625 research outputs found

    Closing the loop between neural network simulators and the OpenAI Gym

    Full text link
    Since the enormous breakthroughs in machine learning over the last decade, functional neural network models are of growing interest for many researchers in the field of computational neuroscience. One major branch of research is concerned with biologically plausible implementations of reinforcement learning, with a variety of different models developed over the recent years. However, most studies in this area are conducted with custom simulation scripts and manually implemented tasks. This makes it hard for other researchers to reproduce and build upon previous work and nearly impossible to compare the performance of different learning architectures. In this work, we present a novel approach to solve this problem, connecting benchmark tools from the field of machine learning and state-of-the-art neural network simulators from computational neuroscience. This toolchain enables researchers in both fields to make use of well-tested high-performance simulation software supporting biologically plausible neuron, synapse and network models and allows them to evaluate and compare their approach on the basis of standardized environments of varying complexity. We demonstrate the functionality of the toolchain by implementing a neuronal actor-critic architecture for reinforcement learning in the NEST simulator and successfully training it on two different environments from the OpenAI Gym

    Deterministic networks for probabilistic computing

    Get PDF
    Neural-network models of high-level brain functions such as memory recall and reasoning often rely on the presence of stochasticity. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. However, both in vivo and in silico, the number of noise sources is limited due to space and bandwidth constraints. Hence, neurons in large networks usually need to share noise sources. Here, we show that the resulting shared-noise correlations can significantly impair the performance of stochastic network models. We demonstrate that this problem can be overcome by using deterministic recurrent neural networks as sources of uncorrelated noise, exploiting the decorrelating effect of inhibitory feedback. Consequently, even a single recurrent network of a few hundred neurons can serve as a natural noise source for large ensembles of functional networks, each comprising thousands of units. We successfully apply the proposed framework to a diverse set of binary-unit networks with different dimensionalities and entropies, as well as to a network reproducing handwritten digits with distinct predefined frequencies. Finally, we show that the same design transfers to functional networks of spiking neurons.Comment: 22 pages, 11 figure

    Network Plasticity as Bayesian Inference

    Full text link
    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling.Comment: 33 pages, 5 figures, the supplement is available on the author's web page http://www.igi.tugraz.at/kappe

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    A unified view on weakly correlated recurrent networks

    Get PDF
    The diversity of neuron models used in contemporary theoretical neuroscience to investigate specific properties of covariances raises the question how these models relate to each other. In particular it is hard to distinguish between generic properties and peculiarities due to the abstracted model. Here we present a unified view on pairwise covariances in recurrent networks in the irregular regime. We consider the binary neuron model, the leaky integrate-and-fire model, and the Hawkes process. We show that linear approximation maps each of these models to either of two classes of linear rate models, including the Ornstein-Uhlenbeck process as a special case. The classes differ in the location of additive noise in the rate dynamics, which is on the output side for spiking models and on the input side for the binary model. Both classes allow closed form solutions for the covariance. For output noise it separates into an echo term and a term due to correlated input. The unified framework enables us to transfer results between models. For example, we generalize the binary model and the Hawkes process to the presence of conduction delays and simplify derivations for established results. Our approach is applicable to general network structures and suitable for population averages. The derived averages are exact for fixed out-degree network architectures and approximate for fixed in-degree. We demonstrate how taking into account fluctuations in the linearization procedure increases the accuracy of the effective theory and we explain the class dependent differences between covariances in the time and the frequency domain. Finally we show that the oscillatory instability emerging in networks of integrate-and-fire models with delayed inhibitory feedback is a model-invariant feature: the same structure of poles in the complex frequency plane determines the population power spectra
    corecore