107 research outputs found

    Spike timing and synaptic plasticity in the premotor pathway of birdsong

    Get PDF
    The neural circuits of birdsong appear to utilize specific time delays in their operation. In particular, the anterior forebrain pathway (AFP) is implicated in an approximately 40- to 50- ms time delay, ΔT, playing a role in the relative timing of premotor signals from the nucleus HVc to the nucleus robust nucleus of the archistratium (RA) and control/learning signals from the nucleus lateral magnocellular nucleus of the anterior neostratium (lMAN) to RA. Using a biophysical model of synaptic plasticity based on experiments on mammalian hippocampal and neocortical pyramidal neurons, we propose an understanding of this ≈ 40- to 50- ms delay. The biophysical model describes the influence of Ca2+ influx into the postsynaptic RA cells through NMDA and AMPA receptors and the induction of LTP and LTD through complex metabolic pathways. The delay, ΔT, between HVc → RA premotor signals and lMAN → RA control/learning signals plays an essential role in determining if synaptic plasticity is induced by signaling from each pathway into RA. If ΔT is substantially larger than 40 ms, no plasticity is induced. If ΔT is much less than 40 ms, only potentiation is expected. If ΔT≈ 40 ms, the sign of synaptic plasticity is sensitive to ΔT. Our results suggest that changes in ΔT may influence learning and maintenance of birdsong. We investigate the robustness of this result to noise and to the removal of the Ca2+ contribution from lMAN → RA NMDA receptors. © Springer-Verlag 2004.Fil: Abarbanel, Henry D. I.. University of California at San Diego; Estados UnidosFil: Gibb, Leif. University of California at San Diego; Estados UnidosFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rabinovich, M.I.. University of California at San Diego; Estados UnidosFil: Talathi, Sachin. University of California at San Diego; Estados Unido

    Support for a synaptic chain model of neuronal sequence generation

    Get PDF
    In songbirds, the remarkable temporal precision of song is generated by a sparse sequence of bursts in the premotor nucleus HVC. To distinguish between two possible classes of models of neural sequence generation, we carried out intracellular recordings of HVC neurons in singing zebra finches (Taeniopygia guttata). We found that the subthreshold membrane potential is characterized by a large, rapid depolarization 5–10 ms before burst onset, consistent with a synaptically connected chain of neurons in HVC. We found no evidence for the slow membrane potential modulation predicted by models in which burst timing is controlled by subthreshold dynamics. Furthermore, bursts ride on an underlying depolarization of ~10-ms duration, probably the result of a regenerative calcium spike within HVC neurons that could facilitate the propagation of activity through a chain network with high temporal precision. Our results provide insight into the fundamental mechanisms by which neural circuits can generate complex sequential behaviours.National Institutes of Health (U.S.) (Grant MH067105)National Institutes of Health (U.S.) (Grant DC009280)National Science Foundation (U.S.) (IOS-0827731)Alfred P. Sloan Foundation (Research Fellowship

    Variability in Singing and in Song in the Zebra Finch

    Get PDF
    Variability is a defining feature of the oscine song learning process, reflected in song and in the neural pathways involved in song learning. For the zebra finch, juveniles learning to sing typically exhibit a high degree of vocal variability, and this variability appears to be driven by a key brain nucleus. It has been suggested that this variability is a necessary part of a trial-­â€and-­â€error learning process in which the bird must search for possible improvements to its song. Our work examines the role this variability plays in learning in two ways: through behavioral experiments with juvenile zebra finches, and through a computational model of parts of the oscine brain. Previous studies have shown that some finches exhibit less variability during the learning process than others by producing repetitive vocalizations. A constantly changing song model was played to juvenile zebra finches to determine whether auditory stimuli can affect this behavior. This stimulus was shown to cause an overall increase in repetitiveness; furthermore, there was a correlation between repetitiveness at an early stage in the learning process and the length of time a bird is repetitive overall, and birds that were repetitive tended to repeat the same thing over an extended period of time. The role of a key brain nucleus involved in song learning was examined through computational modeling. Previous studies have shown that this nucleus produces variability in song, but can also bias the song of a bird in such a way as to reduce errors while singing. Activity within this nucleus during singing is predominantly uncorrelated with the timing of the song, however a portion of this activity is correlated in such a manner. The modeling experiments consider the possibility that this persistent signal is part of a trial-­â€and-­â€error search and contrast this with the possibility that the persistent signal is the product of some mechanism to directly improve song. Simulation results show that a mixture of timing-­â€dependent and timing-­â€independent activity in this nucleus produces optimal learning results for the case where the persistent signal is a key component of a trial-­â€and-­â€error search, but not in the case where this signal will directly improve song. Although a mixture of timing-­â€locked and timing-­â€independent activity produces optimal results, the ratio found to be optimal within the model differs from what has been observed in vivo. Finally, novel methods for the analysis of birdsong, motivated by the high variability of juvenile song, are presented. These methods are designed to work with sets of song samples rather than through pairwise comparison. The utility of these methods is demonstrated, as well as results illustrating how such methods can be used as the basis for aggregate measures of song such as repertoire complexity

    Diminished FoxP2 Levels Affect Dopaminergic Modulation of Corticostriatal Signaling Important to Song Variability

    Get PDF
    SummaryMutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian ortholog FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms

    Vocal Experimentation in the Juvenile Songbird Requires a Basal Ganglia Circuit

    Get PDF
    Songbirds learn their songs by trial-and-error experimentation, producing highly variable vocal output as juveniles. By comparing their own sounds to the song of a tutor, young songbirds gradually converge to a stable song that can be a remarkably good copy of the tutor song. Here we show that vocal variability in the learning songbird is induced by a basal-ganglia-related circuit, the output of which projects to the motor pathway via the lateral magnocellular nucleus of the nidopallium (LMAN). We found that pharmacological inactivation of LMAN dramatically reduced acoustic and sequence variability in the songs of juvenile zebra finches, doing so in a rapid and reversible manner. In addition, recordings from LMAN neurons projecting to the motor pathway revealed highly variable spiking activity across song renditions, showing that LMAN may act as a source of variability. Lastly, pharmacological blockade of synaptic inputs from LMAN to its target premotor area also reduced song variability. Our results establish that, in the juvenile songbird, the exploratory motor behavior required to learn a complex motor sequence is dependent on a dedicated neural circuit homologous to cortico-basal ganglia circuits in mammals

    Growth and splitting of neural sequences in songbird vocal development

    Get PDF
    Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviours, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a prototype syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a commo n precursor sequence.National Institutes of Health (U.S.) (Grant R01DC009183)National Science Foundation (U.S.) (Grant DGE-114747

    Network dynamics in the neural control of birdsong

    Full text link
    Sequences of stereotyped actions are central to the everyday lives of humans and animals, from the kingfisher's dive to the performance of a piano concerto. Lashley asked how neural circuits managed this feat nearly 6 decades ago, and to this day it remains a fundamental question in neuroscience. Toward answering this question, vocal performance in the songbird was used as a model to study the performance of learned, stereotyped motor sequences. The first component of this work considers the song motor cortical zone HVC in the zebra finch, an area that sends precise timing signals to both the descending motor pathway, responsible for stereotyped vocal performance in the adult, and the basal ganglia, which is responsible for both motor variability and song learning. Despite intense interest in HVC, previous research has exclusively focused on describing the activity of small numbers of neurons recorded serially as the bird sings. To better understand HVC network dynamics, both single units and local field potentials were sampled across multiple electrodes simultaneously in awake behaving zebra finches. The local field potential and spiking data reveal a stereotyped spatio-temporal pattern of inhibition operating on a 30 ms time-scale that coordinates the neural sequences in principal cells underlying song. The second component addresses the resilience of the song circuit through cutting the motor cortical zone HVC in half along one axis. Despite this large-scale perturbation, the finch quickly recovers and sings a near-perfect song within a single day. These first two studies suggest that HVC is functionally organized to robustly generate neural dynamics that enable vocal performance. The final component concerns a statistical study of the complex, flexible songs of the domesticated canary. This study revealed that canary song is characterized by specific long-range correlations up to 7 seconds long-a time-scale more typical of human music than animal vocalizations. Thus, the neural sequences underlying birdsong must be capable of generating more structure and complexity than previously thought
    corecore