (38) and (40) it follows
that

xt(θ) = W (t, θ) + 2Rez(t)q(t)

= W20
z2

2 +W11zz̄ +W02
z̄2

2 + (1, q1, q2)T eiω0τ∗
z + (1, q̄1, q̄2)T e−iω0τ∗

z̄ + ...

and then, we have

x1t(0) = z + z̄ +W
(1)
20

z2

2 +W
(1)
11 zz̄ +W

(1)
02

z̄2

2 + ... ,

x2t(0) = q1z + q̄1z̄ +W
(2)
20

z2

2 +W
(2)
11 zz̄ +W

(2)
02

z̄2

2 + ... ,

x3t(0) = q2z + q̄2z̄ +W
(3)
20

z2

2 +W
(3)
11 zz̄ +W

(3)
02

z̄2

2 + ... ,

(44)

x1t(−1) = ze−iω0τ∗
+ z̄eiω0τ∗

+W
(1)
20

z2

2 +W
(1)
11 zz̄ +W

(1)
02

z̄2

2 + ... ,

x2t(−1) = q1ze
−iω0τ∗

+ q̄1z̄e
iω0τ∗

+W
(2)
20

z2

2 +W
(2)
11 zz̄ +W

(2)
02

z̄2

2 + ... ,

x3t(−1) = q2ze
−iω0τ∗

+ q̄2z̄e
iω0τ∗

+W
(3)
20

z2

2 +W
(3)
11 zz̄ +W

(3)
02

z̄2

2 + ... .

It follows from together with (25) that

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄∗(0)f(0, xt)

= τ∗D̄(1, q̄1
∗, q̄2

∗)


x1t2(0)− a1x1t(0)x2t(0)

(1+a2x1t(0))(1+a3x2t(0))
a4x1t(0)x2t(0)

(1+a2x1t(0))(1+a3x2t(0)) −
a5x2t(0)x3t(0)
(1+a6x2t(0))

a7x2t(−1)x3t(0)
(1+a6x2t(−1))



= τ∗D̄[(1− a1q1 + a4q
∗
1q1 − a5q

∗
1q1q2) + a7q

∗
2q1q2e

−iω0τ∗
z2

+(2− 2a1Re(q1) + 2a4q
∗
1Re(q1)− 2a5q

∗
1Re(q1q̄2)) + 2a4q

∗
2Re(q2q̄1)zz̄

+(1− a1q̄1 + a4q
∗
1q1 − a5q

∗
1 q̄1q̄2) + a7q

∗
2 q̄1q̄2e

−iω0τ∗
z̄2 + {(W (1)

20 (0) + 2W
(1)
11 (0)

−a1

2
q̄1W

(1)
20 (0)− a1

2
W

(1)
20 (0)− a1q1W

(1)
11 (0)− a1W

(2)
11 (0) + a1a2q1 + 2a1a3 | q1 |2

+2a1a2Re(q1)a1a3q
2
1) + q∗1(

a4

2
W

(1)
20 (0) +

a4

2
W

(2)
20 (0) + a4W

(1)
11 (0)q1 + a4W

(2)
11 (0)

−a2a4q1 − a3a4q̄1 − 2a2a4Re(q1)− 2a3a4q1Re(q1)− a5

2
q̄2W

(2)
20 (0)− a5

2
q̄1W

(3)
20 (0)

−a5q2W
(2)
11 (0)− a5q1W

(3)
11 (0) + a5a6 | q1 |2 q2 + 2a5a6q1Re(q1q̄2))

+q̄2
∗(
a7

2
W

(3)
20 (0)q̄1e

iω0τ∗ a7

2
W

(2)
20 (−1)q̄2 + a7W

(3)
11 (0)q1e

−iω0τ∗
+ a7W

(2)
11 (−1)q2
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−a6a7 | q1 |2 q2e
−iω0τ∗ − 2a6a7q1Re(q2q̄1))}z2z̄]. (45)

Comparing the coefficients with (43) that, we get

g20 = 2τ∗D̄[(1− a1q1) + q̄1
∗(a4q1 − a5q1q2) + q̄2

∗a7q1q2e
−iω0τ∗

]

g11 = 2τ∗D̄[(1− a1Re(q1)) + q̄1
∗(a4Re(q1)− a5Re(q1q̄2)) + q̄2

∗a7Re(q̄1q2)]

g02 = 2τ∗D̄[(1− a1q̄1) + q̄1
∗(a4q̄1 − a5q̄1q̄2) + q̄2

∗a7q̄1q̄2e
iω0τ∗

]

g21 =τ∗D̄[{(2− a1q̄1)W
(1)
20 (0) + 2(1− a4q1)W

(1)
0 (0)− a1(W

(1)
20 (0) + 2W

(1)
11 (0))

+ 2a1a2(q1 + 2Re(q1)) + 2a1a3(q2
1 + 2 | q1 |2)}+ q̄1

∗{a4(2W
(1)
11 (0)q1 +W

(1)
20 (0)q̄1 +W

(2)
20 (0)

+ 2W
(2)
11 (0))− a5(W

(2)
20 (0)q̄2 + 2W

(2)
11 (0)q2 +W

(3)
20 (0)q̄1 + 2W

(2)
11 (0)q̄1)

− 2a2a4(q1 + 2Re(q1))− 2a3a4(q̄1 + 2q1Re(q1)) + 2a5a6(| q1 |2 q2 + 2q1Re(q1q̄2))}

+ q̄2
∗a7(W

(1)
20 (−1)q̄1 + 2W

(2)
11 (−1)q2 +W

(2)
20 (0)q̄1e

iω0τ∗
)

− 2a6a7(| q1 |2 e−iω0τ∗
+ 2q1Re(q2q̄1))].

(46)

Since these are W20(θ) and W11(θ) in g21, we still need to compute them. From (30) and (38), we
have

Ẇ = ẋt − żq − ˙̄zq̄ =

{
AW − 2Req̄∗f0q(θ), θ ∈ [−1, 0)

AW − 2Req̄∗f0q(θ) + f0, if θ = 0.
(47)

By definition = AW +H(z, z̄, θ), where

H(z, z̄, θ) = H10(θ)
z2

2
+H11(θ)zz̄ +H02

z̄

2
+ ... . (48)

Substituting the corresponding series into (47) and comparing the coefficients, we obtain

(A− 2iω0τ
∗)W20 = −H20(θ), AW11(θ) = −H11(θ). (49)

From (47), we know that for θ ∈ [−1, θ),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (50)

Comparing the coefficients with (48) ,we get

H20(θ) = −g20(θ)q(θ)− ḡ02(θ)q̄(θ), (51)

Ḣ11(θ) = −g11(θ)q(θ)− ḡ11(θ)q̄(θ). (52)

From (49) and (51) and the definition of A, it follows that

Ḣ20(θ) = 2iω0τ
∗W20(θ) + g20(θ)q(θ) + ḡ02(θ)q̄(θ). (53)

Notice that q(θ) = (1, β, γ)T eiω0τ∗θ, hence

W20(θ) =
ig20

ω0τ∗
q(0)eiω0τ∗θ +

iḡ20

3ω0tau∗
q̄0e
−iω0τ∗θ + E1e

2iω0τ∗θ, (54)
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where E1 = (E1
1 , E

2
1 , E

3
1) ∈ R3 is a constant vector.

Similarly, from (49) and (52), we obtain

W11(θ) = − ig11

ω0τ∗
q(0)eiω0τ∗θ +

iḡ11

3ω0tau∗
q̄0e
−iω0τ∗θ + E2, (55)

where E2 = (E1
2 , E

2
2 , E

3
2) ∈ R3 is also a constant vector.

In what follows, are will seek appropriate E1 and E2 .From the definition of a A and (49), we obtain

∫ 0

−1
dη(θ)W20(θ) = 2iω0τ

∗W20(0)−H20(0), (56)

∫ 0

−1
dη(θ)W11(θ) = −H11(0), (57)

where η(θ) = η(0, θ). By (47), we have

H20(0) = −g20q(0)− ḡ02q̄0 + 2τ∗

 −1 + a1q1
(1+a3)(1+a2)

a4q1
(1+a2)(1+a3) −

a5q1q2
1+a6

a7q1q2
(1+a6)e

−2iω0τ∗

 , (58)

H11(0) = −g11q(0)− ḡ11q̄0 + 2τ∗


−1 + a1Re(q1)

(1+a3)(1+a2)
a4Re(q1)

(1+a2)(1+a3) −
a5Re(q1q̄2)

1+a6

a7Re(q1q̄2)
(1+a6)

 . (59)

Substituting (54) and (58) into (56) and noting that

(iω0τ
∗I −

∫ 0

−1
eiω0τ∗θdη(0))q(0) = 0, (60)

(−iω0τ
∗I −

∫ 0

−1
e−iω0τ∗θdη(0)) ¯q(0) = 0,

we obtain

(
iω0τ

∗I −
∫ 0

−1
eiω0τ∗θdη(0)

)
E1 = 2τ∗

B
(1)
1

B
(2)
1

B
(3)
1

 , (61)

where
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B
(1)
1 = −1 +

a1q1

(1 + a3)(1 + a2)
, B

(2)
1 =

a4q1

(1 + a2)(1 + a3)
− a5q1q2

1 + a6
, B

(3)
1 =

a7q1q2

(1 + a6)
e−2iω0τ∗

.

This leads to 2iω0 − c12 −c12 0

c21 2iω0 − c22 −c23

0 −d32e
iω0τ∗

2iω0

E1 = 2

B
(1)
1

B
(2)
1

B
(3)
1

 . (62)

E1
1 =

2

A

∣∣∣∣∣∣∣
B

(1)
1 −c12 0

B
(2)
1 2iω0 − c22 −c23

B
(3)
1 −d32e

2iω0τ∗
2iω0

∣∣∣∣∣∣∣ ,

E2
1 =

2

A

∣∣∣∣∣∣∣
2iω0 − c11 B

(1)
1 0

−c21 B
(2)
1 −c23

0 B
(3)
1 2iω0

∣∣∣∣∣∣∣ ,

E3
1 =

2

A

∣∣∣∣∣∣∣
2iω0 − c11 −c12 B

(1)
1

−c21 2iω0 − c22 B
(2)
1

0 −d32e
2iω0τ∗

B
(3)
1

∣∣∣∣∣∣∣ , (63)

where

A =

∣∣∣∣∣∣∣
2iω0 − c12 −c12 0

c21 2iω0 − c22 −c23

0 −d32e
iω0τ∗

2iω0

∣∣∣∣∣∣∣ . (64)

Similarly, substituting (53) and (59) into (57), we get

2iω0 − c12 −c12 0

c21 2iω0 − c22 −c23

0 −d32e
iω0τ∗

2iω0

E2 = 2

B
(1)
2

B
(2)
2

B
(3)
2

 , (65)

where

B
(1)
2 = −1 +

a1Re(q1)

(1 + a3)(1 + a2)
, B

(2)
1 =

a4Re(q1)

(1 + a2)(1 + a3)
− a5Re(q1q2)

1 + a6
,

B
(3)
1 =

a7Re(q1q2)

(1 + a6)
e−2iω0τ∗

.
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E1
2 =

2

B

∣∣∣∣∣∣∣
B

(1)
2 −c12 0

B
(2)
2 2iω0 − c22 −c23

B
(3)
2 −d32 0

∣∣∣∣∣∣∣ ,

E2
2 =

2

B

∣∣∣∣∣∣∣
2iω0 − c11 B

(1)
2 0

−c21 B
(2)
2 −c23

0 B
(3)
1 0

∣∣∣∣∣∣∣ ,

E3
2 =

2

B

∣∣∣∣∣∣∣
2iω0 − c11 −c12 B

(1)
2

−c21 2iω0 − c22 B
(2)
2

0 −d32 B
(3)
2

∣∣∣∣∣∣∣ , (66)

where

B =

∣∣∣∣∣∣∣
2iω0 − c11 −c12 0

c21 2iω0 − c22 −c23

0 −d32 2iω0

∣∣∣∣∣∣∣ . (67)

Thus, we determine W20(θ) and W11(θ) from (54) and (59) into (58). Furthermore, g21 in (46) can
be expressed by the parameters and delay. Thus, we can compute the following values:

c1(0) = i
2ω0τ∗ (g20g11 − 2 | g11 |2 −2|g12|2

3 ) + g11
2 ,

γ2 = −Re{c1(0)}
Re{ξ́(τ∗)}

,

β2 = 2Re{c1(0)}, T2 = − Imc1(0)+γ2Imξ́(τ∗)
ω0τ∗ .

(68)

which determines the qualities of bifurcating periodic solution in the centre manifold at the critical
value τ∗.

9. Numerical Simulation

Analytical studies can never be justified without numerical verification of the derived results. In
this section, we present computer simulation of different solutions of system (4) using MATLAB.

First let us take the value of the parameters of system (4) as a1 = 0.2, a2 = 0.3, a3 = 0.17, a4 =

0.4, d1 = 0.38, a5 = 1.9, a6 = 1.5, a7 = 0.09, d2 = 0.3. Then, the conditions of Theorem 4.2.
are satisfied and consequently E1(1, 0, 0) is locally asymptotically stable (see Figure 1). Also we
take the parameters of the system as a1 = 0.2, a2 = 0.3, a3 = 0.17, a4 = 0.4, d1 = 0.25, a5 =

0.2, a6 = 0.2, a7 = 0.3, d2 = 0.2. Then, the conditions of Theorem 4.3. are satisfied and conse-
quently E2(x̂, ŷ, 0) is locally asymptotically stable (see Figure 2). Next, we take the parameters as
a1 = 0.2, a2 = 0.1, a3 = 0.05, a4 = 0.45, d1 = 0.25, a5 = 0.2, a6 = 0.2, a7 = 0.3, d2 = 0.2. Then, con-
ditions are satisfied, and hence E∗(0.8791, 0.7692, 0.5778) exists. Also the conditions of Theorem
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4.4. are satisfied. Consequently, E∗ is locally asymptotically stable. The phase portrait is shown
Figure 3. The stable behaviour of x, y, z with t is presented in Figure 4.

It is noted that the conversion rate (a4) of the prey populations has a great influence in the dynamic
of system (4). It undergoes a Hopf-bifurcation around E∗ at a∗4 = 1.9890. Figures 5 and 6 show
stable phase portrait and stable behaviour of x, y, z in time of system (4) respectively when the
value of the parameter a4 is less than its critical value a∗4, i.e. when a4 = 1.2 < a∗4 = 1.9890. Figures
7 and 8 depict the unstable phase portrait and unstable behaviour of x, y, z in time respectively of
system (4) when a4 = 3.5 > a∗4 = 1.9890, values of other parameters remain same. Conditions of
Theorem 6.2. are fulfilled.

It has already been mentioned that the stability criteria in absence of delay (τ = 0) will not neces-
sarily guarantee the stability of system (11) in presence of delay (τ 6= 0). If we choose the value
of the parameters of system (11) as a1 = 0.15, a2 = 0.1, a3 = 0.05, a4 = 0.45, d1 = 0.25, a5 =

0.2, a6 = 0.2, a7 = 0.3, d2 = 0.2, then equation (19) has one positive and two imaginary roots, and
Hopf-bifurcation occurs at τ = τ∗0 = 1.79 . For τ = 1.6 < τ∗0 , we see that E∗(0.8791, 0.7692, 0.5778)

is asymptotically stable (Figures 9 and 10 ). Clearly the phase portrait is a stable spiral converging
to E∗. If we gradually increase the value of τ (keeping other parameter fixed), it is observed that
E∗ loses its stability at τ = τ∗0 = 1.8998. For τ = 2.1 > τ∗0 , E

∗ is unstable and there is a bifurcating
periodic solution near E∗, which is shown in Figure 11. The oscillations of x, y, z with t is shown
in Figure 12.

If we choose the value of the parameters of system (11) as a1 = 2.5; a2 = 1; a3 = 1.0; a4 = 2; d1 =

0.2; a5 = 2; a6 = 0.2; a7 = 1.5; d2 = 0.2, then equation (19) has three positive real roots: 0.8821,
0.6183, 0.0084. The equilibrium point E∗ is (0.8359, 0.1370,0.3020) and τ+

0 = 0.4070, τ−0 =

2.5542, τ∗0 = 13.8021, τ+
1 = 7.1046, τ−1 = 10.5448, τ+

2 = 18.5334. It is noted that the equilibrium E∗

is stable for τ ∈ [0, 0.4070), (2.5542, 7.1046), (10.5448, 13.8021) and unstable for τ ∈ [0.4070, 2.542),
[7.1046, 10.5448) and τ ≥ 13.802. Figure 13 depicts the stable phase portrait of the system when
τ = 0.39. Stable behavior of x, y, z with time is shown in Figure 14, when τ = 0.3. Also Figure 15
depicts the unstable phase portrait of the system when τ = 1.4. Unstable behavior of x, y, z with
time is shown in Figures 16 when τ = 1.55.

10. Conclusion

In this work, we have formulated a mathematical model with a three-dimensional food-web system
consisting of a prey population (X), a middle-predator (Y ) feeding on the prey and super-predator
(Z) feeding on only Y species. Here it is assumed that the interaction of the prey species (X) with
the middle-predators (Y ) according to Crowley-Martin response function. Also middle predator
(Y ) is predated by the super-predator (Z) according to Holling Type-II response function. The
details of the construction of the model is presented in section 2. Positivity and boundedness of the
system are shown in section 3. In deterministic situation, theoretical ecologists are usually guided
by an implicit assumption that most food chains observed in nature correspond to stable equilibria
of the models. From this viewpoint, we have presented the stability analysis of the coexistence
equilibrium point E∗(x∗, y∗, z∗). The stability criteria provided in Theorem 4.4. are the conditions
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for stable coexistence of the prey, the middle-predator and the super-predator. The conditions for
permanence and Hopf-bifurcation around interior equilibrium of the system are analyzed under
some conditions. In this context it is mentioned that if fur seals are assumed as super-predator
(Z) and commercial fishes as middle-predator (Y ), then numerical simulations Figure 1, Figure 2
and Figure 4 are in good agreement with the experiments (using field data) performed by Yodzis
(1998).

We have also investigated the effect of discrete time delay on the underlying model, where the de-
lay can be regarded as a gestation period or reaction time of the super-predator. We have presented
a rigorous analysis of the stability and bifurcation of the coexistence (interior) equilibrium point.
Our analysis shows that the value of delay in certain specified range could guarantee the stable
coexistence of the species. On the other hand, the delay could drive the system to an unstable state.
Thus, the time-delay has a regulatory impact on the whole system. The normal form theory and
center manifold reduction have been used and we have derived the explicit formulae which deter-
mine the stability, direction and other properties of bifurcating periodic solutions. The theoretical
investigation which have been carried out in this work will definitely help the experimental ecolo-
gists to do some experimental studies and as a result the theoretical ecology may be developed to
some extent.

Our model is not a case study and so it is difficult to choose parameter values from quantitative
estimation. The hypothetical sets of parameter values are used to verify the analytical findings
obtained in this work. In future work, it would be interesting to expand on simulations by using
realistic data to estimate the parameters.
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with strong Allee effect on the prey, Applied Mathematics and Computation, Vol. 311, pp.
390–409.

May, R. M. (1974). Stability and Complexity in Model Ecosystems, Princeton University Press,
Princeton.

Murray, J. D.(1989). Mathematical Biology, Springer-Verlag, Berlin.
Oaten, A. and Murdoch, W. (1975). Functional response and stability in predator-prey system,

American Naturalist, Vol. 109, pp. 289–298.
Pathak, S., Maiti, A. and Samanta, G. P. (2009). Rich dynamics of a food chain model with Has-
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Figure 1. Here a1 = 0.2, a2 = 0.3, a3 = 0.17, a4 = 0.4, d1 = 0.38, a5 = 1.9, a6 = 1.5, a7 = 0.09, d2 =
0.3 and (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), E1(1, 0, 0) is locally asymptotically stable.
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Figure 2. Here a1 = 0.2, a2 = 0.3, a3 = 0.17, a4 = 0.4, d1 = 0.25, a5 = 0.2, a6 = 0.2, a7 = 0.3, d2 =
0.2 and (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), E2 is locally asymptotically stable.

Figures 3 and 4. Here a1 = 0.2, a2 = 0.1, a3 = 0.05, a4 = 0.45, d1 = 0.25, a5 = 0.2, a6 =

0.2, a7 = 0.3, d2 = 0.2. It shows that E∗(x∗, y∗, z∗) is locally asymptotically stable, where
x∗ = 0.8791, y∗ = 0.7692, z∗ = 0.5778.
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Figure 3. Here a1 = 0.2, a2 = 0.1, a3 = 0.05, a4 = 0.45, d1 = 0.25, a5 = 0.2, a6 = 0.2, a7 = 0.3, d2 = 0.2. It
shows that E∗(x∗, y∗, z∗) is locally asymptotically stable, where x∗ = 0.8791, y∗ = 0.7692, z∗ = 0.5778.
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Figure 4. Here a1 = 0.2, a2 = 0.1, a3 = 0.05, a4 = 0.45, d1 = 0.25, a5 = 0.2, a6 = 0.2, a7 = 0.3, d2 = 0.2. It
shows that E∗(x∗, y∗, z∗) is locally asymptotically stable, where x∗ = 0.8791, y∗ = 0.7692, z∗ = 0.5778.

Figures 5 and 6. Here a1 = 0.2, a2 = 0.1, a3 = 0.05, d1 = 0.25, a5 = 0.2, a6 = 0.2, a7 =

0.3, d2 = 0.2 and a4 = 1.2 < a∗4 = 1.9890 depicts the phase portrait stable behavior and also
stable behavior of x, y, z with time t respectively.
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Figures 7 and 8. Here a1 = 0.2, a2 = 0.1, a3 = 0.05, a4 = 3.5, d1 = 0.25, a5 = 0.2, a6 =

0.2, a7 = 0.3, d2 = 0.2 and a4 = 3.5 > a∗4 = 1.9890 depicts the Phase portrait of the system
showing a limit cycle which grows out of E∗ and Oscillations of x, y, z in time t respec-
tively.
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Figure 9. Here a1 = 0.15, a2 = 0.1, a3 = 0.05, a4 = 0.45, d1 = 0.25, a5 = 0.2, a6 = 0.2, a7 = 0.3, d2 = 0.2, τ =
1.6 < τ∗0 and x(0) = 1.01, y(0) = 0.77, z(0) = 1.25. It shows thatE∗(x∗, y∗, z∗) is locally asymptotically
stable, where x∗ = 1.0101, y∗ = 0.7692, z∗ = 1.2432.
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Figure 10. Here the parameters are same as in Figure 5.
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Figure 11. Here the parameters are same as in Fig. 9 and 10 except τ = 2.1 > τ∗0 . It is a limit cycle which grows out of
E∗.
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Figure 12. For the choices of parameters as in Figure 9 and 10, the oscillation of x, y, z with t.
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Figure 13. Here a1 = 2.5; a2 = 1; a3 = 1.0; a4 = 2; d1 = 0.2; a5 = 2; a6 = 0.2; a7 = 1.5; d2 = 0.2, τ = 0.39 <
τ+0 = 0.4071 and x(0) = 1.14, y(0) = 0.14, z(0) = 0.41 the equilibrium E∗ for the system is stable.
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Figure 14. For the choices of parameters as in Fig. 13 and τ = 0.3 < τ+0 = 0.4071, the equilibrium E∗ for the system
is locally asymptotically stable.
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Figure 15. Here a1 = 2.5; a2 = 1; a3 = 1.0; a4 = 2; d1 = 0.2; a5 = 2; a6 = 0.2; a7 = 1.5; d2 = 0.2, τ+0 < τ =

1.4 < τ−0 = 2.5542 and x(0) = 1.14, y(0) = 0.14, z(0) = 0.41, the equilibrium E∗ for the system is a
limit cycle.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 t 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x(t)
 y(t)
z(t)

Figure 16. Here a1 = 2.5; a2 = 1; a3 = 1.0; a4 = 2; d1 = 0.2; a5 = 2; a6 = 0.2; a7 = 1.5; d2 = 0.2.τ+0 < τ =

1.55 < τ−0 = 2.5542 the oscillation of x, y, z with t.
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