17,697 research outputs found

    The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

    Full text link
    Natural evolution has produced a tremendous diversity of functional organisms. Many believe an essential component of this process was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g. offspring tend to have similarly sized legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization almost never evolves in computational simulations of evolution. Not only does that deprive us of in silico models in which to study the evolution of evolvability, but it also raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally and could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this paper we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be highly modular and hierarchical, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.Comment: SI can be found at: http://www.evolvingai.org/files/SI_0.zi

    Language: The missing selection pressure

    Full text link
    Human beings are talkative. What advantage did their ancestors find in communicating so much? Numerous authors consider this advantage to be "obvious" and "enormous". If so, the problem of the evolutionary emergence of language amounts to explaining why none of the other primate species evolved anything even remotely similar to language. What I propose here is to reverse the picture. On closer examination, language resembles a losing strategy. Competing for providing other individuals with information, sometimes striving to be heard, makes apparently no sense within a Darwinian framework. At face value, language as we can observe it should never have existed or should have been counter-selected. In other words, the selection pressure that led to language is still missing. The solution I propose consists in regarding language as a social signaling device that developed in a context of generalized insecurity that is unique to our species. By talking, individuals advertise their alertness and their ability to get informed. This hypothesis is shown to be compatible with many characteristics of language that otherwise are left unexplained.Comment: 34 pages, 3 figure

    The evolutionary origins of hierarchy

    Get PDF
    Hierarchical organization -- the recursive composition of sub-modules -- is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force--the cost of connections--promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.Comment: 32 page

    Interplay of spatial dynamics and local adaptation shapes species lifetime distributions and species-area relationships

    Full text link
    The distributions of species lifetimes and species in space are related, since species with good local survival chances have more time to colonize new habitats and species inhabiting large areas have higher chances to survive local disturbances. Yet, both distributions have been discussed in mostly separate communities. Here, we study both patterns simultaneously using a spatially explicit, evolutionary community assembly approach. We present and investigate a metacommunity model, consisting of a grid of patches, where each patch contains a local food web. Species survival depends on predation and competition interactions, which in turn depend on species body masses as the key traits. The system evolves due to the migration of species to neighboring patches, the addition of new species as modifications of existing species, and local extinction events. The structure of each local food web thus emerges in a self-organized manner as the highly non-trivial outcome of the relative time scales of these processes. Our model generates a large variety of complex, multi-trophic networks and therefore serves as a powerful tool to investigate ecosystems on long temporal and large spatial scales. We find that the observed lifetime distributions and species-area relations resemble power laws over appropriately chosen parameter ranges and thus agree qualitatively with empirical findings. Moreover, we observe strong finite-size effects, and a dependence of the relationships on the trophic level of the species. By comparing our results to simple neutral models found in the literature, we identify the features that are responsible for the values of the exponents.Comment: Theor Ecol (2019

    On the emergence and evolution of artificial cell signaling networks

    Get PDF
    This PhD project is concerned with the evolution of Cell Signaling Networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We are investigating the possibility to build an evolutionary simulation platform that would allow the spontaneous emergence and evolution of Artificial Cell Signaling Networks (ACSNs). From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. This work may also contribute to the biological understanding of the origins and evolution of real CSNs

    Resolving social dilemmas on evolving random networks

    Full text link
    We show that strategy independent adaptations of random interaction networks can induce powerful mechanisms, ranging from the Red Queen to group selection, that promote cooperation in evolutionary social dilemmas. These two mechanisms emerge spontaneously as dynamical processes due to deletions and additions of links, which are performed whenever players adopt new strategies and after a certain number of game iterations, respectively. The potency of cooperation promotion, as well as the mechanism responsible for it, can thereby be tuned via a single parameter determining the frequency of link additions. We thus demonstrate that coevolving random networks may evoke an appropriate mechanism for each social dilemma, such that cooperation prevails even by highly unfavorable conditions.Comment: 6 two-column pages, 7 figures; accepted for publication in Europhysics Letter
    corecore