99 research outputs found

    Fading-Resilient Super-Orthogonal Space-Time Signal Sets: Can Good Constellations Survive in Fading?

    Full text link
    In this correspondence, first-tier indirect (direct) discernible constellation expansions are defined for generalized orthogonal designs. The expanded signal constellation, leading to so-called super-orthogonal codes, allows the achievement of coding gains in addition to diversity gains enabled by orthogonal designs. Conditions that allow the shape of an expanded multidimensional constellation to be preserved at the channel output, on an instantaneous basis, are derived. It is further shown that, for such constellations, the channel alters neither the relative distances nor the angles between signal points in the expanded signal constellation.Comment: 10 pages, 0 figures, 2 tables, uses IEEEtran.cls, submitted to IEEE Transactions on Information Theor

    A New Low-Complexity Decodable Rate-5/4 STBC for Four Transmit Antennas with Nonvanishing Determinants

    Full text link
    The use of Space-Time Block Codes (STBCs) increases significantly the optimal detection complexity at the receiver unless the low-complexity decodability property is taken into consideration in the STBC design. In this paper we propose a new low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC. We provide an analytical proof that the proposed code has the Non-Vanishing-Determinant (NVD) property, a property that can be exploited through the use of adaptive modulation which changes the transmission rate according to the wireless channel quality. We compare the proposed code to the best existing low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC in terms of performance over quasi-static Rayleigh fading channels, worst- case complexity, average complexity, and Peak-to-Average Power Ratio (PAPR). Our code is found to provide better performance, lower average decoding complexity, and lower PAPR at the expense of a slight increase in worst-case decoding complexity.Comment: 5 pages, 2 figures and 1 table; IEEE Global Telecommunications Conference (GLOBECOM 2011), 201

    A New Low-Complexity Decodable Rate-1 Full-Diversity 4 x 4 STBC with Nonvanishing Determinants

    Full text link
    Space-time coding techniques have become common-place in wireless communication standards as they provide an effective way to mitigate the fading phenomena inherent in wireless channels. However, the use of Space-Time Block Codes (STBCs) increases significantly the optimal detection complexity at the receiver unless the low complexity decodability property is taken into consideration in the STBC design. In this letter we propose a new low-complexity decodable rate-1 full-diversity 4 x 4 STBC. We provide an analytical proof that the proposed code has the Non-Vanishing-Determinant (NVD) property, a property that can be exploited through the use of adaptive modulation which changes the transmission rate according to the wireless channel quality. We compare the proposed code to existing low-complexity decodable rate-1 full-diversity 4 x 4 STBCs in terms of performance over quasi-static Rayleigh fading channels, detection complexity and Peak-to-Average Power Ratio (PAPR). Our code is found to provide the best performance and the smallest PAPR which is that of the used QAM constellation at the expense of a slight increase in detection complexity w.r.t. certain previous codes but this will only penalize the proposed code for high-order QAM constellations.Comment: 5 pages, 3 figures, and 1 table; IEEE Transactions on Wireless Communications, Vol. 10, No. 8, AUGUST 201

    Maximum Rate of Unitary-Weight, Single-Symbol Decodable STBCs

    Full text link
    It is well known that the Space-time Block Codes (STBCs) from Complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas nn is a power of 2. The rate of the square CODs for n=2an = 2^a has been shown to be a+12a\frac{a+1}{2^a} complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the Minimum-Decoding-Complexity STBCs from Quasi-Orthogonal Designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a2a1\frac{a}{2^{a-1}} complex symbols per channel use for 2a2^a antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.Comment: accepted for publication in the IEEE Transactions on Information Theory, 9 pages, 1 figure, 1 Tabl

    A Novel Construction of Multi-group Decodable Space-Time Block Codes

    Full text link
    Complex Orthogonal Design (COD) codes are known to have the lowest detection complexity among Space-Time Block Codes (STBCs). However, the rate of square COD codes decreases exponentially with the number of transmit antennas. The Quasi-Orthogonal Design (QOD) codes emerged to provide a compromise between rate and complexity as they offer higher rates compared to COD codes at the expense of an increase of decoding complexity through partially relaxing the orthogonality conditions. The QOD codes were then generalized with the so called g-symbol and g-group decodable STBCs where the number of orthogonal groups of symbols is no longer restricted to two as in the QOD case. However, the adopted approach for the construction of such codes is based on sufficient but not necessary conditions which may limit the achievable rates for any number of orthogonal groups. In this paper, we limit ourselves to the case of Unitary Weight (UW)-g-group decodable STBCs for 2^a transmit antennas where the weight matrices are required to be single thread matrices with non-zero entries in {1,-1,j,-j} and address the problem of finding the highest achievable rate for any number of orthogonal groups. This special type of weight matrices guarantees full symbol-wise diversity and subsumes a wide range of existing codes in the literature. We show that in this case an exhaustive search can be applied to find the maximum achievable rates for UW-g-group decodable STBCs with g>1. For this purpose, we extend our previously proposed approach for constructing UW-2-group decodable STBCs based on necessary and sufficient conditions to the case of UW-g-group decodable STBCs in a recursive manner.Comment: 12 pages, and 5 tables, accepted for publication in IEEE transactions on communication

    A Fast Decodable Full-Rate STBC with High Coding Gain for 4x2 MIMO Systems

    Get PDF
    In this work, a new fast-decodable space-time block code (STBC) is proposed. The code is full-rate and full-diversity for 4x2 multiple-input multiple-output (MIMO) transmission. Due to the unique structure of the codeword, the proposed code requires a much lower computational complexity to provide maximum-likelihood (ML) decoding performance. It is shown that the ML decoding complexity is only O(M^{4.5}) when M-ary square QAM constellation is used. Finally, the proposed code has highest minimum determinant among the fast-decodable STBCs known in the literature. Simulation results prove that the proposed code provides the best bit error rate (BER) performance among the state-of-the-art STBCs.Comment: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London : United Kingdom (2013

    Design of fully diverse multiple-antenna codes based on Sp(2)

    Get PDF
    Fully diverse constellations, i.e., sets of unitary matrices whose pairwise differences are nonsingular, are useful in multiple-antenna communications, especially in multiple-antenna differential modulation, since they have good pairwise error properties. Recently, group theoretic ideas, especially fixed-point-free (fpf) groups, have been used to design fully diverse constellations of unitary matrices. Here we construct four-transmit-antenna constellations appropriate for differential modulation based on the symplectic group Sp(2). They can be regarded as extensions of Alamouti's celebrated two-transmit-antenna orthogonal design which can be constructed from the group Sp(1). We further show that the structure of Sp(2) codes lends itself to efficient maximum-likelihood (ML) decoding via the sphere decoding algorithm. Finally, the performance of Sp(2) codes is compared with that of other existing codes including Alamouti's orthogonal design, a 4/spl times/4 complex orthogonal design, Cayley differential unitary space-time codes and group-based codes

    Code diversity in multiple antenna wireless communication

    Full text link
    The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Likelihood (ML) decoding is considerable. Code diversity is an alternative and complementary approach where a small number of feedback bits are used to select from a family of space-time codes. Different codes lead to different induced channels at the receiver, where Channel State Information (CSI) is used to instruct the transmitter how to choose the code. This method of feedback provides gains associated with beamforming while minimizing the number of feedback bits. It complements the standard approach to code design by taking advantage of different (possibly equivalent) realizations of a particular code design. Feedback can be combined with sub-optimal low complexity decoding of the component codes to match ML decoding performance of any individual code in the family. It can also be combined with ML decoding of the component codes to improve performance beyond ML decoding performance of any individual code. One method of implementing code diversity is the use of feedback to adapt the phase of a transmitted signal as shown for 4 by 4 Quasi-Orthogonal Space-Time Block Code (QOSTBC) and multi-user detection using the Alamouti code. Code diversity implemented by selecting from equivalent variants is used to improve ML decoding performance of the Golden code. This paper introduces a family of full rate circulant codes which can be linearly decoded by fourier decomposition of circulant matrices within the code diversity framework. A 3 by 3 circulant code is shown to outperform the Alamouti code at the same transmission rate.Comment: 9 page

    Generalized Silver Codes

    Full text link
    For an ntn_t transmit, nrn_r receive antenna system (nt×nrn_t \times n_r system), a {\it{full-rate}} space time block code (STBC) transmits nmin=min(nt,nr)n_{min} = min(n_t,n_r) complex symbols per channel use. The well known Golden code is an example of a full-rate, full-diversity STBC for 2 transmit antennas. Its ML-decoding complexity is of the order of M2.5M^{2.5} for square MM-QAM. The Silver code for 2 transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M2M^2. Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nrntn_r \geq n_t) but have a high ML-decoding complexity of the order of MntnminM^{n_tn_{min}} (for nr<ntn_r < n_t, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a2^a transmit antennas and any nrn_r with reduced ML-decoding complexity of the order of Mnt(nmin(3/4))0.5M^{n_t(n_{min}-(3/4))-0.5}, is presented. The codes constructed are also information lossless for nrntn_r \geq n_t, like the Perfect codes and allow higher mutual information than the comparable punctured Perfect codes for nr<ntn_r < n_t. These codes are referred to as the {\it generalized Silver codes}, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver-Golden codes for 2 transmit antennas. Simulation results of the symbol error rates for 4 and 8 transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.Comment: Accepted for publication in the IEEE Transactions on Information Theory. This revised version has 30 pages, 7 figures and Section III has been completely revise
    corecore