7,308 research outputs found

    Observation of a Spinning Top in a Bose-Einstein Condensate

    Get PDF
    Boundaries strongly affect the behavior of quantized vortices in Bose-Einstein condensates, a phenomenon particularly evident in elongated cigar-shaped traps where vortices tend to orient along a short direction to minimize energy. Remarkably, contributions to the angular momentum of these vortices are tightly confined to the region surrounding the core, in stark contrast to untrapped condensates where all atoms contribute \hbar. We develop a theoretical model and use this, in combination with numerical simulations, to show that such localized vortices precess in an analogous manner to that of a classical spinning top. We experimentally verify this spinning-top behavior with our real-time imaging technique that allows for the tracking of position and orientation of vortices as they dynamically evolve. Finally, we perform an in-depth numerical investigation of our real-time expansion and imaging method, with the aim of guiding future experimental implementation, as well as outlining directions for its improvement.Comment: 10 pages, 7 figure

    Plectoneme creation reduces the rotational friction of a polymer

    Full text link
    The torsional dynamics of a semiflexible polymer with a contour length LL larger than its persistence length L_p that is rotated at fixed frequency omega_0 at one end is studied by scaling arguments and hydrodynamic simulations. We find a non-equilibrium transition at a critical frequency omega_*: In the linear regime, omega_0 < omega_*, axial spinning is the dominant dissipation mode. In the non-linear regime, omega_0 > omega_*, the twist-dissipation mode involves the continuous creation of plectonemes close to the driven end and the rotational friction is substantially reduced

    GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass

    Get PDF
    Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): Mmaxsph2.74/β{M_{\rm max}^{\rm sph}}\lesssim 2.74/\beta, where β\beta is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow β\beta to be as high as 1.271.27, while most realistic candidate equations of state predict β\beta to be closer to 1.21.2, yielding Mmaxsph{M_{\rm max}^{\rm sph}} in the range 2.162.28M2.16-2.28 M_\odot. A minimal set of assumptions based on these simulations distinguishes this analysis from previous ones, but leads to a similar estimate. There are caveats, however, and they are enumerated and discussed. The caveats can be removed by further simulations and analysis to firm up the basic argument.Comment: 6 pages, 1 figure. Matches published versio

    Black Hole Superradiance in Dynamical Spacetime

    Full text link
    We study the superradiant scattering of gravitational waves by a nearly extremal black hole (dimensionless spin a=0.99a=0.99) by numerically solving the full Einstein field equations, thus including backreaction effects. This allows us to study the dynamics of the black hole as it loses energy and angular momentum during the scattering process. To explore the nonlinear phase of the interaction, we consider gravitational wave packets with initial energies up to 1010% of the mass of the black hole. We find that as the incident wave energy increases, the amplification of the scattered waves, as well as the energy extraction efficiency from the black hole, is reduced. During the interaction the apparent horizon geometry undergoes sizable nonaxisymmetric oscillations. The largest amplitude excitations occur when the peak frequency of the incident wave packet is above where superradiance occurs, but close to the dominant quasinormal mode frequency of the black hole.Comment: 5 pages, 4 figures; revised to match PRD versio

    Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results

    Full text link
    We present gravitational waveforms for the last orbits and merger of black-hole-binary (BBH) systems along two branches of the BBH parameter space: equal-mass binaries with equal non-precessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each BH is χi=Si/Mi2[0.85,0.85]\chi_i = S_i/M_i^2 \in [-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M2/M1[1,4]q =M_2/M_1 \in [1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged BH, and compare the last 8-10 GW cycles up to Mω=0.1M\omega = 0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins χi>0.75\chi_i > -0.75. When high-order amplitude corrections are included, the PN amplitude of the (=2,m=±2)(\ell=2,m=\pm2) modes is larger than the NR amplitude by between 2-4%.Comment: 21 pages, 9 figures, 6 tables. Version accepted by PR

    Suitability of hybrid gravitational waveforms for unequal-mass binaries

    Get PDF
    This article studies sufficient accuracy criteria of hybrid post-Newtonian (PN) and numerical relativity (NR) waveforms for parameter estimation of strong binary black-hole sources in second- generation ground-based gravitational-wave detectors. We investigate equal-mass non-spinning binaries with a new 33-orbit NR waveform, as well as unequal-mass binaries with mass ratios 2, 3, 4 and 6. For equal masses, the 33-orbit NR waveform allows us to recover previous results and to extend the analysis toward matching at lower frequencies. For unequal masses, the errors between different PN approximants increase with mass ratio. Thus, at 3.5PN, hybrids for higher-mass-ratio systems would require NR waveforms with many more gravitational-wave (GW) cycles to guarantee no adverse impact on parameter estimation. Furthermore, we investigate the potential improvement in hybrid waveforms that can be expected from 4th order post-Newtonian waveforms, and find that knowledge of this 4th post-Newtonian order would significantly improve the accuracy of hybrid waveforms.Comment: 11 pages, 14 figure

    Tearing up the disc: how black holes accrete

    Full text link
    We show that in realistic cases of accretion in active galactic nuclei or stellar-mass X-ray binaries, the Lense-Thirring effect breaks the central regions of tilted accretion discs around spinning black holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment of the outer disc to the spin axis of the hole is 45θ13545^{\circ} \lesssim \theta \lesssim 135^{\circ}, as in 70\sim 70% of randomly oriented accretion events, the continued precession of these discs sets up partially counter-rotating gas flows. This drives rapid infall as angular momentum is cancelled and gas attempts to circularize at smaller radii. Disc breaking close to the black hole leads to direct dynamical accretion, while breaking further out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still occur, and may lead to other observable phenomena such as QPOs. For such effects not to appear, the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disc. Qualitatively similar results hold for any accretion disc subject to a forced differential precession, such as an external disc around a misaligned black hole binary.Comment: 5 pages, 3 figures. Accepted to ApJ Letter
    corecore