174 research outputs found

    Continuous variable entanglement sharing in non-inertial frames

    Full text link
    We study the distribution of entanglement between modes of a free scalar field from the perspective of observers in uniform acceleration. We consider a two-mode squeezed state of the field from an inertial perspective, and analytically study the degradation of entanglement due to the Unruh effect, in the cases of either one or both observers undergoing uniform acceleration. We find that for two observers undergoing finite acceleration, the entanglement vanishes between the lowest frequency modes. The loss of entanglement is precisely explained as a redistribution of the inertial entanglement into multipartite quantum correlations among accessible and unaccessible modes from a non-inertial perspective. We show that classical correlations are also lost from the perspective of two accelerated observers but conserved if one of the observers remains inertial.Comment: 19 pages, 13 EPS figures (most low-res due to oversize); terminology revise

    Quantum Key Distribution without sending a Quantum Signal

    Full text link
    Quantum Key Distribution is a quantum communication technique in which random numbers are encoded on quantum systems, usually photons, and sent from one party, Alice, to another, Bob. Using the data sent via the quantum signals, supplemented by classical communication, it is possible for Alice and Bob to share an unconditionally secure secret key. This is not possible if only classical signals are sent. Whilst this last statement is a long standing result from quantum information theory it turns out only to be true in a non-relativistic setting. If relativistic quantum field theory is considered we show it is possible to distribute an unconditionally secure secret key without sending a quantum signal, instead harnessing the intrinsic entanglement between different regions of space time. The protocol is practical in free space given horizon technology and might be testable in principle in the near term using microwave technology

    Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits

    Get PDF
    The ability to generate particles from the quantum vacuum is one of the most profound consequences of Heisenberg's uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, have been used in the experimental demonstration of the dynamical Casimir effect, and may soon be able to realize the elusive verification of analogue Hawking radiation. This article describes several mechanisms for generating photons from the quantum vacuum and emphasizes their connection to the well-known parametric amplifier from quantum optics. Discussed in detail is the possible realization of each mechanism, or its analogue, in superconducting circuit systems. The ability to selectively engineer these circuit devices highlights the relationship between the various amplification mechanisms.Comment: 27 pages, 10 figures, version published in Rev. Mod. Phys. as a Colloquiu

    Observer dependent entanglement

    Full text link
    Understanding the observer-dependent nature of quantum entanglement has been a central question in relativistic quantum information. In this paper we will review key results on relativistic entanglement in flat and curved spacetime and discuss recent work which shows that motion and gravity have observable effects on entanglement between localized systems.Comment: Ivette Fuentes previously published as Ivette Fuentes-Guridi and Ivette Fuentes-Schulle

    Boundary conditions in the Unruh problem

    Get PDF
    We have analyzed the Unruh problem in the frame of quantum field theory and have shown that the Unruh quantization scheme is valid in the double Rindler wedge rather than in Minkowski spacetime. The double Rindler wedge is composed of two disjoint regions (RR- and LL-wedges of Minkowski spacetime) which are causally separated from each other. Moreover the Unruh construction implies existence of boundary condition at the common edge of RR- and LL-wedges in Minkowski spacetime. Such boundary condition may be interpreted as a topological obstacle which gives rise to a superselection rule prohibiting any correlations between rr- and ll- Unruh particles. Thus the part of the field from the LL-wedge in no way can influence a Rindler observer living in the RR-wedge and therefore elimination of the invisible "left" degrees of freedom will take no effect for him. Hence averaging over states of the field in one wedge can not lead to thermalization of the state in the other. This result is proved both in the standard and algebraic formulations of quantum field theory and we conclude that principles of quantum field theory does not give any grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur

    The Gauge Fields and Ghosts in Rindler Space

    Full text link
    We consider 2d Maxwell system defined on the Rindler space with metric ds^2=\exp(2a\xi)\cdot(d\eta^2-d\xi^2) with the goal to study the dynamics of the ghosts. We find an extra contribution to the vacuum energy in comparison with Minkowski space time with metric ds^2= dt^2-dx^2. This extra contribution can be traced to the unphysical degrees of freedom (in Minkowski space). The technical reason for this effect to occur is the property of Bogolubov's coefficients which mix the positive and negative frequencies modes. The corresponding mixture can not be avoided because the projections to positive -frequency modes with respect to Minkowski time t and positive -frequency modes with respect to the Rindler observer's proper time \eta are not equivalent. The exact cancellation of unphysical degrees of freedom which is maintained in Minkowski space can not hold in the Rindler space. In BRST approach this effect manifests itself as the presence of BRST charge density in L and R parts. An inertial observer in Minkowski vacuum |0> observes a universe with no net BRST charge only as a result of cancellation between the two. However, the Rindler observers who do not ever have access to the entire space time would see a net BRST charge. In this respect the effect resembles the Unruh effect. The effect is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We interpret the extra energy as the formation of the "ghost condensate" when the ghost degrees of freedom can not propagate, but nevertheless do contribute to the vacuum energy. Exact computations in this simple 2d model support the claim made in [1] that the ghost contribution might be responsible for the observed dark energy in 4d FLRW universe.Comment: Final version to appear in Phys. Rev. D. Comments on relation with energy momentum computations and few new refs are adde

    Quantum Communication with an Accelerated Partner

    Get PDF
    An unsolved problem in relativistic quantum information research is how to model efficient, directional quantum communication between localised parties in a fully quantum field theoretical framework. We propose a tractable approach to this problem based on solving the Heisenberg evolution of localized field observables. We illustrate our approach by analysing, and obtaining approximate analytical solutions to, the problem of communicating coherent states between an inertial sender, Alice and an accelerated receiver, Rob. We use these results to determine the efficiency with which continuous variable quantum key distribution could be carried out over such a communication channel.Comment: Additional explanatory text and typo in Eq.17 correcte
    • …
    corecore