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An unsolved problem in relativistic quantum information research is how to model efficient, directional
quantum communication between localized parties in a fully quantum field-theoretical framework. We propose
a tractable approach to this problem based on calculating expectation values of localized field observables in the
Heisenberg picture. We illustrate our approach by analyzing, and obtaining approximate analytical solutions to,
the problem of communicating coherent states between an inertial sender, Alice, and an accelerated receiver,
Rob. We use these results to determine the efficiency with which continuous variable quantum key distribution
could be carried out over such a communication channel.
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I. INTRODUCTION

The study of how information can be carried and processed
by systems described by relativistic quantum mechanics is
referred to as relativistic quantum information [1]. This rapidly
growing body of work studies how quantum information
tasks and resources are altered by the relativistic treatment of
space-time. A key topic is the sharing of quantum information
between inertial and noninertial parties, as in this case the
quantum ground states of the two observers will differ [2] and
novel phenomena such as Unruh-Davies [3,4] and Hawking
radiation [5] can emerge. An obvious place in which such
effects could play a role is in quantum communication tasks,
such as quantum key distribution [6]. However, a rigorous,
quantum field-theoretic description of such protocols has not
been developed. Previous analysis has been restricted to toy
models that are ultimately inconsistent with the properties of
real communication systems.

In this paper we introduce a rigorous and tractable frame-
work for studying optical quantum communication between
inertial and noninertial observers. We specifically apply our
approach to the problem of continuous variable quantum
communication [7]. We obtain approximate analytical results
for conditions typical of such communication systems and use
them to analyze quantum key distribution between an inertial
Alice and a uniformly accelerating Rob. We find the secret key
rate is limited in a time-dependent manner.

Traditional detection schemes analyzed with acceleration
have utilized the Unruh-Dewitt detector [3,8]. The Unruh-
Dewitt detector is a single two-level quantum system weakly
coupled to the field over 4π steradians. It is not a good
model for the efficient, unidirectional macroscopic detectors
commonly employed in quantum communication experiments.
The other method used to describe quantum information
protocols in the presence of noninertial motion does so directly
in terms of the field modes [9,10]. This approach suffers from
two major problems: (i) the restriction of the description to a
particular set of unphysical modes, the Unruh modes [3], in
order to simplify the problem and (ii) the use of nonlocal states
defined on single frequency global modes and the subsequent
unfounded interpretation of these nonlocal results in terms
of local observers. Although some work has been done on
avoiding the latter problem [11] the reliance on the Unruh

modes remained. The method developed here avoids both
of these problems and leads to a richer and more realistic
description of the physics. We note that another approach to
this problem is described in Ref. [12].

We use a (3 + 1)-dimensional massless scalar field descrip-
tion to model a localized, directional, inertial source using
Minkowski modes and, similarly, a localized, directional, uni-
formly accelerating detector using Rindler modes. Minkowski
coordinates, (x1,x2,x3,t), are the standard ones for describing
inertial observers. Rindler coordinates, (ξ,x2,x3,τ ), can be
used to describe accelerated observers. The two coordinate
systems are related within the right-hand sector (the right
Rindler wedge—see Fig.1) via [2]:

t = a−1eaξ sinh(aτ ), x1 = a−1eaξ cosh(aτ ). (1)

A stationary observer in Rindler coordinates, sufficiently
well localized around ξ = 0, follows a uniformly accelerated
trajectory in Minkowski coordinates, such as is depicted in
Fig. 1. The rate of acceleration is given by the parameter a.
Throughout this paper we work in units for which c = 1.

The quantum source is held by Alice, who is stationary
in Minkowski coordinates. The quantum detector is held by
Rob, who is stationary in Rindler coordinates. We quantify
the communication channel between Alice and Rob in terms
of expectation values of localized observables, calculated in
the Heisenberg picture, rather than analyzing the quantum
states. It is due to the difficulties of transforming the states that
Unruh modes have been exclusively employed previously. By
analyzing the observables we are able to avoid this difficulty
and transform between arbitrary modes with ease, leading to
the key advantage of this method.

The paper is arranged in the following way: in the next
section we introduce our basic approach by solving the
simpler problem of homodyne detection of the inertial vacuum
state by the uniformly accelerating observer, Rob. Thermal
radiation, as predicted by the Unruh effect, is observed. In
Sec. III we move to the more complicated scenario of quantum
communication between Alice and Rob. In Sec. IV we consider
a specific quantum communication protocol, quantum key
distribution, carried out between Alice and Rob, and then
conclude in Sec. V.
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FIG. 1. (Color online) Geometry of the quantum communication
scenario considered in Sec. III. Alice is stationary, while Rob is
uniformly accelerating. Alice prepares coherent state pulses and sends
them along with local-oscillator pulses to Rob at various times (e.g.,
t1,t2,t3). Rob’s detector is a broadband, time-integrated homodyne
receiver.

II. DETECTION OF UNRUH-DAVIES RADIATION WITH A
HOMODYNE DETECTOR

As a first example of our approach we consider a simple
example in which the signal that Rob detects is the Minkowski
(inertial) vacuum. Rob performs homodyne detection on this
signal, as seen in his reference frame, using, as a local-
oscillator mode, a coherent state of amplitude β, where β

is real and β � 1. The homodyne detector is formed from
two identical photodetectors, that detect distinct modes S

and L after they have been mixed on a beam splitter. The
photocurrents from the photodetectors are subtracted to give
the output signal. As a result the output of Rob’s homodyne
detector at some time τ (as measured in Rob’s frame) is
represented by the following operator [7]:

Ô(τ ) = b̂S(τ )b̂†L(τ )eiφ + b̂
†
S(τ )b̂L(τ )e−iφ, (2)

where b̂K (b̂†K ) are boson annihilation (creation) field operators
with K = S,L. The subscripts S,L refer to the signal and local-
oscillator modes, respectively. The relative phase φ determines
the quadrature angle detected.

Creation of a coherent state can be modeled as a unitary
displacement of the vacuum. Physically, a coherent state is
an excellent approximation to the state produced by a well-
stabilized laser. Rob’s displacement operator can be written:
D̂(β) = exp[β(b†D − bD)], where the subscript D labels the
mode to which the displacement is perfectly matched. The
mode operators can be spectrally decomposed as

b̂K =
∫

dkdfK (kd,τ )b̂kd
. (3)

For these distributions the kd = (kd1,kd2,kd3) refers to Rob’s
detector wave vector with the first component (corresponding
to the direction of acceleration) being the Rindler frequency
and the other two components being Minkowski. The integral

∫
dkd is over the whole wave-vector space. In this case it

is
∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞ dkd1dkd2dkd3 as the first component of this

wave vector is a right Rindler mode which is strictly positive
[13]. The operators b̂kd

are the plane-wave Rindler operators,
obeying the usual boson commutation relation

[
b̂kd

,b̂
†
k′
d

] = δ(kd1 − k′
d1)δ(kd2 − k′

d2)δ(kd3 − k′
d3). (4)

They describe plane waves, oscillating at frequency kd1a

as perceived by a collection of nonlocalized accelerating
observers. The functions fK (kd ) localize these modes in some
region of space-time and hence the mode operators b̂K describe
modes detected by a local accelerating observer. Rob will
integrate the photocurrent from his detector over a time long
compared to the inverse of the frequency being analyzed (as
will be determined by the frequency of his local oscillator).
The average value of the signal received by Rob will be given
by the expectation value:

X =
〈∫

dτ Ô(τ )

〉
. (5)

We will also be interested in the variance of the integrated
signal

V =
〈( ∫

dτ Ô(τ )

)2〉
−

〈∫
dτ Ô(τ )

〉2

. (6)

The initial state for both the signal and the local oscillator is
the Minkowski vacuum state, |0〉M . Formally, the expression
for X becomes

X =
∫

dτ 〈0|MD̂†(β)(b̂S b̂
†
L + b̂

†
Sb̂L)D̂(β)|0〉M, (7)

where for simplicity we have taken φ = 0. This expression can
be expanded using the identity

D̂†(β)b̂LD̂(β) = b̂L + β

∫
dkdfL(kd,τ )f ∗

D(kd,τ ), (8)

where the second term on the right-hand side (RHS) of
Eq. (8) quantifies the coupling of the displacement into the
local-oscillator mode via the overlap of their respective mode
functions. We obtain

X =
∫

dτ 〈0|M
(

b̂
†
S

(
b̂L + β

∫
dkdfL(kd,τ )f ∗

D(kd,τ )

)

+ b̂S

(
b̂
†
L + β

∫
dkdf

∗
L (kd,τ )fD(kd,τ )

))
|0〉M

∼= β

∫
dτ 〈0|M

∫
dkd (b̂†SfL(kd,τ )f ∗

D(kd,τ )

+ b̂Sf
∗
L (kd,τ )fD(kd,τ ))|0〉M (9)

where we use β � 1 to drop small terms in the second line.
In order to calculate the expectation value of Eq. (9) against

the Minkowski vacuum we need to rewrite Rob’s measurement
operators in terms of Minkowski modes. The transformation
relations between Rindler and Minkowski spectral modes is
given by [13]

b̂kd
=

∫
dks

(
Akdks

âks
+ Bkdks

â
†
ks

)
, (10)
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where the operators âks
are the plane-wave Minkowski opera-

tors, obeying the usual boson commutation relation[
âks

,â
†
k′
s

] = δ(ks1 − k′
s1)δ(ks2 − k′

s2)δ(ks3 − k′
s3), (11)

and

Akdks
= δ(	kd − 	ks)√

2πωs(1 − e−2πkd1 )

(
ωs + ks1

ωs − ks1

)i 1
2 kd1

,

Bkdks
= δ(	kd + 	ks)√

2πωs(e2πkd1 − 1)

(
ωs + ks1

ωs − ks1

)i 1
2 kd1

(12)

are the Bogolyubov coefficients, where 	kd = (kd2,kd3),
	ks = (ks2,ks3), and ωs is the signal frequency ωs =√

k2
s1 + k2

s2 + k2
s3. Given that the transformation of Eq. (10)

is linear in the creation and annihilation operators and that,
by definition, the Minkowski annihilation operator annihilates
the Minkowski vacuum, i.e.,

âks
|0〉M = 0, (13)

it follows that 〈0|Mb̂K |0〉M = 0, and hence X = 0—the aver-
age value of the homodyne signal is zero.

More interesting is to calculate the variance of the signal.
Formally, from Eq. (9), we have

V = β2〈0|M
( ∫

dτ

∫
dkd [b̂†SfL(kd )f ∗

D(kd )

+ b̂Sf
∗
L (kd )fD(kd )]

)2

|0〉M. (14)

In order to proceed we need to introduce an explicit form for
the detector wave function. We assume first that Rob looks in
the ξ direction (i.e., the same direction as the acceleration) and
focuses the signal and local-oscillator modes onto his detector
such that we can make the paraxial approximation that the
detector wave function can be factored into its transverse and
longitudinal components as

fK (kd,τ ) = e−ikd1aτ fK (kd1)gK (kd2)hK (kd3), (15)

where the detector is centered on the space-time point (ξ =
0,x2,x3,τ ). It is important that the longitudinal component of
the detector wave function is well localized; otherwise, its
interpretation as a detector following a particular space-time
trajectory is compromised. Thus we consider a detector wave
function that is very broad in kd1 such that it is well localized
spatiotemporally. In particular we take fK (kd1) ≈ 1/

√
2πa

for kd1 > 0 and zero otherwise. Using these definitions we can
simplify terms in Eq. (14) such as∫

dτ b̂S

∫
dkdf

∗
L (kd )fD(kd )

=
∫

dτ

∫
dk′

d

∫
dkd1

e−i(k′
d1−kd1)aτ

2πa
b̂k′

d
gS(	k′

d )fD(kd1)

=
∫

dkd1b̂kd1,S fD(kd1), (16)

where we have defined new boson annihilation operators:

b̂kd1,K ≡
∫

d	kdgK (	kd )b̂kd
, (17)

with the shorthand gK (	kd ) = gK (kd2)hK (kd3). We assume that
the transverse-mode functions, gS and gL are orthonormal,
such that [b̂kd1,K,b̂

†
kd1,K

] = 1, but [b̂kd1,S,b̂
†
kd1,L

] = 0. In obtain-
ing Eq. (16) we have also assumed that the integral over τ is
sufficiently long that

∫
dτ 1

2πa
e−i(kd1−k′

d1)aτ ≈ δ(kd1 − k′
d1) and

that the transverse part of fD(kd ) perfectly matches gL(	kd ).
Combining the result of Eq. (16) (and its conjugate) with

Eq. (14) we obtain

V ≈ β2〈0|M
∫

dkd1

∫
dk′

d1

(
fD(kd1)f ∗

D(k′
d1)b̂kd1,S b̂

†
k′
d1,S

+ f ∗
D(kd1)fD(k′

d1)b̂†kd1,S
b̂k′

d1,S

+ fD(kd1)fD(k′
d1)b̂kd1,S b̂k′

d1,S

+ f ∗
D(kd1)f ∗

D(k′
d1)b̂†kd1,S

b̂
†
k′
d1,S

)|0〉M (18)

We now transform to Minkowski modes. Using Eq. (10) we
find

b̂kd1,S =
∫

d	kdgS(	kd )
∫

dks

(
Akdks

âks
+ Bkdks

â
†
ks

)

=
∫

dks

1√
2πωs(e2πkd1 − 1)

(
ωs + ks1

ωs − ks1

)i 1
2 kd1

× [
eπkd1 âks

gS(	ks) + â
†
ks
gS(−	ks)

]
. (19)

Substituting this into Eq. (18), using the properties of the
Minkowski modes, Eqs. (11) and (13), and the identity∫

dks

1

2πωs

(
ωs + ks1

ωs − ks1

)i 1
2 (x−x ′)

= δ(x − x ′), (20)

we find

V = β2
∫

dkd1|fD(kd1)|2 e2πkd1 + 1

e2πkd1 − 1
. (21)

The full mode function for the local oscillator close to the
detector, i.e., for ξ ≈ 0, can be written

fD(kd,τ ) = e−i
√

a2k2
d1−k2

d2−k2
d3ξ+ikd2x2+ikd3x3

× e−ikd1aτ fD(kd1)gD(kd2)hD(kd3). (22)

As we are considering propagation in the −ξ direction, we have
that the average values of kd2 and kd3 are zero. This indicates
that the average value of the local-oscillator frequency is equal
to that of its wave vector in the ξ direction. If Rob’s local-
oscillator mode function is a Gaussian, strongly peaked around
the frequency kdo with respect to his proper time, τ , then we
can make the approximation

|fD(kd1)|2 ≈ δ(kd1 − kdo/a), (23)

and finally (dividing out the local-oscillator amplitude) we
obtain the expression for the variance of the signal mode,

〈	XS(0)2〉 = V/β2 = e2πkdo/a + 1

e2πkdo/a − 1
. (24)

This expression is identical to that obtained for homodyne
detection, by an inertial observer, of a thermal bath at
temperature T = ah̄/(2πk), with k Boltzmann’s constant, as
expected from the Unruh effect.

Notice we get the same result if Rob looks in, say, the −x2

direction. Now Rob’s local oscillator is propagating in the x2

direction and we expect the average value of kd2 to be equal to
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the average local-oscillator frequency, with the average value
of kd3 and

√
a2k2

d1 − k2
d2 − k2

d3 equal to zero. This still occurs
when the kd1 component of the mode function is strongly
peaked around the wave number kdo/a. Thus we again get the
solution of Eq. (24), indicating the expected isotropic nature
of the Unruh-Davies radiation.

III. QUANTUM COMMUNICATION BETWEEN
ALICE AND ROB

Having confirmed that our model of localized, directional
homodyne detection of the Minkowski vacuum by a Rindler
observer is consistent with the Unruh-DeWitt detector results,
we now consider the more interesting case of quantum
communication. To illustrate our approach we consider the
following protocol to transmit quantum information from
Alice to Rob. Alice sends an optical pulse prepared in a
coherent state of amplitude α, where α is an arbitrary complex
number, as her signal state. She also produces another coherent
state of amplitude β, where again β is real and now β � |α|, as
a local-oscillator mode. She sends both to Rob. The preparation
of the local oscillator by Alice is now a practical necessity
given that the local oscillator and signal states need to be
phase locked. Example trajectories of Alice and Rob and
the signals sent are depicted on a space-time diagram in
Fig. 1. Rob performs homodyne detection on the signal and
local-oscillator mode, as seen in his reference frame which
again can be modeled by Eq. (2).

In Minkowski coordinates, the state Alice produces can be
represented by displacement of the Minkowski vacuum state,
|0〉M , as

|α,β,t〉j = DS(α)DL(β)|0〉M, (25)

where now the displacement operators are given by
DK (γ ) = exp[γ a

†
K − γ ∗aK ], with γ = α,β and

âK =
∫

dksfK (ks)âks
. (26)

Formally, the expression for X becomes

X =
∫

dτ 〈0|MD̂
†
L(β)D̂†

S(α)

× (b̂S b̂
†
L + b̂

†
Sb̂L)D̂S(α)D̂L(β)|0〉M. (27)

A generalization of Eq. (8) to allow for the transformation
between Rindler and Minkowski modes gives the identity

D
†
K (γ )b̂KDK (γ ) = b̂K + γ

∫
dkd

∫
dksfK (kd )

× (
Akdks

f ∗
DK

(ks) + Bkdks
fDK

(ks)
)

(28)

The expressions for X (and V ) can be expanded via Eq. (28).
The resulting expressions comprise expectation values of
Heisenberg picture operators over the initial Minkowski
vacuum state. Hence we can obtain exact formal solutions

for the average quadrature values and their variances. For
example, the expression for X becomes

X = βα∗e−iφ

∫
dτ

∫
dkd

∫
dksfL(kd )

[
Akdks

f ∗
DL

(ks)

+Bkdks
fDL

(ks)
] ∫

dk′
d

∫
dk′

sf
∗
S (k′

d )
[
Ak′

d k′
s
fDS

(k′
s)

+Bk′
d k′

s
f ∗

DS
(k′

s)
] + c.c., (29)

where we have used 〈0|Mb̂K |0〉M = 0 [see discussion around
Eq. (13)] and that β � |α| to discard small terms. Expressions
such as Eq. (29) can be numerically solved for specific
localized detection and signal wave functions. To obtain
analytical solutions we need to make some approximations
based on the form of the wave functions.

We assume that the communication between Alice and Rob
is “beamlike” in the sense that Alice sends a well-directed
Gaussian mode to Rob who focuses it down to perfectly
match the transverse spatial profile of his detector. For
simplicity, we assume the communication is aligned with the
acceleration. We can again make the paraxial approximation
and factor the signal wave function into transverse and longitu-
dinal components, i.e., fDK

(ks) = e−i(ωs t−ks1x)fD(ks1)gDK
(	ks),

where the origin of Alice’s signal pulse is centered on the
space-time point (x,x2,x3,t). We make the assumption that
the transverse components of the source displacement match
those of the detector wave functions which are taken to be the
same as in the previous section [see Eq. (15) and discussion
following]. Initially, we make the impractical assumption that
this is achieved with unit efficiency but relax this in our final
discussion.

We assume that the longitudinal part of the signal wave
function is peaked at a large wave number kso such that, for
the region of wave numbers for which the wave function is
nonzero, |ks1| � |ks2|,|ks3|. We also assume that the standard
deviation of the longitudinal part of the wave function, though
broad on the wavelength scale, is small compared to kso. Hence
we write ks1 = kso + k̄, where |kso| � |k̄| for the region of
wave numbers for which the wave function is nonzero. These
are typical approximations used for nonrelativistic quantum
communication systems. Given this, the longitudinal part of
the signal wave function becomes ei|ks1|(±x−t)fD(ks1), where
+ (−) corresponds to positive (negative) kso, i.e., propagation
in the positive (negative) x direction. We can approximate the
signal frequency dependent term in Eqs. (12) as

(
ωs + ks1

ωs − ks1

)i 1
2 kd1

≈ e±i 1
2 kd1[2 ln(2|ks1|)−ln(k2

s2+k2
s3)]

≈ e±i| ks1
kso

|kd1e±ikd1[ln(2|kso|)− 1
2 ln(k2

s2+k2
s3)−1].

As a specific case we take kso < 0 in the following as per the
example of Fig. 1.

Substituting our approximate forms into Eq. (29) we obtain

X = βα∗e−iφ

∫
dτ

(∫
dkd

∫
dks1

e−ikd1aτ

√
2π

gL(	kd )√
2π |kso|(1 − e−2πkd1 )

[
fD(ks1)∗gDL

(	kd )∗e−i| ks1
kso

|kd1e−ikd1[ln2|kso|− 1
2 ln(k2

d2+k2
d3)−1]ei|ks1|(x+t)

+ fD(ks1)gDL
(−	kd )e−i| ks1

kso
|kd1e−ikd1[ln2|kso|− 1

2 ln(k2
d2+k2

d3)−1]e−2πkd1e−i|ks1|(x+t)])(∫
dk′

d

∫
dk′

s1
eik′

d1aτ

√
2π

g∗
S(	k′

d )√
2π |kso|(1 − e−2πk′

d1 )
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× [
fD(k′

s1)gDS
(	k′

d )ei| k′
s1

kso
|k′

d1eik′
d1[ln2|kso|− 1

2 ln(k′
d2

2+k′
d3

2)−1]e−i|k′
s1|(x+t)

+ f ∗
D(k′

s1)g∗
DS

(−	k′
d )ei| k′

s1
kso

|k′
d1eik′

d1[ln2|kso|− 1
2 ln(k′

d2
2+k′

d3
2)−1]e−2πkd1ei|k′

s1|(x+t)
]) + c.c. (30)

A major simplification of this expression is possible if we
assume that fD(ks1) is sufficiently broad in frequency that∫

dks1
1√

2π |kso|
fD(ks1)e−i| ks1

kso
|kd1e±i|ks1|(x+t)

≈ f̄Dδ(kd1 ∓ |kso|(x + t)), (31)

where f̄D is the average value of fD(ks1). First, the second
term in each sum in Eq. (30) goes to zero as (x + t) > 0 for
the range of Alice’s source positions considered (see Fig. 1)
but fi(kd1) = 0 for kd1 < 0 in the right Rindler wedge. Next,
the integral over τ produces a delta function between the two
integrals over kd1. Inserting the assumption that the transverse
components of the source and detector wave functions are
matched such that gK (	kd ) = gDK

(	kd )ei|kso|(x+t) 1
2 ln(k2

d2+k2
d3), and

using the normalization of the transverse wave function∫
dkd2

∫
dkd3|gDK

(	kd )|2 = 1, Eq. (30) reduces to

X = β

∫
dk′

s1

αeiφf ∗
D(k′

s1)f̄D + α∗e−iφfD(k′
s1)f̄ ∗

D

(1 − e−2π |kso|(x+t))

≈ β(αeiφ + α∗e−iφ)

(1 − e−2π |kso|(x+t))
, (32)

where we have also used an approximate normalization over
the signal wave function. By dividing out the amplitude of
the local oscillator, β̄ = β

√
(1 − e−2π |kso|(x+t)), we obtain the

expectation value of the quadrature amplitude of Alice’s signal
as observed by Rob,

〈XB (φ)〉A = X/β̄ = αeiφ + α∗e−iφ√
(1 − e−2π |kso|(x+t))

. (33)

Using a similar sequence of approximations and the techniques
used in the previous section, we obtain the variance of the
signal quadrature as

〈	XB(φ)2〉A = V/β̄2 = (e2π |kso|(x+t) + 1)

(e2π |kso|(x+t) − 1)
. (34)

Equations (33) and (34) are our main results, characterizing the
quadrature signals observed by Rob in the ideal limit of unit
efficiency, well-localized detection of coherent states sent by
Alice. Generalization to the detection of other initial states—
squeezed states, entangled states, etc.—is straightforward.

The solutions have the general form of linear amplification
of the initial state, as anticipated from single-mode treatments
[14]. However, the effective gain,

G = 1/(1 − e−2π |kso|(x+t)), (35)

exhibits a dependence on the time at which the pulse is sent,
and hence on Rob’s position on his trajectory at which he
receives the pulse [cf. Eq. (34) with Eq. (24)]. The behavior
of the effective gain can be explained in the following way.
Consider first the pulse path labeled t2 in Fig. 1. This pulse

is received by Rob around tR = 0 in Minkowski coordinates.
According to Eq. (1), t = 0 corresponds to τ = 0 in Rindler
coordinates and hence (with ξ = 0) xR = 1/a. Given that x +
t is a constant for the path (i.e., the path is a geodesic) we
have x + t = xR + tR = 1/a. So the effective gain is G =
1/(1 − e−2π |kso|/a). Linear amplification of the vacuum with
this gain gives a thermal state distribution as a function of the
detection frequency, kso, and the acceleration on the detector
trajectory, a, as expected from the Unruh effect [3] [Eqs. (34)
and (24) are equivalent for this signal path].

Now consider signals sent at t1 (t3); see Fig. 1. The t = 0
intercepts for these signals are 1/a′ < 1/a (1/a′′ > 1/a).
Therefore, the effective gain is lower (higher) for these signals.
At first this seems surprising as thermalization due to the
Unruh effect is predicted to be constant along the detector
trajectory. The explanation is that the detection frequency of
the homodyne detector is determined by Alice’s local oscil-
lator, as observed by Rob. Rob is instantaneously stationary
at t = 0 and so observes the local oscillator at kso. However,
Rob receives the signals sent at t1 (t3) when moving away
from (towards) Alice. Because of Rob’s motion, the effective
detection frequency is Doppler shifted to higher (lower)
frequencies resulting in the lower (higher) effective gains.
It is straightforward to show in general that for signals that
intercept Rob’s trajectory at a point where his instantaneous
velocity is v, x + t = 1/a

√
(1 + v)/(1 − v) as expected from

the Doppler shift.

IV. QUANTUM KEY DISTRIBUTION BETWEEN
ALICE AND ROB

A quantum communication protocol that can be imple-
mented via the exchange of coherent states in the way
described is continuous variable quantum key distribution [15].
The techniques for proving and quantifying the security are
well established [16] but we will outline them here. We will
consider a particular protocol where Alice draws a string of
numbers from a bivariate Gaussian distribution of zero mean
and variance VS which she uses to choose the amplitudes of
an ensemble of coherent states [17].

For each transmission, Rob is essentially trying to deter-
mine which coherent state was chosen from this ensemble
which collectively looks like a thermal state. Loss between
Alice and Rob of magnitude η can be modeled in the calcu-
lation of the previous section by assuming that the transverse
mode overlap between Alice’s signal displacement and Rob’s
detector mode is

√
1 − η, i.e.,

∫
d	ksgSg

∗
KS

= √
1 − η. Then

Eq. (33) is scaled such that 〈XB(φ)〉A,loss = √
1 − η〈XB(φ)〉A,

whilst Eq. (34) remains the same. Both passive loss and the
Unruh thermalization itself are Gaussian processes so the
whole situation can be regarded as a Gaussian channel with a
combination of loss η and linear amplification of gain G.
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The performance of a QKD protocol is quantified by
the secret key rate, which is the difference between mutual
information actually established by Alice and Rob and the
maximum that could theoretically be attributed to the eaves-
dropper and is written

K = I (a : b) − S(a : E). (36)

The first term is the classical mutual information established by
correlations in the classical strings (denoted by lower case) of
Alice’s encoding (in this case the amplitude of coherent states)
and Rob’s homodyne measurement and is given by Shannon’s
formula

I (a : b) = s(b) − s(b|a), (37)

where s(b) = − ∫
p(b) log2 p(b)db is the Shannon entropy

of a classical variable a with probability density p(b) and
s(b|a) is the corresponding quantity conditioned on knowing a.
For Gaussian distributions one can simply evaluate Shannon’s
formula to find

I (a : b) = 1

2
log2

(
VR

VR|a

)
. (38)

The conditional variance VR|a is that measured by Rob
for an individual coherent state and is given directly by
Eq. (34). The variance for the whole ensemble is the sum
of the modulation variance and the noise of the individual
states. Before transmission this would read VR = VS + 1,
where the shot noise is unity. After transmission the losses and
amplification scale the modulation, and the individual states
are all thermalized such that

VR = (1 − η)GVS + VB|a. (39)

Substituting Eqs. (34) and (35) yields

I (a : b) = 1

2
log2

(
VS(1 − η)

(1 + e−2π |kso|(x+t))

)
. (40)

The second term in Eq. (36) is the maximum information
an eavesdropper (Eve) could have obtained about a assuming
she makes the optimal quantum measurement on her state E.
For a given state this is bounded by the Holevo quantity,

S(a : E) = S(E) − S(E|a), (41)

where S(E) = −tr(ρE log2 ρE) is understood to be the von
Neumann entropy. In general, this quantity is extremely
difficult to compute given only Alice’s encoding and Rob’s
measurement results; however, for Gaussian states the calcu-
lation of Eve’s information remains tractable.

The first step is to note that the ensemble of coherent states
sent to Rob could equivalently have been generated by Alice
creating EPR pairs and performing a heterodyne detection
upon her arm, projecting Rob’s into a coherent state. We can
thus interpret Alice’s encoding and Rob’s measurement as
being derived from a bipartite state ρAB that is shared at the
end of the protocol [18] and turn our analysis to this equivalent
entanglement based version. The worst case scenario would
be to attribute all observed losses and noise as information that
has leaked to Eve in which case the final state shared by Alice,
Rob, and Eve is pure. This allows us to rewrite Eq. (41) as

S(a : E) = S(AB) − S(B|a). (42)

The von Neumann entropy for a Gaussian state is solely a
function of the covariance matrix, and thus our calculation of
the first and second moments of the state received by Rob
will be sufficient to find the secret key rate. For an N -mode
Gaussian state, we have

S(ρ) =
N∑

i=1

�(λi), (43)

where

�(x) =
(

x + 1

2

)
log2

(
x + 1

2

)
−

(
x − 1

2

)
log2

(
x − 1

2

)

and λi are the symplectic eigenvalues.
In the entanglement-based scheme the state before trans-

mission corresponding to the whole ensemble of coherent
states is a pure EPR state with covariance matrix of the form

γAB =
(

a I2 c σz

c σz b I2

)
, (44)

with a = b = VS + 1, c = √
a2 − 1, and σz = [0,1; 0,−1].

After transmission the covariance matrix characterizing the
entangled version of the protocol for a channel combining
losses with Unruh radiation will be given by the same form,
but with

a = VS + 1,

b = VR, (45)

c =
√

(1 − η)G(a2 − 1)

The state after Alice’s measurement, or alternatively, given
the knowledge of which coherent state was sent is, as shown

0 0.2 0.4 0.6 0.8 1
10
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10
−3

10
−2

10
−1

10
0

k
so

T

K

 

 

η=0 (top)
η=0.25 (middle)
η=0.4 (bottom)

FIG. 2. (Color online) Secret key rates obtained for a continuous
variable quantum key distribution protocol implemented between
Alice and Rob. The key rates (K) are plotted as a function of a
dimensionless quantity proportional to the emission time, T = x + t ,
and the center frequency of the pulse, kso. Key rates are reduced
by a thermal background due to the Unruh effect. Communication
efficiency is 1 − η.
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above, a noisy version of that state and has a covariance matrix,

γB|a =
(

VR 0
0 VR

)
. (46)

Thus Eve’s information is given by

S(a : E) = �(λ+
AB) + �(λ−

AB) − �(λB|a). (47)

For a single-mode state the symplectic eigenvalue is simply the
square root of the determinant so that λB|a = det(γB|a) = VR ,
whereas for a two-mode state of the form of Eq. (44), we have

λ±
AB =

√
1

2
	 ±

√
	2 − 4 det(γAB), (48)

where 	 = a2 + b2 − 2c2. Substituting in Eq. (45) and the
channel characterization given by Eqs. (33), (34), (39),
and (35), it is straightforward to calculate the secret key rates
if Alice and Rob were to implement this protocol. The results
of such a calculation are shown in Fig. 2:

λ±
AB = (1 + VS)2 − GVS(2 + VS)(1 − η)

±{(1 + VS)(1 − VR + VS)[(1 + VS)(1 + VR + VS)

+ 2GVS(2 + VS)(−1 + η)]} 1
2 .

The figure shows that even with the unrealistic assumption
of unit efficiency, secret key rates are reduced by the Unruh
effect. The reduction is most pronounced at earlier times,
when the signals are Doppler shifted to lower frequencies

that are more effected by the thermalization. If Rob’s receiver
is assumed to have nonunit efficiency via this technique,
then Fig. 2 shows that quantum key distribution becomes
impossible at sufficiently early times.

V. CONCLUSION

The techniques we have introduced allow the rigorous
evaluation of relativistic quantum communication protocols in
terms of the localized detectors and sources typically used for
quantum communication. The results we have derived here
directly apply to continuous variable protocols between an
inertial and noninertial observer. They could straightforwardly
be generalized to discrete variable protocols by considering
localized number state detection by Rob, extending the
description from scalar to vector fields, and considering
number state creation by Alice. These techniques could also be
adapted to treat quantum communication in curved space [2],
or situations in which inertial detectors couple to Rindler
modes due to rapid changes in their energy levels [19]. The
latter case is of near term experimental interest.
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