17,165 research outputs found

    Challenges to evaluation of multilingual geographic information retrieval in GeoCLEF

    Get PDF
    This is the third year of the evaluation of geographic information retrieval (GeoCLEF) within the Cross-Language Evaluation Forum (CLEF). GeoCLEF 2006 presented topics and documents in four languages (English, German, Portuguese and Spanish). After two years of evaluation we are beginning to understand the challenges to both Geographic Information Retrieval from text and of evaluation of the results of geographic information retrieval. This poster enumerates some of these challenges to evaluation and comments on the limitations encountered in the first two evaluations

    GeoCLEF 2006: the CLEF 2006 Ccross-language geographic information retrieval track overview

    Get PDF
    After being a pilot track in 2005, GeoCLEF advanced to be a regular track within CLEF 2006. The purpose of GeoCLEF is to test and evaluate cross-language geographic information retrieval (GIR): retrieval for topics with a geographic specification. For GeoCLEF 2006, twenty-five search topics were defined by the organizing groups for searching English, German, Portuguese and Spanish document collections. Topics were translated into English, German, Portuguese, Spanish and Japanese. Several topics in 2006 were significantly more geographically challenging than in 2005. Seventeen groups submitted 149 runs (up from eleven groups and 117 runs in GeoCLEF 2005). The groups used a variety of approaches, including geographic bounding boxes, named entity extraction and external knowledge bases (geographic thesauri and ontologies and gazetteers)

    SpreadCluster: Recovering Versioned Spreadsheets through Similarity-Based Clustering

    Full text link
    Version information plays an important role in spreadsheet understanding, maintaining and quality improving. However, end users rarely use version control tools to document spreadsheet version information. Thus, the spreadsheet version information is missing, and different versions of a spreadsheet coexist as individual and similar spreadsheets. Existing approaches try to recover spreadsheet version information through clustering these similar spreadsheets based on spreadsheet filenames or related email conversation. However, the applicability and accuracy of existing clustering approaches are limited due to the necessary information (e.g., filenames and email conversation) is usually missing. We inspected the versioned spreadsheets in VEnron, which is extracted from the Enron Corporation. In VEnron, the different versions of a spreadsheet are clustered into an evolution group. We observed that the versioned spreadsheets in each evolution group exhibit certain common features (e.g., similar table headers and worksheet names). Based on this observation, we proposed an automatic clustering algorithm, SpreadCluster. SpreadCluster learns the criteria of features from the versioned spreadsheets in VEnron, and then automatically clusters spreadsheets with the similar features into the same evolution group. We applied SpreadCluster on all spreadsheets in the Enron corpus. The evaluation result shows that SpreadCluster could cluster spreadsheets with higher precision and recall rate than the filename-based approach used by VEnron. Based on the clustering result by SpreadCluster, we further created a new versioned spreadsheet corpus VEnron2, which is much bigger than VEnron. We also applied SpreadCluster on the other two spreadsheet corpora FUSE and EUSES. The results show that SpreadCluster can cluster the versioned spreadsheets in these two corpora with high precision.Comment: 12 pages, MSR 201

    Challenges in development of the American Sign Language Lexicon Video Dataset (ASLLVD) corpus

    Full text link
    The American Sign Language Lexicon Video Dataset (ASLLVD) consists of videos of >3,300 ASL signs in citation form, each produced by 1-6 native ASL signers, for a total of almost 9,800 tokens. This dataset, including multiple synchronized videos showing the signing from different angles, will be shared publicly once the linguistic annotations and verifications are complete. Linguistic annotations include gloss labels, sign start and end time codes, start and end handshape labels for both hands, morphological and articulatory classifications of sign type. For compound signs, the dataset includes annotations for each morpheme. To facilitate computer vision-based sign language recognition, the dataset also includes numeric ID labels for sign variants, video sequences in uncompressed-raw format, camera calibration sequences, and software for skin region extraction. We discuss here some of the challenges involved in the linguistic annotations and categorizations. We also report an example computer vision application that leverages the ASLLVD: the formulation employs a HandShapes Bayesian Network (HSBN), which models the transition probabilities between start and end handshapes in monomorphemic lexical signs. Further details and statistics for the ASLLVD dataset, as well as information about annotation conventions, are available from http://www.bu.edu/asllrp/lexicon

    Using Textual Summaries to Describe a Set of Products

    Get PDF
    When customers are faced with the task of making a purchase in an unfamiliar product domain, it might be useful to provide them with an overview of the product set to help them understand what they can expect. In this paper we present and evaluate a method to summarise sets of products in natural language, focusing on the price range, common product features across the set, and product features that impact on price. In our study, participants reported that they found our summaries useful, but we found no evidence that the summaries influenced the selections made by participants
    corecore