The ability to generate particles from the quantum vacuum is one of the most
profound consequences of Heisenberg's uncertainty principle. Although the
significance of vacuum fluctuations can be seen throughout physics, the
experimental realization of vacuum amplification effects has until now been
limited to a few cases. Superconducting circuit devices, driven by the goal to
achieve a viable quantum computer, have been used in the experimental
demonstration of the dynamical Casimir effect, and may soon be able to realize
the elusive verification of analogue Hawking radiation. This article describes
several mechanisms for generating photons from the quantum vacuum and
emphasizes their connection to the well-known parametric amplifier from quantum
optics. Discussed in detail is the possible realization of each mechanism, or
its analogue, in superconducting circuit systems. The ability to selectively
engineer these circuit devices highlights the relationship between the various
amplification mechanisms.Comment: 27 pages, 10 figures, version published in Rev. Mod. Phys. as a
Colloquiu