246,208 research outputs found

    Spread spectrum techniques for indoor wireless IR communications

    Get PDF
    Multipath dispersion and fluorescent light interference are two major problems in indoor wireless infrared communications systems. Multipath dispersion introduces intersymhol interference at data rates above 10 Mb/s, while fluorescent light induces severe narrowband interference to baseband modulation schemes commonly used such as OOK and PPM. This article reviews the research into the application of direct sequence spread spectrum techniques to ameliorate these key channel impairments without having to resort to complex signal processing techniques. The inherent properties of a spreading sequence are exploited in order to combat the ISI and narrowband interference. In addition, to reduce the impact of these impairments, the DSSS modulation schemes have strived to be bandwidth-efficient and simple to implement. Three main DSSS waveform techniques have been developed and investigated. These are sequence inverse keying, complementary sequence inverse keying, and M-ary biorthogonal keying (MBOK). The operations of the three systems are explained; their performances were evaluated through simulations and experiments for a number of system parameters, including spreading sequence type and length. By comparison with OOK, our results show that SIK, CSIK, and MBOK are effective against multipath dispersion and fluorescent light interference becausc the penalties incurred on the DSSS schemes are between 0-7 dB, while the penalty on OOK in the same environment is more than 17 dB. The DSSS solution for IR wireless transmission demonstrates that a transmission waveform can he designed to remove the key channel impairments in a wireless IR system

    Why is CDMA the solution for mobile satellite communication

    Get PDF
    It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented

    Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    Get PDF
    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented

    Spread spectrum mobile communication experiment using ETS-V satellite

    Get PDF
    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite

    Technical characteristics of the OmniTRACS: The first operation mobile Ku-band satellite communications system

    Get PDF
    The techinical characteristics of the OmniTRACS system are described. The system is the first operational mobile Ku-band satellite communications system and provides two-way message and position determination service to mobile terminals using existing Ku-band satellites. Interference to and from the system is minimized by the use of special spread-spectrum techniques, together with low power and low data rate transmissions

    Chirp Spread Spectrum Signaling for Future Air-Ground Communications

    Full text link
    In this paper, we investigate the use of chirp spread spectrum signaling over air-ground channels. This includes evaluation of not only the traditional linear chirp, but also of a new chirp signal format we have devised for multiple access applications. This new format is more practical than prior multi-user chirp systems in the literature, because we allow for imperfect synchronism. Specifically we evaluate multi-user chirp signaling over air-ground channels in a quasi-synchronous condition. The air-ground channels we employ are models based upon an extensive NASA measurement campaign. We show that our new signaling scheme outperforms the classic linear chirp in these air-ground settings.Comment: This paper published in IEEE Milcom conference November 2019. arXiv admin note: text overlap with arXiv:1909.0988
    corecore