6 research outputs found

    Stability properties of coupled impedance passive LTI systems

    Get PDF
    We study the stability of the feedback interconnection of two impedance passive linear time-invariant systems, of which one is finite-dimensional. The closed-loop system is well known to be impedance passive, but no stability properties follow from this alone. We are interested in two main issues: (1) the strong stability of the operator semigroup associated with the closed-loop system, (2) the input-output stability (meaning transfer function in H∞) of the closed-loop system. Our results are illustrated with the system obtained from the non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) model representing a vertical beam clamped at the bottom, with a rigid body having a large mass on top, connected with a trolley mounted on top of the rigid body, via a spring and a damper. Such an arrangement called a tuned mass damper (TMD), is used to stabilize tall buildings. We show that the SCOLE-TMD system is strongly stable on the energy state space and that the system is input-output stable from the horizontal force input to the horizontal velocity output

    Stability and robust regulation of passive linear systems

    Get PDF
    We study the stability of coupled impedance passive regular linear systems under power-preserving interconnections. We present new conditions for strong, exponential, and nonuniform stability of the closed-loop system. We apply the stability results to the construction of passive error feedback controllers for robust output tracking and disturbance rejection for strongly stabilizable passive systems. In the case of nonsmooth reference and disturbance signals we present conditions for nonuniform rational and logarithmic rates of convergence of the output. The results are illustrated with examples on designing controllers for linear wave and heat equations, and on studying the stability of a system of coupled partial differential equations.acceptedVersionPeer reviewe

    Transfer Functions of Infinite-Dimensional Systems: Positive Realness and Stabilization

    Get PDF
    We consider a general class of operator-valued irrational positive-real functions with an emphasis on their frequency-domain properties and the relation with stabilization by output feedback. Such functions arise naturally as the transfer functions of numerous infinite-dimensional control systems, including examples specified by PDEs. Our results include characterizations of positive realness in terms of imaginary axis conditions, as well as characterizations in terms of stabilizing output feedback, where both static and dynamic output feedback are considered. In particular, it is shown that stabilizability by all static output feedback operators belonging to a sector can be characterized in terms of a natural positive-real condition and, furthermore, we derive a characterization of positive realness in terms of a mixture of imaginary axis and stabilization conditions. Finally, we introduce concepts of strict and strong positive realness, prove results which relate these notions and analyse the relationship between the strong positive realness property and stabilization by feedback. The theory is illustrated by examples, some arising from controlled and observed partial differential equations

    Robust Output Regulation of Euler-Bernoulli Beam Models

    Get PDF
    In this thesis, we consider control and dynamical behaviour of flexible beam models which have potential applications in robotic arms, satellite panel arrays and wind turbine blades. We study mathematical models that include flexible beams described by Euler-Bernoulli beam equations. These models consist of partial differential equations or combination of partial and ordinary differential equations depending on the loads and supports in the model. Our goal is to influence the models by control inputs such as external applied forces so that measured deflection profiles of the beams in the models behave as desired. We propose dynamic controllers for the output regulation, where the measurements from the models track desired reference signals in the given time, of flexible beam models. The controller designs are based on the so-called internal model principle and they utilize difference between measurement and desired reference trajectory. Moreover, the controllers are robust in the sense that they can achieve output regulation despite external disturbances and model uncertainties. We also study the output regulation problem when there are certain limitations on the control input. In particular, we generalize the theory of output regulation for dynamical systems described by ordinary differential equations subject to input constraints to a particular class of systems described by partial differential equations. We present set of solvability conditions and a linear output feedback controller for the output regulation

    Stability Properties of Coupled Impedance Passive LTI Systems

    No full text
    corecore