94,658 research outputs found

    The Spinobulbar System in Lamprey

    Get PDF
    Locomotor networks in the spinal cord are controlled by descending systems which in turn receive feedback signals from ascending systems about the state of the locomotor networks. In lamprey, the ascending system consists of spinobulbar neurons which convey spinal network signals to the two descending systems, the reticulospinal and vestibulospinal neurons. Previous studies showed that spinobulbar neurons consist of both ipsilaterally and contralaterally projecting cells distributed at all rostrocaudal levels of the spinal cord, though most numerous near the obex. The axons of spinobulbar neurons ascend in the ventrolateral spinal cord and brainstem to the caudal mesencephalon and within the dendritic arbors of reticulospinal and vestibulospinal neurons. Compared to mammals, the ascending system in lampreys is more direct, consisting of excitatory and inhibitory monosynaptic inputs from spinobulbar neurons to reticulospinal neurons. The spinobulbar neurons are rhythmically active during fictive locomotion, representing a wide range of timing relationships with nearby ventral root bursts including those in phase, out of phase, and active during burst transitions between opposite ventral roots. The spinobulbar neurons are not simply relay cells because they can have mutual synaptic interactions with their reticulospinal neuron targets and they can have synaptic outputs to other spinal neurons. Spinobulbar neurons not only receive locomotor inputs but also receive direct inputs from primary mechanosensory neurons. Due to the relative simplicity of the lamprey nervous system and motor control system, the spinobulbar neurons and their interactions with reticulospinal neurons may be advantageous for investigating the general organization of ascending systems in the vertebrate

    Comprehensive Monosynaptic Rabies Virus Mapping of Host Connectivity with Neural Progenitor Grafts after Spinal Cord Injury.

    Get PDF
    Neural progenitor cells grafted to sites of spinal cord injury have supported electrophysiological and functional recovery in several studies. Mechanisms associated with graft-related improvements in outcome appear dependent on functional synaptic integration of graft and host systems, although the extent and diversity of synaptic integration of grafts with hosts are unknown. Using transgenic mouse spinal neural progenitor cell grafts expressing the TVA and G-protein components of the modified rabies virus system, we initiated monosynaptic tracing strictly from graft neurons placed in sites of cervical spinal cord injury. We find that graft neurons receive synaptic inputs from virtually every known host system that normally innervates the spinal cord, including numerous cortical, brainstem, spinal cord, and dorsal root ganglia inputs. Thus, implanted neural progenitor cells receive an extensive range of host neural inputs to the injury site, potentially enabling functional restoration across multiple systems

    Analysis of CNS Projections to Spinal Cord Rostral to Midthhoracic Transection in Lizard Anolis Carolinensis using HRP-Labelling technique = Analisis syaraf-syaraf pusat ...

    Get PDF
    ABSTRACT: Projections of supraspinal and intraspinal neurons to spinal cord rostral to midthoracic transection in lizard Anolis carolinensis was studied. This experiment utilized retrograde transport technique with HRP to determine the structure and the number of the neurons projecting axon to spinal cord rostral to midthoracic transection as compared to the number of the projecting axon in midthoracic region. The\u27result revealed that the majority of the supraspinal neurons projecting axon to spinal cord rostral to midthoracic transection were more heavily labelled than those in animals with transection in midthoracic spinal cord. On the other hand, intraspinal neurons were heavily labelled in both animals. Further, it was found that the number of supraspinal and intraspinal neurons projecting axon to spinal cord rostral to midthoracic transection were greater than those of the descending axons to midthoracic spinal cord. Keyword: Supraspinal and intraspinal neurons - spinal cord - HRP

    Correlation with basic differentiation processes of neurons

    Get PDF
    The development of the spinal cord involves the proliferation of neurons, their migration to well-defined areas, fiber outgrowth and synapse formation. The present study was designed to correlate the spatiotemporal pattern of expression of synaptophysin, an integral membrane protein of small synaptic vesicles, with these basic processes occurring during the embryonic development of the rat spinal cord. Thoracic segments of spinal cords from embryonic days 12, 14, 16, 18, 20 and of adult spinal cords were studied. S1 nuclease protection assays and immunoblots revealed minute amounts of specific mRNA and synaptophysin at embryonic day 12. There was a steep increase of mRNA between embryonic days 14 and 16, after which levels reached a plateau. A rise in the amount of synaptophysin in the spinal cord occurred between embryonic days 12 and 14, and the levels changed only slightly until the end of embryonic development. Even higher levels of synaptophysin, found in the adult spinal cord, may indicate that its biosynthesis continued after birth. In situ hybridization histochemistry revealed the localization of specific synaptophysin mRNA in the neuroepithelium. However, immunocytochemistry failed to detect synaptophysin in the neuroepithelial cells. Following migration of the neuroblasts, synaptophysin was found in neurons concomitantly with the onset of fiber outgrowth. Thus, already at embryonic day 12, outgrowing fibers of the dorsal root sensory neurons and of motoneurons were synaptophysin positive. From embryonic day 14 throughout the prenatal period, strong synaptophysin immunoreactivity was seen in the ventrolateral and dorsal parts of the marginal layer. Most likely this staining pattern indicates transient functional synaptic contacts because, in the adult spinal cord, the corresponding region, the white matter, exhibited only faint synaptophysin immunoreactivity. In the intermediate layer of the embryonic spinal cord, which corresponds to the gray matter of the adult spinal cord, synaptophysin-positive fibers were observed prior to the formation of functional synapses. The latter are most likely permanent, since synaptophysin in the adult spinal cord is mainly confined to the gray matter. Our data (i) show transcription and translation of synaptophysin within the neurons of the spinal cord and correlate these processes with proliferation, migration, fiber outgrowth and the formation of transient or permanent synapses, and (ii) prove that synaptophysin is a marker for fiber outgrowth in addition to synapse formation

    Injury induced neuroplasticity and cell specific targeting of the lumbar enlargement for gene therapy.

    Get PDF
    This dissertation is an examination of spinal cord injury induced neuroplasticity and tests whether noninvasive gene therapy can successfully target neurons in the lumbar spinal cord. It begins with an overview of neural control of locomotion and a brief summary of therapeutics that are used and/or in development for treating spinal anatomically characterize s subset of neurons in the spinal cord, long ascending propriospinal neurons, that are involved in interlimb coordination. Characterization of these neurons allows for subsequent evaluation of their potential involvement in injury induced neuroplasticity. This dissertation is divided into five chapters, covering spinal cord injury and therapeutics. Chapter One gives background on locomotor control, propriospinal neurons, spinal cord injury, and therapeutics. Chapter Two develops and characterizes viral tracing methods for spinal cord anatomy. Chapter Three then uses these methods to characterize long ascending propriospinal neurons and evaluate their involvement in injury induced plasticity. Chapter Four then focuses on the development of noninvasive delivery of gene transfer to the lumbar enlargement. This involves optimizing focused ultrasound and intravenous microbubble delivery to focally and transiently permeabilize the blood spinal cord barrier of the lumbar spinal cord. This optimization then allows for successful gene transfer in neurons in the lumbar spinal cord following intravenous delivery of viral vector. Lasty, Chapter Five discusses the implications for all of these findings and how these findings have contributed to our understanding spinal cord anatomy and injury, and how the proof-of-concept in Chapter 4 provides a promising new avenue for spinal cord injury therapeutics

    Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons

    Get PDF
    Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons innervate spinal autonomic and somatic motor neurons. The distributions of spinal PPG axons and spinal GLP-1 receptors correlate well. SPN receive the densest PPG innervation. Brainstem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to SPN or interneurons

    Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis.

    Get PDF
    Oligodendrocytes associate with axons to establish myelin and provide metabolic support to neurons. In the spinal cord of amyotrophic lateral sclerosis (ALS) mice, oligodendrocytes downregulate transporters that transfer glycolytic substrates to neurons and oligodendrocyte progenitors (NG2(+) cells) exhibit enhanced proliferation and differentiation, although the cause of these changes in oligodendroglia is unknown. We found extensive degeneration of gray matter oligodendrocytes in the spinal cord of SOD1 (G93A) ALS mice prior to disease onset. Although new oligodendrocytes were formed, they failed to mature, resulting in progressive demyelination. Oligodendrocyte dysfunction was also prevalent in human ALS, as gray matter demyelination and reactive changes in NG2(+) cells were observed in motor cortex and spinal cord of ALS patients. Selective removal of mutant SOD1 from oligodendroglia substantially delayed disease onset and prolonged survival in ALS mice, suggesting that ALS-linked genes enhance the vulnerability of motor neurons and accelerate disease by directly impairing the function of oligodendrocytes

    Sexual Experience Induces the Expression of Gastrin-Releasing Peptide and Oxytocin Receptors in the Spinal Ejaculation Generator in Rats

    Get PDF
    Male sexual function in mammals is controlled by the brain neural circuits and the spinal cord centers located in the lamina X of the lumbar spinal cord (L3-L4). Recently, we reported that hypothalamic oxytocin neurons project to the lumbar spinal cord to activate the neurons located in the dorsal lamina X of the lumbar spinal cord (dXL) via oxytocin receptors, thereby facilitating male sexual activity. Sexual experiences can influence male sexual activity in rats. However, how this experience affects the brain-spinal cord neural circuits underlying male sexual activity remains unknown. Focusing on dXL neurons that are innervated by hypothalamic oxytocinergic neurons controlling male sexual function, we examined whether sexual experience affects such neural circuits. We found that >50% of dXL neurons were activated in the first ejaculation group and similar to 30% in the control and intromission groups in sexually naive males. In contrast, in sexually experienced males, similar to 50% of dXL neurons were activated in both the intromission and ejaculation groups, compared to similar to 30% in the control group. Furthermore, sexual experience induced expressions of gastrin-releasing peptide and oxytocin receptors in the lumbar spinal cord. This is the first demonstration of the effects of sexual experience on molecular expressions in the neural circuits controlling male sexual activity in the spinal cord
    • …
    corecore