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Abstract—In this work, a new fast-decodable space-time block
code (STBC) is proposed. The code is full-rate and full-diversity
for 4 × 2 multiple-input multiple-output (MIMO) transmission.
Due to the unique structure of the codeword, the proposed code
requires a much lower computational complexity to provide
maximum-likelihood (ML) decoding performance. It is shown
that the ML decoding complexity is only O(M4.5) when M -
ary square QAM constellation is used. Finally, the proposed
code has highest minimum determinant among the fast-decodable
STBCs known in the literature. Simulation results prove that the
proposed code provides the best bit error rate (BER) performance
among the state-of-the-art STBCs.

I. INTRODUCTION

Quasi-orthogonal space-time block codes (STBCs) [1] sup-

port full coding rate for the multiple-input multiple-output

(MIMO) transmissions with more than two transmit antennas.

However, they suffer from high maximum-likelihood (ML)

decoding complexity when the high order constellation is used.

The so-called fast decodable STBCs [2], [3], [5]–[7] exploit

the orthogonality embedded in the codewords and achieve

ML decoding performance at a low decoding complexity. For

instance, Biglieri-Hong-Viterbo (BHV) constructed a rate-2

STBC [2] based on the classical Jafarkhani code [1]. Exploit-

ing the quasi-orthogonal structure embedded in the Jafarkhani

codeword, the BHV code requires much less complexity than

the real ML decoding without losing performance. Ismail-

Fiorina-Sari (IFS) proposed a rate-1 STBC for four-transmit-

antenna systems [3] based on the rate-3/4 complex orthogo-

nal design (COD) [4]. Thanks to the underlying orthogonal

structure, the ML decoding is achieved by using a low

complexity conditional detector followed by hard decisions.

This construction idea was then generalized to rate-2 STBC

case [5]. Srinath and Rajan (Srinath-Rajan) proposed a fast-

decodable rate-2 STBC [6], [7] based on co-ordinate inter-

leaved orthogonal design (CIOD) [8]. The Srinath-Rajan code

possesses high coding gain but needs low decoding complexity

due to its orthogonal structure. Similarly, some other STBCs

such as DjABBA code [9], Golden code [10] and 3D MIMO

code [11] were shown to be also fast-decodable because of

the underlying orthogonality in the codewords.

In this paper, we investigate the full-rate STBC for four-

transmit-two-receive-antenna (4 × 2) MIMO transmission

which is a typical asymmetric MIMO scenario considered in

LTE, DVB-NGH [12] etc. We propose a new fast-decodable

STBC that requires low decoding complexity and possesses

high coding gain. The main contributions of the paper are:

• A new STBC codeword that enables low-complexity

MIMO decoding is proposed;

• Theoretical analysis proves that the new code is one of

the least complex STBCs with full-rate for 4× 2 MIMO

systems;

• Corresponding low-complexity ML decoding method for

the new code is presented;

• The optimal rotation angle is proposed for the new

codeword, which leads to the highest coding gain;

• Simulation results prove that the new code provides the

best BER performance.

The reminder of the paper is organized as follows. Section II

introduces the MIMO system model. The novel STBC is

proposed in Section III. Low-complexity decoding method is

also presented in this part. Simulation results are given in

Section IV. Conclusions are drawn in section V.

Notations: XT and XH denote the transpose and conjugate

transpose of a matrix X. In and On denote the identity matrix

and null matrix of size n. xR and xI represent the real and

imaginary parts of a complex variable x. The operator (̌·)
realizes the complex to real conversion:

x̌ ,

[
xR −xI

xI xR

]
. (1)

The operation x̃ , [xR
1 , x

I
1, . . . , x

R
n , x

I
n]

T separates the real

and imaginary parts of the complex vector x. The operation

vec(X) , [xT
1 ,x

T
2 , . . . ,x

T
n ]

T stacks the columns of X, i.e.

xj’s, one below another. The combined operation ṽec(X) ,
˜[xT

1 ,x
T
2 , . . . ,x

T
n ]

T first converts matrix X into stacked vector

and then separates the real and imaginary parts. 〈x,y〉 , xTy

denotes the inner product of two vectors x and y. ⊗ represents

the Kronecker product.

II. SYSTEM MODEL

A. MIMO system model

The codeword matrix of a linear dispersion STBC that

contains κ information symbols can be represented by a linear

combination [6]:

X =

κ∑

j=1

sRj A2j−1 + sIjA2j , (2)



where A2j−1 ∈ CNt×T (A2j ∈ CNt×T ), j = 1, 2, . . . , κ, are

the complex weight matrices representing the contribution of

the real (imaginary) part of the jth information symbol sj in

the final codeword matrix. One STBC codeword X ∈ CNt×T

is transmitted by Nt transmit antennas over T channel uses.

Assuming that the receiver has Nr receive antennas, the

received signal can be expressed as:

Y = HX+W, (3)

where H ∈ CNr×Nt is the MIMO channel matrix in which

the (j,k)th element hj,k represents the gain of the channel link

between the kth transmit antenna and jth receive antenna;

Y, W ∈ CNr×T represent the received signal and noise,

respectively. The channel is assumed to be quasi-static, which

is a common assumption that is guaranteed by the system

design. The MIMO transmission in (3) can be rewritten in a

real-valued equivalent form:

ỹ = Heqs̃ + w̃, (4)

where ỹ = ṽec(Y), w̃ = ˜vec(W) and Heq ∈ R2NrT×2κ is

the equivalent channel matrix and is computed by [2]:

Heq = (IT ⊗ Ȟ)G, (5)

in which the generator matrix G ∈ R2NtT×2κ is obtained by:

G , [ ˜vec(A1), ˜vec(A2), . . . , ˜vec(A2κ)]. (6)

B. ML detection using sphere decoder

We represent the equivalent channel matrix in column vec-

tors, i.e. Heq , [h1,h2, . . . ,h2κ]. After QR decomposition,

the equivalent channel matrix can be decomposed into an

orthogonal matrix Q and an upper triangular matrix R, i.e.

Heq = QR where Q , [q1,q2, . . . ,q2κ] and

R ,




‖r1‖2 〈q1,h2〉 · · · 〈q1,h2κ〉
0 ‖r2‖2 · · · 〈q2,h2κ〉
...

...
. . .

...

0 0 · · · ‖r2κ‖2


 , (7)

where r1 = h1, rj = hj −
∑j−1

k=1〈qk,hj〉qk, qj = rj/‖rj‖,

j = 1, . . . , 2κ. From (4) and taking advantage of QR decom-

position of Heq , the ML solution of the transmitted symbols

can be acquired by:

ŝ = arg min
s∈Θκ

‖z̃−Rs̃‖2, (8)

where z = QTy is a linear transform of received signal, and

Θ is the set of constellation symbols. It is actually a joint

search of κ information symbols. The resulting complexity is

O(Mκ) when the constellation is M -QAM.

III. PROPOSED FAST-DECODABLE STBC

A. Codeword matrix of DjABBA code

Let’s recall the codeword matrix of the DjABBA code [9]:

X =

[
cos ρ XA + sin ρ XC cos ρ XB + sin ρ XD

i(sin ρ XB − cos ρ XD) sin ρ XA − cos ρ XC

]
,

(9)

Zero-valued

element

Nonzero

element

Fig. 1. R matrix of DjABBA code in quasi-static channel.

where ρ is the a rotation angle dedicated to optimizing the

pairwise error of the code; XA, XB , XC and XD are four

Alamouti codewords [13] associated with four information

symbol pairs [s1 s2], [s3 s4], [s5 s6] and [s7 s8], respectively.

For instance,

XA =

[
s1 s2
−s∗2 s∗1

]
. (10)

Since eight information symbols are transmitted over four

channel uses, leading to a space-time coding rate of 2 which

means full-rate for two-receive-antenna systems.

After performing QR decomposition to the channel matrix,

the resulting upper triangular matrix R is illustrated in Fig. 1.

The contributions of information symbols sR1 , sI1, sR2 and

sI2 are not correlated in the received signal which could be

exploited to achieve a ML decoding complexity of O(M6),
instead of O(M8) [6]. More interestingly, we also notice

that this uncorrelation also exists in other information symbol

pairs. This motivates us to propose a new codeword that fully

exploits the embedded orthogonality to achieve lower decoding

complexity.

B. Proposed code

As mentioned previously, low decoding complexity is com-

monly achieved by exploiting the orthogonality between in-

formation symbols. In the literature, many fast-decodable

STBCs [2], [3], [6] were designed so that some information

symbols are uncorrelated with others. This symbol indepen-

dency enables group-wise detections in parallel which can

significantly reduce the decoding complexity.

As far as the DjABBA code is concerned, the orthogonality

embedded in the Alamouti structure can be exploited to

achieve lower decoding complexity. For instance, as shown

in Fig. 1, the 4× 4 submatrices located in the main diagonal

positions of the R matrix are identity matrices. This means

that the two information symbols in each Alamouti codeword

(e.g. XA, XB , XC and XD) are uncorrelated because of the

orthogonality in the Alamouti structure. The ML decoding

complexity is reduced from O(M8) to O(M6) thanks to this

orthogonality within each Alamouti codeword. Intuitively, even

lower complexity can be achieved if we can build orthogonality

among more information symbols.



Zero-valued

element
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Fig. 2. R matrix of the new code in quasi-static channel.

Before proposing the new codeword, let’s recall a simple

fact related to the Alamouti structure.

Lemma 1: For two Alamouti codewords A and B, its linear

combination C = aA + bB satisfies CCH = CHC = cI2,

where a, b and c are scalar numbers.

The lemma can be proved via some simple manipulations.

Its proof is omitted here. This lemma actually means that

the linear combination of two Alamouti codewords preserves

the Alamouti structure as well as the orthogonality between

different parts. It gives a way to build orthogonality among

more information symbols.

Moreover, it is known that the decoding complexity is

mainly determined by the orthogonality among the first sev-

eral information symbols when the conditional detection is

used [2], [6]. For example, in the design of BHV code, the low

decoding complexity is achieved by the Jafarkhani-like quasi-

orthogonal structure embedded in the first four information

symbols. This motivates us to build orthogonality among

{s1, s2, s3, s4} in the DjABBA codeword in order to reduce

the decoding complexity.

With the knowledge presented above, we propose a new

codeword as:

Xnew=

[
cos ρ XA + sin ρ XB cos ρ XC + sin ρ XD

i(sin ρ XC − cos ρ XD) sin ρ XA − cos ρ XB

]
,

(11)

where the rotation angle ρ is chosen to be ρ = tan−1(1+
√
5

2 )
in order to maximize the coding gain. Some discussion on the

selection of ρ will be given later.

The new codeword is very similar to the original one pre-

sented in (9) except that it is formed by the linear combinations

of XA and XB , as well as those of XC and XD. These

modifications, as will be shown later, yield orthogonality

among more information symbols, and therefore lead to a

decoding complexity reduction. A detailed expression of the

codeword matrix is given in (12) shown on next page. After

QR decomposition, the R matrix has a very good structure, as

depicted in Fig. 2. More precisely, the property of R matrix

can be expressed in the following theorem.

Theorem 1: For j, k ∈ {1, 2, . . . , 8}, in the upper triangular

matrix R we have 〈qj ,hk〉 = 0, ∀k 6= j or ∀k 6= j + 4.

Proof : From the codeword matrix (12), it can be easily

verified that, for j, k ∈ {1, 2, . . . , 8}:

AjAH
k +AkAH

j = O4, ∀k 6= j or ∀k 6= j + 4. (13)

Using the Theorem 2 given in [6], it yields that the corre-

sponding jth and kth columns of equivalent channel matrix

Heq are orthogonal, i.e. for j, k ∈ {1, 2, . . . , 8}:

〈hj ,hk〉, ∀k 6= j or ∀k 6= j + 4. (14)

Consequently, according to the definition of QR decomposi-

tion, it can be obtained that, for j ∈ {1, 2, 3, 4}:

rj = hj , qj = hj/‖hj‖. (15)

Using (14) and (15), it is obviously that, for j ∈
{1, 2, 3, 4}, k ∈ {1, 2, . . . , 8}:

〈qj ,hk〉 = 0, ∀k 6= j or ∀k 6= j + 4. (16)

Moreover, using (16), we have for j ∈ {5, 6, 7, 8}:

rj = hj − 〈qj−4,hj〉qj−4. (17)

Therefore, using (14) and (16), it yields that, for j ∈
{5, 6, 7, 8} and k ∈ {1, 2, . . . , 8}:

〈qj ,hk〉 = (〈hj ,hk〉 − 〈qj−4,hj〉〈qj−4,hk〉)/‖rj‖
= 0, ∀ k 6= j or ∀k 6= j + 4. (18)

Combining (16) and (18), it completes the proof.

Remark: Theorem 1 indicates that six real-valued informa-

tion symbols are uncorrelated, as we designed. In fact, dividing

the four complex symbols {s1, s2, s3, s4} into four groups

{sR1 , sR3 }, {sI1, sI3}, {sR2 , sR4 }, and {sI2, sI4}, the two symbols

within each group are correlated in the received signal, while

symbols of different groups are uncorrelated, as illustrated in

Fig. 2. This independency permits us to reduce the searching

space in the decoding process, which will be presented in the

following section.

C. Low complexity ML decoding

The independency between information symbols shown

in Theorem 1 can be exploited to reduce the decoding

complexity. For instance, the received signal z1 does not

contain any contribution from information symbols s2 and

s4. It means that the ML solutions of six information sym-

bols {s1, s3, s5, s6, s7, s8} can be jointly determined regard-

less the choices of {s2, s4}. Similarly, z2 does not have

contribution from s1 and s3. The six information symbols

{s2, s4, s5, s6, s7, s8} can be decided together without con-

sidering the solutions of {s1, s3}. Hence, the overall detection

of eight information can be carried out by a joint detection

of four symbols {s5, s6, s7, s8} followed by two independent

detections of {s1, s3} and {s2, s4} in parallel. In general, the

ML decoding is realized by joint searches of six information

symbols which results a complexity of O(M6). Note that

the parallel detections do not rely on the characteristic of

the constellation. In other words, this complexity reduction

is applicable for arbitrary constellation scheme.



Xnew =




cos ρ s1 + sin ρ s3 cos ρ s2 + sin ρ s4 cos ρ s5 + sin ρ s7 cos ρ s6 + sin ρ s8
− cos ρ s∗2 − sin ρ s∗4 cos ρ s∗1 + sin ρ s∗3 − cos ρ s∗6 − sin ρ s∗8 cos ρ s∗5 + sin ρ s∗7
i(sin ρ s5 − cos ρ s7) i(sin ρ s6 − cos ρ s8) sin ρ s1 − cos ρ s3 sin ρ s2 − cos ρ s4
−i(sin ρ s∗6 − cos ρ s∗8) i(sin ρ s∗5 − cos ρ s∗7) − sin ρ s∗2 + cos ρ s∗4 sin ρ s∗1 − cos ρ s∗3


 (12)

Furthermore, when the square M -QAM is adopted, the

detections of real parts and imaginary parts of information

symbols can be decoupled. Rewrite the 16×16 real-valued R

matrix by:

R =

[
R1 R2

O R4

]
, (19)

where R1 R2 and R4 are 8 × 8 submatrices. Sepa-

rating the symbol vectors s and z in two groups, i.e.

s(1) = [s1, s2, s3, s4]
T , s(2) = [s5, s6, s7, s8]

T , z(1) =
[z1, z2, z3, z4]

T and z(2) = [z5, z6, z7, z8]
T , the ML decoding

in (8) is converted into a conditional detection:

arg min
s∈Θ8

(‖z̃(1) −R1s̃
(1) −R2s̃

(2)‖2 + ‖z̃(2) −R4s̃
(2)‖2)

= argmin
s(2)∈Θ4

(‖z̃(2)−R4s̃
(2)‖2+argmin

s(1)∈Θ4
‖ṽ(1)−R1s̃

(1)‖2),
(20)

where ṽ(1) = z̃(1) − R2s̃
(2). In addition, if we take into

account the property of R1 given in Theorem 1, the inner

search of four complex symbols s(1) is simplified to be four

independent searches for {sR1 , sR3 }, {sI1, sI3}, {sR2 , sR4 }, and

{sI2, sI4}, respectively. More precisely, we have:

argmin
s(1)∈Θ4

‖ṽ(1)−R1s̃
(1)‖2 =

arg min
sR3 ∈Ψ

((vR1 −R1,1s̄
R
1 −R1,5s

R
3 )

2 + (vR3 −R5,5s
R
3 )

2)

+ arg min
sI3∈Ψ

((vI1 −R2,2 s̄I1 −R2,6 sI3)
2 + (vI3 −R6,6 sI3)

2)

+ arg min
sR4 ∈Ψ

((vR2 −R3,3s̄
R
2 −R3,7s

R
4 )

2 + (vR4 −R7,7s
R
4 )

2)

+ arg min
sI4∈Ψ

((vI2 −R4,4 s̄I2 −R4,8 sI4)
2 + (vI4 −R8,8 sI4)

2),

(21)

where Ψ is the set of
√
M -PAM constellation symbols; Rj,k

represents the (j, k)th element of the R matrix; s̄R1 , s̄I1, s̄R2 and

s̄I2 are the
√
M -PAM constellation symbols that minimize the

ML decoding metrics given sR3 , sI3, sR4 and sI4, respectively,

and can be obtained via simple hard decisions:

sR1 = Q
(vR1 −R1,5 sR3

R1,1

)
, sI1 = Q

(vI1 −R2,6 sI3
R2,2

)
, (22)

sR2 = Q
(vR2 −R3,7 sR4

R3,3

)
, sI2 = Q

(vI2 −R4,8 sI4
R4,4

)
, (23)

where Q(x) is the hard decision function that returns the
√
M -

PAM symbol which is closest to the given value x. It can be

seen that the parallel detections in (21) are realized by searches

over
√
M -PAM symbols, resulting a complexity of O(

√
M).

Combining (20) and (21), the ML decoding requires an

overall detection complexity of O(M4.5) when the square

TABLE I
COMPARISON OF MINIMUM DETERMINANTS AND ML DECODING

COMPLEXITIES OF FAST DECODABLE STBCS

STBC Min determinant
ML decoding complexity

any QAM square QAM

Proposed code 10.24 O(M6) O(M4.5)

DjABBA [9] 0.8304 † O(M7) O(M6)

Srinath-Rajan [6] 10.24 O(M5) O(M4.5)

3D MIMO [11] 0.0318 O(M6) O(M4.5)

IFS rate 2 [5] 0.0076 O(M5) O(M4.5)

BHV [2] 0 O(M6) O(M4.5)
† Using the best rotation ρ = cos−1(0.8881) [9] known in the literature.

QAM constellations are used. The decoding complexities

of some state-of-the-art fast-decodable STBCs are given in

Table I. It can be seen that the proposed code is among the

least complex ones.

D. Optimization of minimum determinants

It is well known that in the STBC design the minimum

determinant of the codeword difference matrix should be max-

imized to achieve higher coding gain which consequently leads

to better pairwise error probability (PEP) performance [14]. In

the literature, constellation rotation is a common way to max-

imize the coding gain [2], [5], [6]. The rotated constellation

brings additional diversities between in-phase and quadrature

components of the signal. As far as the proposed codeword is

concerned, the rotation angle ρ actually performs the constel-

lation rotation and should be optimized in order to maximize

the minimum determinant of the codeword difference matrix.

It is worth noting that the choice of ρ does not affect the fast

decodability of the codeword.

We propose to use the rotation angle ρ = tan−1(1+
√
5

2 ), a

value originated from the Golden number, in the new codeword

(11). It has been shown in theory that a constellation rotation

with Golden number actually gives best performance [6],

[10]. In this work, it is proved through exhaustive search

that the minimum determinant of the proposed codeword

with the “Golden rotation” is 10.24 for unnormalized QAM

constellations. This is the highest value for the 4× 2 full-rate

STBCs reported in the literature [5], [6]. A comparison of the

minimum determinant of different 4 × 2 full-rate STBCs is

given in Table I. It can be seen that the proposed code has the

same determinant as the Srinath-Rajan code and has higher

determinant than other STBCs. Finally, it is worth noting

that the non-zero minimum determinant also indicates that

the proposed new code achieves full-diversity for the four-

transmit-antenna MIMO transmissions.
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Fig. 3. BER performance comparison of different 4×2 STBCs, QPSK, i.i.d.
Rayleigh channel.

IV. SIMULATION RESULTS

Fig. 3 and Fig. 4 present the bit error rate (BER) perfor-

mance of different STBCs with QPSK and 16QAM, respec-

tively. The channel model used in the simulation is the 4× 2
MIMO channel with i.i.d. Rayleigh flat fading coefficients

for all channel links. The ML decoder is used to decode the

received MIMO signal. No channel coding scheme is used in

the simulation to give the comparison of “pure” performance

of the STBCs The rotation angle for the DjABBA code is

chosen as ρ = cos−1(0.8881) which is the best value known

in the literature [9].

From the figures, it can be seen that the proposed new

code provides the best BER performance among all STBCs

considered in the comparison with both QPSK and 16QAM.

This can be explained by the fact that the proposed code has

the highest minimum determinant. In particular, the proposed

new code achieves the same performance as the Srinath-Rajan

code which has the same coding gain, while it outperforms

other state-of-the-art STBCs such as 3D MIMO code, BHV

code and IFS rate-2 code. Moreover, the new code performs

better than the DjABBA code. It means that the proposed

Golden rotation angle provides a better performance than

the best proposal existing in the literature. In general, the

simulation results prove the advantage of the proposed code

in terms of the superior BER performance.

V. CONCLUSION

In this work, we propose a new fast-decodable full-rate full-

diversity STBC for 4 × 2 MIMO systems. The new code

requires a ML decoding complexity of O(M4.5) which is

the least among all full-rate 4 × 2 STBCs in the literature.

Moreover, with the proposed Golden rotation angle, the new

code the possesses highest coding gain which provides a better

PEP performance compared with other state-of-the-art STBCs.

This is proved by the simulation results which show that the

proposed code has superior BER performance.
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Fig. 4. BER performance comparison of different 4 × 2 STBCs, 16QAM,
i.i.d. Rayleigh channel.
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