143 research outputs found

    A Beam-Segmenting Polar Format Algorithm Based on Double PCS for Video SAR Persistent Imaging

    Full text link
    Video synthetic aperture radar (SAR) is attracting more attention in recent years due to its abilities of high resolution, high frame rate and advantages in continuous observation. Generally, the polar format algorithm (PFA) is an efficient algorithm for spotlight mode video SAR. However, in the process of PFA, the wavefront curvature error (WCE) limits the imaging scene size and the 2-D interpolation affects the efficiency. To solve the aforementioned problems, a beam-segmenting PFA based on principle of chirp scaling (PCS), called BS-PCS-PFA, is proposed for video SAR imaging, which has the capability of persistent imaging for different carrier frequencies video SAR. Firstly, an improved PCS applicable to video SAR PFA is proposed to replace the 2-D interpolation and the coarse image in the ground output coordinate system (GOCS) is obtained. As for the distortion or defocus existing in the coarse image, a novel sub-block imaging method based on beam-segmenting fast filtering is proposed to segment the image into multiple sub-beam data, whose distortion and defocus can be ignored when the equivalent size of sub-block is smaller than the distortion negligible region. Through processing the sub-beam data and mosaicking the refocused subimages, the full image in GOCS without distortion and defocus is obtained. Moreover, a three-step MoCo method is applied to the algorithm for the adaptability to the actual irregular trajectories. The proposed method can significantly expand the effective scene size of PFA, and the better operational efficiency makes it more suitable for video SAR imaging. The feasibility of the algorithm is verified by the experimental data

    Monostatic Airborne Synthetic Aperture Radar Using Commercial WiMAX Transceivers In the License-exempt Spectrum

    Get PDF
    The past half-century witnessed an evolution of synthetic aperture radar (SAR). Boosted by digital signal processing (DSP), a variety of SAR imaging algorithms have been developed, in which the wavenumber domain algorithm is mature for airborne SAR and independent of signal waveforms. Apart from the algorithm development, there is a growing interest in how to acquire the raw data of targets’ echoes before the DSP for SAR imaging in a cost-effective way. For the data acquisition, various studies over the past 15 years have shed light on utilizing the signal generated from the ubiquitous broadband wireless technology – orthogonal frequency division multiplexing (OFDM). However, the purpose of this thesis is to enable commercial OFDM-based wireless systems to work as an airborne SAR sensor. The unlicensed devices of Worldwide interoperability for Microwave Access (WiMAX) are the first option, owing to their accessibility, similarity and economy. This dissertation first demonstrates the feasibility of applying WiMAX to SAR by discussing their similar features. Despite the similarities they share, the compatibility of the two technologies is undermined by a series of problems resulted from WiMAX transceiver mechanisms and industrial rules for radiated power. In order to directly apply commercial WiMAX base station transceivers in unlicensed band to airborne SAR application, we propose a radio-frequency (RF) front design together with a signal processing means. To be specific, a double-pole, double-throw (DPDT) switch is inserted between an antenna and two WiMAX transceivers for generating pulsed signal. By simulations, the transmitted power of the SAR sensor is lower than 0dBm, while its imaging range can be over 10km for targets with relatively large radar cross section (RCS), such as a ship. Its range resolution is 9.6m whereas its cross-range resolution is finer than 1m. Equipped with the multi-mode, this SAR sensor is further enhanced to satisfy the requirements of diversified SAR applications. For example, the width of the scan-mode SAR’s range swath is 2.1km, over five times the width of other modes. Vital developed Matlab code is given in Appendix D, and its correctness is shown by comparing with the image of chirped SAR. To summarize, the significance of this dissertation is to propose, for the first time, a design of directly leveraging commercial OFDM-based systems for airborne SAR imaging. Compared with existing designs of airborne SAR, it is a promising low-cost solution

    An Efficient Polyphase Filter Based Resampling Method for Unifying the PRFs in SAR Data

    Full text link
    Variable and higher pulse repetition frequencies (PRFs) are increasingly being used to meet the stricter requirements and complexities of current airborne and spaceborne synthetic aperture radar (SAR) systems associated with higher resolution and wider area products. POLYPHASE, the proposed resampling scheme, downsamples and unifies variable PRFs within a single look complex (SLC) SAR acquisition and across a repeat pass sequence of acquisitions down to an effective lower PRF. A sparsity condition of the received SAR data ensures that the uniformly resampled data approximates the spectral properties of a decimated densely sampled version of the received SAR data. While experiments conducted with both synthetically generated and real airborne SAR data show that POLYPHASE retains comparable performance to the state-of-the-art BLUI scheme in image quality, a polyphase filter-based implementation of POLYPHASE offers significant computational savings for arbitrary (not necessarily periodic) input PRF variations, thus allowing fully on-board, in-place, and real-time implementation

    A High-Order Imaging Algorithm for High-Resolution Space-Borne SAR Based on a Modified Equivalent Squint Range Model

    Get PDF
    Two challenges have been faced in signal processing of ultrahigh-resolution spaceborne synthetic aperture radar (SAR). The first challenge is constructing a precise range model, and the second one is to develop an efficient imaging algorithm since traditional algorithms fail to process ultrahigh-resolution spaceborne SAR data effectively. In this paper, a novel high-order imaging algorithm for high-resolution spaceborne SAR is presented. First, a modified equivalent squint range model (MESRM) is developed by introducing equivalent radar acceleration into the equivalent squint range model, and it is more suitable for high-resolution spaceborne SAR. The signal model based on the MESRM is also presented. Second, a novel high-order imaging algorithm is derived. The insufficient pulse-repetition frequency problem is solved by an improved subaperture method, and accurate focusing is achieved through an extended hybrid correlation algorithm. Simulations are performed to validate the presented algorithm

    An imaging algorithm for spaceborne high-squint L-band SAR based on time-domain rotation

    Get PDF
    For spaceborne high-squint L-band synthetic aperture radar (SAR), the long wavelength and high-squint angle result in strong coupling between the range and azimuth directions. In conventional imaging algorithms, linear range walk correction (LRWC) is commonly used to correct linear range cell migration which dominates the coupling. However, LRWC introduces spatial variation in the azimuth direction, limits the depth-of-azimuth-focus (DOAF) and affects the imaging quality. This article constructs a polynomial range model and develops a modified omega-k algorithm to achieve spaceborne high-squint L-band SAR imaging. The key to this algorithm is to rotate the two-dimensional (2-D) data after LRWC in the time domain by a proposed time-rotation (TR) operation that eliminates the DOAF degradation caused by LRWC. The proposed algorithm, which is composed of LRWC, bulk compression, TR, and modified Stolt interpolation, achieves well-focused results at a 1-m resolution and a swath of 4 km × 4 km at a squint angle of 45°

    Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing

    Get PDF
    This paper describes a factorized geometrical autofocus (FGA) algorithm, specifically suitable for ultrawideband synthetic aperture radar. The strategy is integrated in a fast factorized back-projection chain and relies on varying track parameters step by step to obtain a sharp image; focus measures are provided by an object function (intensity correlation). The FGA algorithm has been successfully applied on synthetic and real (Coherent All RAdio BAnd System II) data sets, i.e., with false track parameters introduced prior to processing, to set up constrained problems involving one geometrical quantity. Resolution (3 dB in azimuth and slant range) and peak-to-sidelobe ratio measurements in FGA images are comparable with reference results (within a few percent and tenths of a decibel), demonstrating the capacity to compensate for residual space variant range cell migration. The FGA algorithm is finally also benchmarked (visually) against the phase gradient algorithm to emphasize the advantage of a geometrical autofocus approach

    Signal Processing for Synthetic Aperture Sonar Image Enhancement

    Get PDF
    This thesis contains a description of SAS processing algorithms, offering improvements in Fourier-based reconstruction, motion-compensation, and autofocus. Fourier-based image reconstruction is reviewed and improvements shown as the result of improved system modelling. A number of new algorithms based on the wavenumber algorithm for correcting second order effects are proposed. In addition, a new framework for describing multiple-receiver reconstruction in terms of the bistatic geometry is presented and is a useful aid to understanding. Motion-compensation techniques for allowing Fourier-based reconstruction in widebeam geometries suffering large-motion errors are discussed. A motion-compensation algorithm exploiting multiple receiver geometries is suggested and shown to provide substantial improvement in image quality. New motion compensation techniques for yaw correction using the wavenumber algorithm are discussed. A common framework for describing phase estimation is presented and techniques from a number of fields are reviewed within this framework. In addition a new proof is provided outlining the relationship between eigenvector-based autofocus phase estimation kernels and the phase-closure techniques used astronomical imaging. Micronavigation techniques are reviewed and extensions to the shear average single-receiver micronavigation technique result in a 3 - 4 fold performance improvement when operating on high-contrast images. The stripmap phase gradient autofocus (SPGA) algorithm is developed and extends spotlight SAR PGA to the wide-beam, wide-band stripmap geometries common in SAS imaging. SPGA supersedes traditional PGA-based stripmap autofocus algorithms such as mPGA and PCA - the relationships between SPGA and these algorithms is discussed. SPGA's operation is verified on simulated and field-collected data where it provides significant image improvement. SPGA with phase-curvature based estimation is shown and found to perform poorly compared with phase-gradient techniques. The operation of SPGA on data collected from Sydney Harbour is shown with SPGA able to improve resolution to near the diffraction-limit. Additional analysis of practical stripmap autofocus operation in presence of undersampling and space-invariant blurring is presented with significant comment regarding the difficulties inherent in autofocusing field-collected data. Field-collected data from trials in Sydney Harbour is presented along with associated autofocus results from a number of algorithms

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Doppler Aliasing Reduction in Wide-Angle Synthetic Aperture Radar Using a Linear Frequency Modulated Random Stepped-Frequency Waveform

    Get PDF
    This research examines the theory, application, and results of using Random Stepped-Frequency (RSF) waveforms to mitigate Doppler aliasing in a wide-angle Synthetic Aperture Radar (SAR) imaging scenario. Severe Doppler aliasing typically occurs in this scenario since range extent requirements force the pulse repetition frequency to a value violating the lower bound for Doppler aliasing. Building on previous research, this work expands upon RSF waveform analysis using a Linear Frequency Modulated RSF (LFM-RSF) waveform. The RSF waveform suppresses Doppler aliasing by positioning nulls at the aliased scatterer location. Applying LFM with RSF processing theoretically provides greater frequency coverage and aliased scatterer cancellation improvement when compared to fixed frequency values. Results using the LFM-RSF waveform show images with alias mitigation performance consistent with previous non-LFM RSF results. Given a 45 dB image dynamic range and satisfying a time-bandwidth product criterion, the LFM-RSF waveform produces an image with aliased energy reduced by 99.6%. Slightly more energy reduction is possible by violating the time-bandwidth product criterion with an associated frequency overlap between subpulses. This violation leads to additional frequency coverage which enhances aliased energy reduction to 99.9%

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system
    corecore