4 research outputs found

    Squares from products of integers

    Get PDF
    This is a preprint of an article published in the Gazette of the Australian Mathematical Society, 31 (2004) no.1, pp.40-42.Notice that 1_2_3_4+1 = 52 , 2_3_4_5+1 = 112 , 3_4_5_6+1 = 192 , . . . . Indeed, it is well known that the product of any four consecutive integers always differs by one from a perfect square. However, a little experimentation readily leads one to guess that there is no integer n, other than four, so that the product of any n consecutive integers always differs from a perfect square by some fixed integer c = c(n) depending only on n. The two issues that are present here can be readily dealt with. The apparently special status of the number four arises from the fact that any quadratic polynomial can be completed by a constant to become the square of a polynomial. Second, [5] provides an elegant proof that there is in fact no integer n larger than four with the property stated above. In [5] one finds a reminder that a polynomial taking too many square values must be the square of a polynomial (see [4, Chapter VIII.114 and .190], and [2]). One might therefore ask whether there are polynomials other than integer multiples of x(x + 1)(x + 2)(x + 3) and 4x(x + 1), with integer zeros and differing by a nonzero constant from the square of a polynomial. We will show that this is quite a good question in that it has a nontrivial answer, inter alia giving new insight into the results of [5]

    Practical solution of some families of quartic diophantine hyperelliptic equations

    Full text link
    Using elementary number theory we study Diophantine equations over the rational integers of the following form, y2=(x+a)(x+a+k)(x+b)(x+b+k)y^2=(x+a)(x+a+k)(x+b)(x+b+k) and y2=c2x4+ax2+b.y^2=c^2x^4+ax^2+b. We express their integer solutions by means of the divisors of the discriminant of f(x),f(x), where y2=f(x)y^2=f(x)

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    corecore