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Abstract

Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but 

the mechanisms by which they develop during learning remain unknown. Songbirds learn 

vocalizations composed of syllables; in adult birds, each syllable is produced by a different 

sequence of action potential bursts in the premotor cortical area HVC. Here we carried out 

recordings of large populations of HVC neurons in singing juvenile birds throughout learning to 

examine the emergence of neural sequences. Early in vocal development, HVC neurons begin 

producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are 

active at different latencies relative to syllable onset to form a continuous sequence. Through 

development, as new syllables emerge from the prototype syllable, initially highly overlapping 

burst sequences become increasingly distinct. We propose a mechanistic model in which multiple 

neural sequences can emerge from the growth and splitting of a common precursor sequence.

 Introduction

Sequences of neural activity have been observed during various behaviors, including 

navigation1–4, short-term memory5–7, decision making8,9, and complex movements10,11, 

suggesting that neural sequences are a fundamental form of brain dynamics12,13. However, 

the circuit mechanisms underlying the generation of neural sequences and their development 

during learning are not well understood.
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The songbird is a good model system to address such questions because the song produced 

by adults is learned during development14–18. Furthermore, adult song is associated with 

neural sequences in nucleus HVC (used as a proper name)19–24, a premotor cortical area 

necessary for the production of stereotyped adult song25–30. Most projection neurons in 

HVC generate a brief burst of spikes at one specific time in the song motif and different 

neurons are active at different times in the song19–24,30; thus, distinct syllable types are 

produced by largely non-overlapping neural sequences in HVC. Here we ask how these 

different neural sequences are constructed during vocal development.

Zebra finches acquire their stereotyped song through a gradual learning process14,31. Young 

birds initially produce a highly variable ‘subsong’31, akin to human babbling15. Birds then 

enter the protosyllable stage as they begin to incorporate syllables of a characteristic ~100 

ms duration32–35. This is followed by the gradual emergence of multiple syllable 

types32,33,36, and a final ‘motif’ stage in which syllables are produced in a reliable sequence. 

While HVC activity is not required for subsong27,34,35, it is required for song components in 

all later stages, including protosyllables, emerging syllable types, and adult song25–28,34,35.

 Developmental progression of HVC activity

To elucidate the mechanisms by which neural sequences in HVC develop, we recorded from 

populations of HVC projection neurons in juvenile and adult birds (n=1,150 neurons, 35 

birds; Extended Data Fig. 1a). At all stages of vocal development, HVC projection neurons 

generated brief bursts of spikes during singing (Fig. 1a–c, Extended Data Fig. 1b–c). In the 

subsong stage (n=12 birds; defined by exponential distribution of syllable durations, prior to 

the emergence of protosyllables) roughly half of neurons generated bursts not temporally 

locked to syllable onsets (Extended Data Fig. 1d), while the other half produced bursts that 

tended to occur at a particular latency relative to subsong syllable onsets (Fig. 1a, Extended 

Data Fig. 1e–i; 19/39 neurons exhibited syllable locking). The fraction of neurons locked to 

syllable onsets exhibited a gradual and significant increase throughout vocal development 

(Fig. 1f; correlation with song stage: r=0.22, P<10−10; see Methods) until, in adult birds, 

virtually every projection neuron generated bursts precisely locked to syllables, as 

previously described19–24.

Song development is characterized by a gradual change in song rhythm33,37,38. The subsong 

stage, with little evidence of rhythmic song structure, ends with the emergence of a 

rhythmically produced protosyllable (5–10 Hz)32–35. This is followed by a subsequent 

increase in the period between repetitions of the same sound, attributable to the addition of 

new song syllables33. HVC exhibited parallel changes in rhythmicity. In the subsong stage, 

most projection neurons did not burst rhythmically (Fig. 1a, f; 3/39 neurons were rhythmic). 

In the protosyllable stage, roughly half of the projection neurons generated rhythmic bursts 

(5–10 Hz) (Fig. 1b,f; 70/135 neurons were rhythmic; period 169 ± 6.4 ms, mean ± s.e.m.). 

Such bursts were typically locked to rhythmic protosyllables, but were also commonly 

observed during less rhythmic portions of the song, particularly early in the protosyllable 

stage (Extended Data Fig. 2a–d). On average, both the fraction of rhythmic HVC neurons, 

and the period of the HVC burst rhythm gradually increased during the emergence of new 

syllable types and the formation of the song motif (Fig. 1f,g; correlation between song stage 
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and fraction of rhythmic neurons: r=0.28, P<10−10; correlation between song stage and 

period of burst rhythm: r=0.57, P<10−10).

A significant fraction of projection neurons (285/1118 neurons) in juvenile birds generated 

bursts related to song bouts—defined as epochs of continuous singing bounded by periods of 

silence (see Methods). Bout-related neurons generated brief bursts of spikes immediately 

prior to bout onset (‘bout-onset’ neurons; 137/285 neurons) or after bout offset (98/285 

neurons) (Fig. 1d,e, Extended Data Fig. 2e–l; an additional 50/285 neurons were active both 

before and after bouts).

 Growth of a neural protosequence

We next wondered how the activity of HVC projection neurons is coordinated across the 

neural population during protosyllables. Multiple recordings in the same bird revealed that 

different neurons were active at different times with respect to protosyllable onsets (Fig. 

2a,b; Extended Data Fig. 1n, 9k; n=3 birds, 54 neurons), with latencies spanning the 

duration of the protosyllable and the intervening gap (>90% burst coverage; Extended Data 

Fig. 2t). These findings suggest that protosyllables are generated by a rhythmic 

protosequence—a repeating motor program comprised of a continuous sequence of bursts in 

HVC.

We next examined the developmental emergence of this rhythmic protosequence. In the 

subsong stage (Fig. 2c; n=19 neurons, 12 birds), bursts had a significantly earlier distribution 

of latencies compared to the broader distribution of burst latencies in the protosyllable stage 

(n=104 neurons, 13 birds; P=0.02; 63% vs. 43% of bursts prior to syllable onset in subsong 

stage and protosyllable stage, respectively). Even though the range of latencies was narrower 

in subsong birds, different neurons recorded in the same bird were locked to syllable onsets 

at different latencies (Extended Data Fig. 1f–i). This suggests the existence of transient 

sequential activity, initiated just prior to syllable onset, but decaying within a few tens of 

milliseconds. This sequential activity appears to grow during the protosyllable stage to form 

longer sequences that can persist for more than a hundred milliseconds, throughout the 

duration of the protosyllable (Fig. 2b,c).

 Sequence splitting during syllable formation

We next wondered how distinct sequences in HVC, each corresponding to a distinct adult 

syllable type, emerge during vocal learning. Here we hypothesize that new syllable types can 

emerge by the gradual splitting of a single protosequence. In this view, we imagine that the 

neural sequences underlying newly emerging syllable types would initially be largely 

overlapping, with neurons shared across the emerging syllables. Splitting would be 

associated with an increasing number of neurons selective for a particular emerging syllable 

type, and a decreasing fraction of shared neurons.

To test this hypothesis, we recorded from HVC projection neurons (n=769) in 6 juvenile 

birds while they acquired multiple syllable types. As a first example, we will describe 

changes in the HVC population activity in a bird (n=375 projection neurons; Bird 1) that 

developed two acoustically distinct syllable types (labeled β and γ) over the course of several 
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days (Fig. 3a,b; β and γ eventually form adult syllables B and C, respectively). During the 

protosyllable stage (56–59 dph), the majority of projection neurons participated in a 

rhythmic protosequence (Extended Data Fig. 1n; n=14/16 neurons; e.g. Fig. 3c). After the 

emergence of syllable types β and γ (62–72 dph), many neurons were selectively active only 

during β or during γ, but not both (Fig. 3d,f; of 105 neurons active during either β or γ, 41 

were β-specific and 42 were γ-specific). The bursts of these syllable-specific neurons 

exhibited a wide range of latencies, with spiking activity of neurons in each group spanning 

the entire duration of each syllable (Fig. 3g). Notably, we also observed a substantial 

population of neurons that were significantly active during both β and γ (n=22 ‘shared’ 

neurons; Fig. 3e–g). Simultaneous recordings revealed the co-occurrence, in different 

neurons, of shared and specific firing patterns (Fig. 3f, Extended Data Fig. 3a,b).

Shared neurons exhibited a number of striking characteristics. These neurons burst 

rhythmically with the same inter-burst interval as neurons recorded in the protosyllable stage 

(Fig. 3e, f; Extended Data Fig. 3f–j). Shared neurons were active, as a population, at a wide 

range of latencies within emerging syllables (Fig. 3g), and crucially, for a given shared 

neuron, the bursts during β occurred at a similar latency as the bursts during γ (Fig. 3g, 

Extended Data Fig. 4a–d). Thus, shared neurons generated the same continuous burst 

sequence during both β and γ. This shared sequence occurred even at times when there was a 

significant acoustic difference between the shared syllables (Extended Data Fig. 5). We also 

found that the fraction of shared neurons later in development (81–112 dph) was 

significantly lower compared to the earlier recordings (Fig. 3h; 10 shared and 90 specific 

neurons; P=0.03). Thus, the refinement of β and γ into the adult syllables B and C coincides 

with a decrease in the fraction of shared neurons, producing a gradual splitting of these 

representations into increasingly non-overlapping ‘daughter’ neural sequences.

The tendency of the song in Bird 1 to alternate between syllables β and γ means that 

syllable-specific neurons had an inter-burst interval, and thus a period, that was twice as long 

as that observed in the earlier protosyllable stage (Fig. 3c–f, Extended Data Fig. 3f–j). 

Therefore, the increase in the period of neural activity through skipping or alternating cycles 

of an underlying rhythm appears to be a basis of the increase in song period during vocal 

learning33.

Although our key findings are described above for Bird 1, a similar pattern of HVC coding 

by shared and specific neurons was seen in a total of 6 birds for which recordings were made 

during the emergence of multiple syllable types (Birds 1–6; 185 shared neurons and 496 

specific neurons for 8 syllable pairs analyzed). Across three birds in which neurons were 

also recorded in later song stages, there was a significant decrease in the fraction of shared 

neurons during syllable development (n=5 syllable pairs; P=3×10−6; Birds 1, 2, 4). Neurons 

exhibiting an increased burst period by skipping cycles of an underlying rhythm were 

observed in 4 of the 6 birds (Birds 1, 3, 4, 6).

 Splitting in other learning strategies

Behavioral studies have shown that new syllable types can emerge using several distinct 

developmental strategies32,33,36,39,40. The bird described above (Bird 1) used the ‘serial 
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repetition’ strategy32 and ‘sound differentiation in situ’33 to develop two new syllables by 

alternating increasingly different variants of the protosyllable. Alternatively, birds can 

acquire multiple syllables simultaneously to form an entire motif (‘motif strategy’)32, or 

form new syllables at bout edges (onset or offset)39,40. We wondered if the splitting of 

neural sequences underlies these other strategies.

Neural recordings were obtained in three birds (Birds 1, 2, 5) that exhibited bout-onset 

syllable formation. We focus here on Bird 2 in which projection neurons were recorded 

throughout song development (57–84 dph). Tracking of syllable structure (Extended Data 

Fig. 6) revealed that syllables A and B of the adult song derived from a common, 

rhythmically repeated protosyllable (labeled α; Fig 4a,b), and that syllable B arose from the 

first repetition of α at bout onset (Fig. 4c,d). This bout-onset syllable emerged as a distinct 

syllable type (labeled β) by fusion of this first α with a brief vocal element ε at bout onset 

(Fig. 4c,d).

To examine the neural mechanisms underlying the emergence of the new syllable β at bout 

onsets, we analyzed the firing patterns of 125 HVC projection neurons. Before the 

emergence of syllable β, the majority of recorded projection neurons participated in a 

rhythmic protosequence (Fig. 2b; n=28/35 neurons; 57–64 dph,). A different subset of 

neurons was active at bout onsets (Fig. 4c; 4 of 35 neurons). After the emergence of β at 

bout onsets, roughly half of projection neurons generated bursts during both syllables α and 

β (65–72 dph; Fig. 4d,e; n=22 ‘shared’ neurons; 21 ‘specific’ neurons). These shared 

neurons produced nearly identical sequences during these two syllables (Fig. 4h, Extended 

Data Fig. 4c). Later in song development (73–84 dph), we observed a larger fraction of 

syllable-specific neurons (Fig. 4f,g,i; n=28 ‘specific’ neurons), and a correspondingly 

smaller fraction of shared neurons (4 ‘shared’ neurons; P=5×10−4), consistent with a gradual 

splitting of the protosequence into increasingly non-overlapping ‘daughter’ sequences. 

Evidence for sequence splitting during bout-onset differentiation was also observed in Birds 

1 and 5 (Extended Data Fig. 7).

Note that the bout-onset differentiation in Bird 1 occurred after the earlier emergence of the 

syllables β and γ (Fig. 3), suggesting that new syllables may emerge in a hierarchical process

—that is, by the splitting of sequences that are themselves the daughters of an earlier 

splitting process (Extended Data Fig. 7).

We were able to examine the question of whether neural sequence splitting also underlies the 

‘motif strategy’ of song learning in two birds (Birds 3, 4; Extended Data Fig. 8, 9). In both 

birds, neural recordings showed the existence of rhythmically bursting neurons in the 

protosyllable stage (Extended Data Fig. 8e, 9e,f). After the emergence of multiple syllable 

types, every syllable in the emerging motifs had at least one neuron that was shared with 

another syllable at similar latencies (Extended Data Fig. 8f–j, 9g-o), consistent with the view 

that all of these syllables arose from the simultaneous splitting of a common protosequence.
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 Mechanistic Model and Discussion

Here, we propose a mechanistic model of learning in the HVC network to describe how 

sequences emerge during song development. This model is based on the idea that sequential 

bursting results from the propagation of activity through a continuous synaptically-

connected chain of neurons within HVC21,41–47. It also captures non-uniformities such as 

increased burst density at syllable onsets, formulated in a perspective of HVC function 

emphasizing vocal gestures22.

Modeling studies have shown that a combination of two synaptic plasticity rules—spike-

timing dependent plasticity (STDP) and heterosynaptic competition—can transform a 

randomly connected network into a feedforward synaptically-connected chain that generates 

sparse sequential activity43,44. We hypothesize that the same mechanisms can lead to the 

formation of a single chain that generates a rhythmic protosyllable, followed by the splitting 

of this chain into multiple daughter chains for different syllable types. To test this 

hypothesis, we constructed a simple network of binary units representing HVC projection 

neurons44.

The model neurons are initially connected with random excitatory weights, representing the 

subsong stage. We hypothesize that a subset of HVC neurons receives an external input at 

syllable onsets and serves as a seed from which chains grow during later learning 

stages43,45. Before learning, activation of these seed neurons produced a transiently 

propagating sequence of network activity that decayed rapidly (within tens of milliseconds; 

Fig. 5a).

In the next stage, the network is trained to produce a single protosyllable by activating seed 

neurons rhythmically (100 ms period). The connections are modified according to the 

learning rules described above43,44. As a result, connections were strengthened along the 

population of neurons sequentially activated after syllable onsets, resulting in the growth of a 

feedforward synaptically-connected chain that supported stable propagation of activity (Fig. 

5b).

We found that this single chain could be induced to split into two daughter chains by 

dividing the seed neurons into two groups activated on alternate cycles of the rhythm (Fig. 

5c,d, Supplementary Video 1). Local inhibition48 and synaptic competition were also 

increased (see Methods). During the splitting process, we observed neurons specific to each 

of the emerging syllable types, as well as shared neurons that were active at the same 

latencies in both syllable types (Fig. 5c). Just as observed in our data, the distribution of 

burst latencies in the model continued to broaden (Fig. 5e), and the fraction of shared 

neurons decreased during development (Fig. 5c,d). The average period of rhythmic bursting 

in model neurons increased during chain splitting as neurons became ‘specific’ for one 

emerging syllable type and began to participate only on alternate cycles of the protosyllable 

rhythm (Fig. 5d, Extended Data Fig. 10g,h).

Okubo et al. Page 6

Nature. Author manuscript; available in PMC 2016 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Other strategies for syllable formation

Our model can reproduce other strategies by which birds learn new syllable types. We 

implemented bout-onset differentiation in the model by also including a population of seed 

neurons activated at bout onsets (cf. Fig. 1d, 4c; Extended Data Fig. 10a). This caused the 

protosyllable chain to split in such a way that one daughter chain was reliably activated only 

at bout onsets, while the other daughter chain was active only on subsequent syllables 

(Extended Data Fig. 10a–d, Supplementary Video 2). Our model was also able to simulate 

the simultaneous emergence of a three-syllable motif (‘motif strategy’) by dividing the seed 

neurons into three subpopulations (Extended Data Fig. 10e–h).

Our data and modeling support the possibility of syllable formation by mechanisms other 

than sequence splitting. For example, in several birds, a short vocal element emerged at bout 

onsets that did not appear to differentiate acoustically from the protosyllable (and thus was 

not bout-onset differentiation; e.g. ‘E’ in Bird 1, Extended Data Fig. 7a; or ‘C’ in Bird 2, 

Extended Data Fig. 6a,b). We found that by using different learning parameters, our model 

allows bout-onset seed neurons to induce the formation of a new syllable chain at bout onset, 

rather than inducing bout-onset differentiation (Extended Data Fig. 10i–k).

In summary, our model of learning in a simple sequence-generating network captures 

transformations that underlie the formation of new syllable types via a diverse set of learning 

strategies.

 Why sequence splitting?

The process of splitting a prototype neural sequence allows learned components of a 

prototype motor program to be reused in each of the daughter motor programs. For example, 

one of the earliest aspects of vocal learning is the coordination between singing and 

breathing35, specifically, the alternation between vocalized expiration and non-vocalized 

inspiration typical of adult song49. The protosequence in HVC would allow the bird to learn 

the appropriate coordination of respiratory and vocal musculature. Duplication of the 

protosequence through splitting would result in two ‘functional’ daughter sequences, each 

already capable of proper vocal/respiratory coordination, and each suitable as a substrate for 

rapid learning of a new syllable type.

This proposed mechanism resembles a process thought to underlie the evolution of novel 

gene functions: gene duplication followed by divergence through independent mutations50. 

Similarly, for the acquisition of complex behaviors, the duplication of neural sequences by 

splitting, followed by independent differentiation through learning, may provide a 

mechanism for constructing complex motor programs.

 Full Methods

 Animals

We used juvenile male zebra finches (Taeniopygia guttata) 44–112 days post hatch (dph) 

singing undirected song (n=32 birds). Animals were not divided into experimental groups; 

thus, randomization and blinding were not necessary. No statistical methods were used to 
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predetermine sample size. Birds were obtained from the Massachusetts Institute of 

Technology zebra finch breeding facility (Cambridge, Massachusetts). The care and 

experimental manipulation of the animals were carried out in accordance with guidelines of 

the National Institutes of Health and were reviewed and approved by the Massachusetts 

Institute of Technology Committee on Animal Care.

All the juvenile birds were raised by their parents in individual breeding cages until 38 ± 5.2 

dph (mean ± s.d.) when they were removed and were singly housed in custom-made sound 

isolation chambers (maintained on a 12:12 hour day-night schedule). In a subset of the birds 

(Bird 1, 2, 4), additional tutoring was carried out after removal from the breeding cages to 

facilitate song imitation. This was done by playback of the tutor song through a speaker (20 

bouts per day). Additional tutoring was done for 12 days for Bird 1, 7 days for Bird 2, and 

18 days for Bird 4. Bird identification key: Bird 1, to3965; Bird 2, to3779; Bird 3, to3017; 

Bird 4, to5640; Bird 5, to3396; Bird 6, to2309; Bird 7, to3412; Bird 8, to3567; Bird 9, 

to2462; Bird 10, to2331; Bird 11, to2427; Bird 12, to3352.

To compare the activity of HVC projection neurons in juvenile birds with that of adult birds, 

we also included neurons recorded in adults (>120 dph, n=3 birds) which included a 

reanalysis of previously published HVC recordings performed in adult male zebra finches 

singing directed song20.

 Song recordings

Songs were recorded with Sound Analysis Pro51 or a custom-written MATLAB software (A. 

Andalman), which was configured to ensure triggering of recordings on all quiet 

vocalizations of juvenile birds27. The vertical axis range for all spectrograms is 500–8000 

Hz.

 Classification of song stages

We classified each day of juvenile singing into four song stages: subsong stage, 

protosyllable stage, multi-syllable stage, and motif stage (Extended Data Fig. 1a). Subsong 

stage (48 ± 4 dph, median ± inter-quartile range) is defined as having a syllable duration 

distribution well-fit by an exponential distribution34,35, with an upper limit for the Lilliefors 

goodness-of-fit statistic of 6. Following the subsong stage, birds enter the protosyllable stage 

(58 ± 10 dph, median ± i.q.r.) characterized by the presence of syllables with consistent 

timing reflected in a peak in the distribution of syllable durations32–35. The onset of the 

protosyllable stage was defined here as the first day in which the syllable duration 

distribution deviated from an exponential distribution (Lilliefors goodness-of-fit statistic 

greater than 6). Following the protosyllable stage, birds transition to the multi-syllable stage 

(62 ± 12 dph, median ± i.q.r.) in which multiple distinct syllable types are visible in the song 

spectrogram and as multiple clusters in a scatter plot of syllable features52 (e.g. Fig. 3a, b; 

62 dph). The motif stage (73 ± 21 dph, median ± i.q.r.) was defined by the production of a 

sequence of syllables in a relatively fixed order31. Finally, songs recorded in birds older than 

120 dph were assigned as adult stage. A slightly older cutoff than the typical definition of 

adulthood in zebra finches (~90 dph)14 was used, because some of our birds in the 90–120 

dph continued to undergo some small developmental changes, as has been reported31.
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 Syllable segmentation and bout extraction

Syllable segmentation of the juvenile song was done based on the song power in a spectral 

band between 1–4 kHz, as described previously27,34,35. In a few cases, cutoff frequencies of 

the band-pass filters were adjusted to avoid the inclusion of high-frequency inspiratory 

sounds35,53. Introductory notes were removed manually to avoid including HVC neurons 

that are rhythmically active during these elements54. Song bouts were defined as a sequence 

of syllables separated by gaps less than 300 ms35. Bout onset was defined as the onset of the 

first syllable in the bout, and bout offset was defined as the offset of the last syllable in the 

bout.

 Syllable segmentation based on the song rhythmicity (‘phase segmentation’)

For Bird 3 (‘motif strategy’), it was difficult to segment syllables consistently using previous 

methods based on setting a threshold on the sound amplitude27,34,35. To overcome this 

limitation, we segmented syllables based on the phase of the rhythmicity in the song (‘phase 

segmentation’). The peak of the song rhythm, defined as the spectrum of the sound 

amplitude during singing38, exhibited a peak around 9 Hz (Extended Data Fig. 8c). To 

estimate the instantaneous phase of this rhythm, we first band-pass filtered the sound 

amplitude (Extended Data Fig. 8c, d; second-order IIR resonator filter with peak at 9 Hz and 

−3 dB half-bandwidth of 3 Hz; MATLAB command iirpeak). The band-pass filtered signal 

was then processed using the Hilbert transform (MATLAB command hilbert) to compute the 

instantaneous amplitude and phase (Extended Data Fig. 8d). Next, we set a threshold on this 

instantaneous amplitude to find the rhythmic part of the song. Finally, within this rhythmic 

part, song was segmented by detecting threshold crossings of the instantaneous phase 

(Extended Data Fig. 8d, bottom). Phase segments that contain no sounds or calls were 

manually removed. Similarly, phase segmentation (band-pass filter with peak at 10 Hz and 

half-bandwidth of 3 Hz) was used to segment the song during the protosyllable stage for 

Bird 4 (Extended Data Fig. 9a, e, f). Note that this method is best suited for segmenting 

songs that are rhythmic, but in which syllable boundaries are not strongly rhythmic. This 

appeared to be typical of birds employing the ‘motif strategy’32.

 Syllable classification and labeling

Protosyllables were defined by their characteristic durations as has been described 

previously34,35. In short, to identify the protosyllables, we first subtracted the best-fit 

exponential distribution (using 200–400 ms) from the syllable duration distribution, and 

fitted a Gaussian distribution to this residual. Protosyllables were defined as syllables having 

durations within two standard deviations from the mean of this Gaussian distribution. We 

labeled protosyllables using the Greek letter ‘α’ in all our birds for consistency.

To label the emerging syllables in the juvenile song, we used the Greek letters β, γ, δ, and ε. 

In contrast, to label the syllables in the adult motif, we used the capital letters of the Latin 

alphabet A, B, C, etc. For birds in which the song learning trajectory was tracked 

developmentally, we labeled the syllables such that the correspondence between the juvenile 

syllables and adult syllables is straightforward: for example, α becomes A, β becomes B, γ 

becomes C, δ becomes D, and ε becomes E. Note that this labeling scheme leads to a 

slightly unconventional labeling of adult song in the sense that a motif can have letters in a 
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reverse order (e.g. CBA in Fig. 4f, g; Extended Data Fig. 6a), or a motif might not have a 

syllable A (e.g. EDCB in Extended Data Fig. 7a).

Syllable labeling was done manually by visual inspection of the song spectrogram; this was 

done blind with respect to the neural activity. The existence of multiple distinct syllable 

types were confirmed by calculating the syllable duration and acoustic features commonly 

used to analyze birdsong syllables51,55, and visualizing the clusters for each syllables in a 

two-dimensional space52 (Fig. 3b, Extended Data Fig. 8b, 9d). In some cases, syllable order 

was used as an additional indicator of syllable identity (e.g. Extended Data Fig. 7a, 70 dph; 

Extended Data Fig. 8a, 51 dph; Extended Data Fig. 9a, 59 dph).

In Bird 1, syllables β and γ were labeled manually by the visual inspection of the song 

spectrogram (Fig. 3a). Since characterizing shared neurons and specific neurons depends on 

the reliable labeling of syllables, we took a conservative approach and only labeled syllables 

that were clearly identifiable and did not label the syllables that were ambiguous (fraction of 

syllables labeled as β or γ during 62–66 dph: 70 ± 5.5%, mean ± s.d.). We then estimated the 

error rate of our labeling procedure by plotting the labeled syllables (n=200 syllables per 

type on each day) in a two-dimensional space of syllable duration and mean pitch goodness 

(Fig. 3b), and obtained a decision boundary using linear discriminant analysis. We used 

mismatch between manual labeling and feature-based labeling to estimate the error rate for 

syllable β and γ. The error rate during the first five days of syllable differentiation (62–66 

dph), when the labeling was most difficult, was only 1.1 % on average (range: 0.25–3.0%).

For the second round of differentiation in Bird 1, syllable order was used to assist in the 

labeling of syllables in early stages when syllables ‘B’ and ‘D’ were not easily 

distinguishable based on acoustic differences. Because these syllables underwent bout-onset 

differentiation, the first β after bout onset was labeled ‘D’; later renditions of β in the bout 

were labeled ‘B’ (Extended Data Fig. 7a).

In Bird 2, several emerging syllables could be easily distinguished based on syllable 

durations (Extended Data Fig. 6d). Specifically, syllables whose durations were 110–160 

ms, and 180–250 ms were defined as α and β, respectively. Syllables that were 10–75 ms in 

duration were labeled γ if they were followed by a β, and labeled ε otherwise.

 Chronic neural recordings

Single-unit recordings of HVC projection neurons during singing were carried out using a 

motorized microdrive described previously56,57. Single-units were confirmed by the 

existence of the refractory period in the inter-spike interval (ISI) distribution (Extended Data 

Fig. 1b). Neurons that were active only during distance calls and not during singing20 were 

excluded from the analysis. In addition, neurons recorded for less than 5 seconds of singing 

were excluded since the short recording duration did not allow us to reliably quantify the 

activity pattern of these neurons.

Antidromic identification of HVC projection neurons was carried out with a bipolar 

stimulating electrode implanted in RA and Area X (single pulse of 200 µs every 1 second; 

current amplitude: 50–500 µA)19,20,57–59. A subset of antidromically-identified projection 
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neurons was further validated with collision testing19,20,57–59. A subset of single units were 

identified as putative projection neurons based on sparse bursting, but could not be 

antidromically identified because they did not respond to antidromic stimulation or were lost 

before antidromic identification could be carried out (211/1150 neurons). These neurons 

were included in the data set as unidentified HVC projection neurons (HVCp).

 Analysis of neural activity

Spikes were sorted offline using a custom MATLAB software (D. Aronov).

 Definition of bursts—HVC projection neurons exhibited bursts of action potentials 

during singing (Fig. 1a–c). The bursting nature of these neurons was evident in the inter-

spike interval (ISI) distribution during singing, which exhibited two peaks with an inter-peak 

minimum near 30 ms. ISIs shorter than 30 ms correspond to ISIs within bursts, and ISIs 

longer than 30 ms correspond to ISIs between bursts (Extended Data Fig. 1b). We defined a 

‘burst’ as a continuous group of spikes separated by intervals of 30 ms or less. Thus, by 

definition, bursts are separated from other spikes by intervals greater than 30 ms. Note that 

single spikes separated by more than 30 ms from both the preceding spike and the following 

spikes were also counted as a burst. Burst time was defined as the center of mass of all the 

spikes within the burst. Burst width was defined as the interval between the first and the last 

spike in a burst (Extended Data Fig. 1c, top). Firing rate during burst was defined as a 

reciprocal of the mean inter-spike interval in a burst (Extended Data Fig. 1c, bottom). For 

the calculation of burst width and firing rate during bursts, bursts composed of a single spike 

were excluded.

 Syllable-related neural activity—To analyze the temporal relation between neural 

activity and song syllables, we aligned the spike times to syllable onsets and constructed a 

rate histogram (1 ms bin, smoothed over 20 bins; range: ±0.5 s from syllable onsets). Peak in 

this rate histogram was found between 50 ms before syllable onset and 200 ms after syllable 

onset. To test the significance of this peak, surrogate histograms were created by adding 

different random time shifts to the spike times on each trial60. Random time shifts were 

drawn from a uniform distribution over ±0.5 s. The peak of this surrogate histogram was 

recorded, and this shuffling procedure was repeated 1,000 times; P-values were obtained by 

analyzing the frequency with which the peaks of surrogate data were larger than that of the 

real data, and P<0.05 was considered significant60. To visualize the population activity 

associated with protosyllables, we constructed a population raster plot by choosing 20 

protosyllable renditions for which each neuron was most active, and by plotting different 

neurons in different colors (Fig. 2b, Extended Data Fig. 1n, 9k). For all the other population 

raster plots associated with identified syllables, 20 random renditions were chosen for 

display. For all the population raster plots, syllable duration from each rendition was linearly 

time-warped to the mean duration of the syllable. Spike times were warped by the same 

factor.

 Bout-related neural activity—A subset of HVC projection neurons exhibited bout-

related activity: bursting before bout onsets and/or after bout offsets (Fig. 1d, e, Extended 

Data Fig. 2e–l). To quantify the pre-bout activity, we generated histograms aligned to bout 
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onsets (Extended Data Fig. 2f, g) and found a peak in the histogram in a 300 ms window 

prior to bout onset. We considered a neuron to be exhibiting ‘pre-bout activity’ if the size of 

this peak was significant (P<0.05) compared to peaks obtained from the surrogate 

histograms (identical to the procedure described above in Syllable-related neural activity). 

To eliminate the possibility of including syllable-related activity as bout-related activity, we 

did not consider a neuron to be exhibiting pre-bout activity if the neuron showed a peak in 

the bout-onset aligned histogram and a peak at a similar latency (less than 25 ms apart) for 

the syllable-onset aligned histogram. We considered a neuron to be exhibiting ‘post-bout 

activity’ if there was a significant peak in the bout-offset aligned histogram (Extended Data 

Fig. 2j,k) in a 300 ms window after bout-offset.

 Quantification of the rhythmic neural activity—To quantify the rhythmic neural 

activity of HVC projection neurons, we used four different methods: inter-burst interval, 

spike-train autocorrelation, spectrum of the spike train, and cepstrum of the spike train. Only 

spikes that were produced during singing (i.e. between the onset of the first syllable and the 

offset of the last syllable in the bout) were used for the calculation of these measures. (1) 

Inter-burst interval. Intervals between burst times were calculated and the peak between 80–

1000 ms was found. (2) Spike-train autocorrelation. To quantify the second-order statistics 

of the firing pattern of HVC neurons, spike-train autocorrelation, expressed as a conditional 

firing rate61, was calculated, and the peak between 80–1000 ms was found. The width of the 

center peak indicates the width of bursts, and multiple side lobes with regular intervals 

indicate rhythmic bursting. (3) Spectrum of the spike train. Rhythmicity of the single-unit 

activity was also quantified in the frequency domain using the multi-taper spectral analysis 

of spike trains treated as point processes62. We used the Chronux software to calculate 

spectrum for the spike trains63,64. First, bouts of singing were segmented into non-

overlapping analysis windows of 1.5 second long, and then spectrum for each window was 

calculated using the multi-taper spectral analysis with time-bandwidth product NW = 3/2 

and the number of tapers K=2. To obtain the mean spectrum for a given neuron, spectra 

calculated from all the analysis windows were averaged. Finally, we found the peak in the 

mean spectrum within the range 2–15 Hz. (4) Cepstrum of the spike train. HVC projection 

neurons often exhibited rhythmic bursts with precise inter-burst intervals (Fig. 1b, c). Thus, 

the spectrum of the spike train tended to have multiple peaks at the multiples of the 

fundamental frequency. To represent these burst trains that have regular intervals in a more 

compact way, we calculated the cepstrum (a technique commonly used in speech processing 

to extract the period of glottal pulses) of the spike train, defined as the inverse Fourier 

transform of the log spectrum65, and found the peak in the cepstrum between 80–1000 ms.

To assess the significance of the peaks in these four measures, we compared the distribution 

of peak amplitude obtained from the real data with that of the surrogate data obtained by 

shuffling the bursts times. For this shuffling procedure, we first identified all the bursts 

during a bout of singing as described above. We then randomly placed bursts sequentially in 

an interval that has the same duration as the song bout; when spikes from two bursts were 

closer than 30 ms, we repeated the random placement until they were spaced by more than 

30 ms. Note that this randomization procedure only shuffles the burst times and preserves 

both the number of bursts and the ISIs within bursts. Then, all four metrics listed above were 
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calculated by applying the same method to this surrogate spike trains. This shuffling was 

repeated (1,000 times for the IBI and auto-correlation, 100 times for the spectrum and 

cepstrum) and the P-values of the peak were calculated by analyzing the frequency at which 

the peaks from the surrogate spike trains were larger than the peak obtained from real data. 

A neuron was considered to exhibit ‘rhythmic’ bursting if it had significant peaks in at least 

two of the four metrics. The period of the rhythm was defined as the location of the largest 

peak of spike-train autocorrelation between 80–1000 ms.

 Quantification of the probabilistic neural activity during the protosyllable 
stage (Extended Data Fig. 2p)—Although many HVC projection neurons recorded in 

the juvenile bird exhibited rhythmic bursts, these bursts did not occur reliably on every cycle 

of the rhythm, but instead participated probabilistically (Fig. 2a). To quantify the degree of 

participation, we first extracted the protosyllables based on syllable duration (see Syllable 
classification and labeling above) and examined the fraction of protosyllables in which at 

least one spike occurred (time-window between 30 ms prior to protosyllable onset to 10 ms 

after protosyllable offset). The fraction of protosyllables in which the neuron was active was 

obtained for all the HVC projection neurons recorded during the protosyllable stage that 

showed a significant rhythmic bursting (Extended Data Fig. 2p).

 Analysis of simultaneously recorded pairs of neurons (Extended Data Fig. 
2q, r)—To test whether probabilistic bursting of neurons in the protosyllable stage is 

coordinated across many neurons, we analyzed the correlation between pairs of 

simultaneously recorded neurons (Fig. 2a, bottom). This analysis was restricted to pairs of 

neurons that were rhythmically bursting (n=11 pairs, 3 birds). Bursting activity of each 

neuron was converted to a binary string corresponding to its participation in each 

protosyllable (for the definition of protosyllables, see Syllable classification and labeling 
above). The activity of a neuron was assigned a ‘1’ for a protosyllable if the neuron 

exhibited activity in a time-window between 30 ms prior to protosyllable onset to 10 ms 

after protosyllable offset, and ‘0’ if it did not. Only activity during protosyllables was 

analyzed to avoid including the highly variable subsong syllables, which are likely generated 

by circuits outside HVC27,34. For simultaneously recorded pairs of neurons, this procedure 

resulted in two binary strings corresponding to the protosyllable-related activity of each 

neuron. We then calculated the coefficient of determination r2 by taking the square of the 

Pearson’s correlation coefficient r between the two binary strings calculated for each neuron 

in the pair. The distribution of coefficient of determination is shown in Extended Data Fig. 

2q (median r2=0.072, 11 pairs).

We also carried out a mutual information analysis to quantify whether the activity of one 

neuron was predictive of the set of protosyllables for which the other neuron was active. 

Using the same binary representation described above, we calculated the joint probability 

distribution describing the four possible states of activity (neither neuron spikes, neuron A 

spikes, neuron B spikes, both neurons spike). The mutual information was computed from 

this joint distribution (Extended Data Fig. 2r, median mutual information=0.056 bits, 11 

pairs).
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Both the correlation and mutual information were extremely low, suggesting that different 

projection neurons participated on relatively independent sets of protosyllables. These 

findings suggest that individual projection neurons participate probabilistically and largely 

independently in an ongoing rhythmic protosequence within HVC.

 Analysis of coverage by HVC projection neuron bursts (Extended Data Fig. 
2s, t)—We wondered whether projection neuron bursts effectively span the entire duration 

of juvenile song syllables, or whether bursts are highly localized to specific times, leaving 

other times in the syllable unrepresented22. It is clear from the syllable aligned raster plots 

that some syllables were completely covered by bursts (e.g. Fig. 3h, syllable ‘C’), while 

other syllables showed some gaps in the burst coverage (e.g. Fig. 4i, syllable ‘A’). To further 

quantify this aspect of the HVC representation during singing, we analyzed the fraction of 

time within the syllables of juvenile birds that were ‘covered’ by the recorded projection 

neurons bursts (‘covered fraction’). This analysis was restricted to syllables with more than 

10 associated bursts.

We first determined the region of the song syllable covered by each HVC projection neuron 

burst. We generated a histogram of syllable -onset or -offset aligned spike times recorded 

from a single neuron over every recorded rendition of the song syllable. Initial identification 

of candidate burst events was determined by smoothing the histogram (9 ms sliding square 

window, 1 ms steps), and setting a threshold to define a window in which to analyze burst 

spikes (2 Hz for protosyllable stage birds; 10 Hz threshold for older juveniles). To eliminate 

low-probability spike events, we only considered bursts for which spiking activity (at least 

one spike) occurred in the candidate burst window on at least 25% of the renditions for that 

syllable. Bursts were included only if they occurred between 30 ms prior to syllable onset 

and 10 ms after syllable offset.

For candidate bursts that met these criteria, all spikes occurring in the burst window were 

considered as contributing to that burst. Based on earlier measurements of postsynaptic 

currents and potentials of HVC and RA neurons66, each HVC spike in the burst window was 

conservatively assumed to exert a postsynaptic effect lasting no more than 5 ms. Thus, each 

spike in the dataset was replaced with a 5 ms postsynaptic square pulse (beginning at the 

spike time). We considered a region of the syllable to be ‘covered’ by this burst if at least 

three of these post-synaptic pulses overlapped at that time within the burst, across renditions 

of the syllable. This procedure yielded a small ‘patch’ of time covered by the burst. The 

patches associated with each different neuron were combined with a logical ‘OR’ operation 

to determine the total coverage time of the syllable (again in a window from 30 ms prior to 

syllable onset to 10 ms after syllable offset). The covered time was divided by the duration 

of the syllable window to determine the covered fraction. Only syllables that had more than 

10 neurons bursting within the syllable window were analyzed. This criterion excluded 

syllables from Bird 3 (shown in Extended Data Fig. 8), from which relatively few neurons 

were recorded.

While most syllables had nearly complete burst coverage (>90%), one syllable had coverage 

of only 73% (Extended Data Fig. 2t), which could potentially be due to the relatively smaller 

number of neurons recorded in this bird. Thus, we asked whether the measured coverage is 
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consistent with sparse sampling of the recorded bursts from a large number of uniformly 

placed bursts. To simulate this, we calculated the covered fraction for 1,000 surrogate 

datasets in which the ‘covered patches’ for each burst were randomly shuffled within the 

syllable. A random offset was added to the time of each patch, and a circular shift was used, 

allowing the patches to wrap around the edges of the syllable window. The distribution of 

covered fractions was determined over all shuffled surrogate datasets, and the 2.5–97.5 

percentiles (95% confidence interval) of this distribution were determined (shown as vertical 

gray bars in Extended Data Fig. 2t).

 Shared and specific neurons—To examine whether a given HVC projection neuron 

was active during multiple syllable types (‘shared’ neuron) or was active only during a 

specific syllable type (‘specific’ neuron), we first constructed a syllable-onset aligned 

histogram (1 ms bin, smoothed over 20 bins) for each syllable type. Spike times were 

linearly time warped67 to the mean duration of that syllable to reduce the trial-to-trial 

variability in the spike timing associated with the variation in the syllable duration. Next, we 

found the peak in the firing rate histogram in the interval between 30 ms before syllable 

onset and 10 ms after syllable offset. We visually inspected the syllable-aligned histograms, 

and adjusted the interval if necessary to avoid same burst being detected twice (i.e. being 

associated with an offset of one syllable and an onset of the next syllable). The significance 

of this peak was determined by comparing it with the peak size obtained from the shuffled 

histogram using the same method described above (Syllable-related neural activity).

We defined ‘shared’ and ‘specific’ neurons in the context of a particular syllable 

differentiation process (e.g. β and γ from Bird 1 in Fig. 3; α and β from Bird 2 in Fig. 4; B 

and D from Bird 1 in Extended Data Fig. 7). ‘Specific’ neurons were defined as neurons that 

had a significant peak in the syllable-aligned histogram for only one syllable type, whereas 

‘shared’ neurons were defined as neurons that had significant peaks for both syllable types. 

We took a conservative approach and only considered a neuron to be shared if the peak was 

significant for both syllable types. However, some neurons classified as specific had weak 

activity for the other syllable that did not reach significance (e.g. Extended Data Fig. 6f). In 

other words, we believe this method likely underestimated the fraction of neurons with 

shared activity.

Our method likely underestimated the incidence of shared neurons for another reason as 

well. Specifically, we defined shared and specific neurons in the context of a particular pair 

of syllables undergoing differentiation. For example, in a bird that exhibited hierarchical 

differentiation (Bird 1; Extended Data Fig. 7), we saw examples of neurons that were B-

specific when considering B-C differentiation but shared when considering B-D 

differentiation. Thus, when considering all the syllables in the motif, our definition of shared 

and specific neuron based on syllable pairs will underestimate the fraction of shared neurons 

and overestimate the fraction of specific neurons.

 Quantification of the similarity of latencies in shared neurons (Extended 
Data Fig. 4a–d, Extended Data Fig. 8i, j)—To test whether shared neurons were active 

at similar latencies for multiple syllable types, we first calculated the latency of the peak in 

the syllable onset- or offset-aligned histograms. We then plotted the latency of the peak for 
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one syllable against that of another syllable (Extended Data Fig. 4a–d). When a shared 

neuron was active for three or more syllables, two syllables associated with two highest 

firing rates were chosen. To quantify whether shared neurons were active at similar latencies 

for two syllable types, we calculated the Pearson’s correlation coefficient r between two 

latencies, and the P-value under the null hypothesis that r=0.

For the bird whose song was segmented based on the phase of the rhythm (Bird 3, Extended 

Data Fig. 8), we asked whether bursts of shared neurons during different syllables occurred 

at similar phases in the rhythm. To quantify the phase of the neural activity, we first detected 

the burst times during singing, and for each burst, we assigned an instantaneous phase 

extracted from the song using the Hilbert transform (see the section on phase segmentation 

above). Then, mean phase of all the bursts produced during a particular syllable type was 

calculated (φi where i = 1, 2, …, 5 indicates syllables). Finally, the two syllable types were 

chosen for which the neuron participated most reliably, and the difference between the mean 

phases for these two syllables (|Δφ| = |φm − φn|, where m and n are syllable indices) was 

obtained (Extended Data Fig. 8i). We tested the significance of this value by comparing the 

value of |Δφ| against that obtained from the shuffled data where the pairing of phases were 

randomized across all shared neurons (Extended Data Fig. 8j; 1,000 shuffles). P-values were 

obtained by analyzing the frequency with which |Δφ| of surrogate data was smaller than that 

of the real data, and P<0.05 was considered significant.

 Quantification of the activity level difference in shared neurons (Extended 
Data Fig. 4i, j)—To quantify the difference in the activity level for multiple syllable types 

in the shared neurons, we calculated the ‘bias’ defined as follows:

where ri is the peak firing rate in the syllable-aligned histogram for syllable i. Bias of 0 

indicates equal activity level for both syllable types, whereas bias of 1 indicates exclusive 

activity for only one of the syllable types (Extended Data Fig. 4j).

 Analysis of acoustic features associated with bursts of shared neurons 
(Extended Data Fig. 5)—We wondered if the bursts of shared neurons were associated 

with different acoustic signals in the shared syllables at the time of the bursts. (An 

alternative possibility is that shared neurons burst only at times within the emerging syllable 

types when the acoustic signals are identical.) An example of a neuron analyzed here is 

shown in Extended Data Fig. 5a (from the same data shown in Fig. 3e). This neuron bursts 

just after the onset of both syllables β and γ. We analyzed the acoustic differences in a 0–50 

ms analysis window after the burst time, but were most interested in acoustic differences in a 

narrower premotor window (10–40 ms), as this corresponds to the premotor latency for 

which one expects HVC neurons to exert an effect on vocal output29,58,68.

For each neuron analyzed, all syllables in which the neuron generated a burst were 

identified. The analysis was carried out for every syllable rendition on which the neuron 

burst, and was restricted to only those syllables. Syllables had previously been labeled by 
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type (i.e. β and γ). We first directly visualized the spectral differences between the two 

syllable types using a sparse contour representation69,70, which is suitable for constructing 

an ‘average’ spectrogram. The analysis was carried out on the sound signal extracted from a 

50 ms window after each burst. In many cases, this spectral representation revealed 

consistent differences between the different syllable types in this analysis window (Extended 

Data Fig. 5b, c).

One complication is that some of the shared neurons burst prior to syllable onsets or 

immediately before syllable offsets such that the 10–40 ms window after the bursts was 

obscured by silent gaps (9 of 24 HVCRA neurons and 59 of 120 HVCX neurons were 

obscured). These neurons were excluded from the analysis of acoustic difference.

We further quantified differences in the acoustic signals by extracting time varying acoustic 

and spectral features in a window 0–50 ms after burst time (see subsection Definition of 
bursts). We used 8 acoustic features previously established to analyze birdsongs (Wiener 

entropy, spectral center of gravity, spectral width, pitch, pitch goodness, sound amplitude, 

amplitude modulation, frequency modulation)51,55. The 8-dimensional vector of features 

was calculated in 1 ms steps over the 50 ms analysis window (Extended Data Fig. 5d, e).

Because each syllable was labeled, we could determine if the feature trajectories were 

significantly different for syllables labeled β and those labeled γ, and to make this 

determination at every time step in the analysis window (Extended Data Fig. 5d, e; s.e.m. 

indicated by shaded region around mean trajectory). Rather than quantify the difference in 

these trajectories one feature at a time, we used Fisher’s discriminant analysis71 to project 

the 8-dimensional acoustic feature vector onto a single dimension that gives maximum 

separability between the two syllable types. The projected direction is determined 

independently at each time point, and the feature vectors of all syllable renditions are 

projected, at each time point, to yield a distribution of projected samples. For most neurons, 

the different syllable types produce visibly different distributions of projected samples 

(Extended Data Fig. 5f) indicating distinct acoustic structure. The separability of the 

distributions (in one dimension) of projected samples for different syllable types was 

quantified using the d-prime metric (d’), corresponding to the distance between the means of 

the distributions, normalized by the pooled variance70:

Because the features evolve in time, this analysis is carried out independently at each 1 ms 

step in the 50 ms analysis window, and the d’ was plotted as a function of time (Extended 

Data Fig. 5g). Statistical significance of the d’ trajectory was assessed by randomizing the 

syllable labels and rerunning the d’ analysis on shuffled datasets (N=1,000 shuffles). For 

each randomization, the peak value of d’ in 10–40 ms premotor window was recorded; 

significance threshold was as set as the 95 percentile of the distribution of these peak values. 

A shared neuron was determined to have significant acoustic difference between the shared 

syllables only if the d’ trajectory remained above this significance threshold for the entire 
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premotor window of 10–40 ms after the burst. Note that, in the simulated data, none of the 

1,000 surrogate runs generated a d’ trajectory that met this stringent criterion.

 Statistics

Results are expressed as the mean ± s.d. or s.e.m. as indicated. For χ2 tests, if the 

contingency table included a cell that has an expected frequency less than 5, Fisher’s exact 

test was used72. All tests were two-sided, and P<0.05 was considered significant. Bonferroni 

correction was used to account for multiple comparisons.

Figure 1(f) The statistical significance of developmental changes in the fraction of HVC 

neurons that were syllable-aligned was assessed in two different ways: 1) Each stage was 

compared with the adult stage using the χ2 test followed by a post-hoc pairwise test. 2) To 

quantify the developmental trend in the fraction of syllable-locked neurons, we calculated 

Pearson’s correlation coefficient r between the binary value for each neuron (0, unlocked; 1, 

locked) and song stage (subsong: 1, protosyllable: 2, multi-syllables: 3, motif: 4, adult: 5). 

The P-value was calculated under the null hypothesis that r=0. The significance of the 

developmental trend for rhythmic bursting was calculated similarly. Similar results were 

obtained for correlation between these metrics and the age at which each neuron was 

recorded, rather than song stage.

Figure 1(g) The statistical significance of developmental changes in the period of the HVC 

rhythm was also assessed in two different ways: 1) Each song stage was compared with the 

adult stage using the Kruskal-Wallis test followed by a post-hoc pairwise test. 2) To quantify 

the developmental trend in the period of the HVC rhythm, we calculated Pearson’s 

correlation coefficient r between burst period and song stage. Similar results were obtained 

for correlation between burst period and the age at which each neuron was recorded.

Figure 2(c) Wilcoxon rank-sum test was used to test whether the median of the syllable-

onset aligned latency distribution was different between subsong and protosyllable stages.

Figure 3(g, h) and 4(h, i) To test whether the fraction shared neurons differed between early 

and late stages of syllable differentiation, we used the χ2 test on a 2 × 2 contingency table 

(shared/specific, early/late). Significance across all birds: To calculate whether the fraction 

of shared neurons differed between early and late stages of syllable differentiation over all 

birds (n=5 syllable pairs in 3 birds), we used the Cochran-Mantel-Haenszel test for repeated 

tests of independence73.

Extended Data Fig. 1(a) To quantify the relation between song stage and age, we calculated 

Spearman’s rank correlation coefficient ρ and the P-value under the null hypothesis that ρ=0. 

(c) We computed the statistical significance of developmental changes in burst width (top) 

and firing rate during bursts (bottom) by using Kruskal-Wallis test followed by a post-hoc 

pairwise test to compare each stage with the adult stage.

Extended Data Fig. 2(m–o) To test whether fraction of syllable-locked neurons (m), fraction 

of rhythmic neurons (n), and period of HVC rhythm (panel o) significantly differed between 

HVCRA and HVCX, we used χ2 test for all the pairwise comparisons with Bonferroni 

correction for multiple comparisons.
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Extended Data Fig. 4(a–d) To calculated the relation between latencies of bursts associated 

with shared neurons, we calculated the Pearson’s correlation coefficient r together with the 

P-value under the null hypothesis that r=0.

Extended Data Fig. 5(m, n) To test whether mean d’ metric were different between HVCRA 

and HVCX, we used Wilcoxon rank-sum test. Only neurons with d’ trajectories that were 

significant (continuously from 10–40 ms) were included in this comparison.

 Modeling

 Binary neuron model—Code used to simulate the model is available as Supplementary 

Information. To illustrate a potential mechanism of chain splitting, we chose to implement 

the model as simply as possible. We modeled neurons as binary units and simulated their 

activity in discrete time steps44; at each time step (10 ms), the i-th neuron either bursts (xi = 

1) or is silent (xi = 0).

 Network architecture—A network of 100 binary neurons is recurrently connected in 

an all-to-all manner, with Wij representing the synaptic strength from presynaptic neuron j to 

postsynaptic neuron i. Self-excitation is prevented by setting Wii = 0 for all i at all times44. 

Synaptic weights are initialized with random uniform distribution such that each neuron 

receives, on average, its maximum total input. During learning, the strength of each synapse 

is constrained to be within the interval [0, wmax], while the total incoming and outgoing 

weights of each neuron are both constrained by the “soft bound” Wmax = m * wmax where m 

represents a target number of saturated synapses per neuron44 (see Synaptic plasticity rule 
section for details).

 Network dynamics—The activity of each neuron in the network was determined in two 

steps; calculating the net feedforward input that comes from the previous time step, and 

determining whether that is enough to overcome the recurrent inhibition in the current time 

step.

First, the net feedforward input to the i-th neuron at time step t,  was calculated by 

summing the excitation, feedforward inhibition, neural adaptation, and external inputs:

where [z]+ indicates a rectification (equal to z if z>0 and 0 otherwise). 

 is the excitatory input from network activity on the previous time 

step. AIff(t) = β∑jxj (t − 1) is a feedforward inhibitory input44, where β sets the strength of 

this feedforward inhibition. , is an adaptation term44 where α is the strength 

of adaptation, and yi is a low-pass filtered record of recent activity in xi with time constant 

τadapt = 40 ms; that is . Bi(t) is the external input to neuron i at time t. 

For seed neurons, this term consists of training inputs (see section on Seed neurons). For 

non-seed neurons, it consists of random inputs with probability pin = 0.01 in each time step 
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and size Wmax/10. Finally, θi is a threshold term used to reduce the excitability of seed 

neurons, making them less responsive to recurrent input than are other neurons in the 

network. For seed neurons, θi = 10 and for non-seed neurons, θi = 0. Including this term 

improves robustness of the training procedure by eliminating occasional situations in which 

seed neuron activity may be dominated by recurrent rather than external inputs. In these 

cases, external inputs may fail to exert proper control of network activity.

Second, we determined whether the i-th neuron will burst or not at time step t by examining 

whether the net feedforward input  exceeds the recurrent inhibition AI_rec(t). We 

implemented recurrent inhibition by estimating the total activity of the network at time t:

and feeding it back to all the neurons. Parameter γ sets the strength of the recurrent 

inhibition. We assume that this recurrent inhibition operates on a fast time scale48 (i.e. faster 

than the duration of a burst). Thus, the final output of the i-th neuron at time t becomes:

where Θ [z] is the Heaviside step function (equal to 1 if z > 0 and 0 otherwise). To induce 

splitting, γ was gradually stepped up to γsplit following a sigmoid with time constant τγ and 

inflection point t0:

 Seed neurons—A subset of neurons was designated as seed neurons, which received 

external training inputs used to shape network activity during learning43,45. The external 

training inputs activate seed neurons at syllable onsets, reflecting the observed onset-related 

bursts of HVC neurons during the subsong stage (Fig. 1a). The pattern of these inputs was 

adjusted in different stages of learning, and each strategy of syllable learning was 

implemented by different patterns of seed neuron training inputs.

 Alternating differentiation (Fig. 5a–e): Ten neurons were designated as seed neurons 

and received strong external input (Wmax) to drive network activity. In the subsong stage, 

seed neurons were driven (by external inputs) synchronously and randomly with probability 

0.1 in each time step corresponding to the random occurrence of syllable onsets in 

subsong27,34. This was done only to visualize network activity; no learning was 

implemented at the subsong stage. During the protosyllable stage, seed neurons were driven 

synchronously and rhythmically with a period T = 100 ms. The protosyllable stage consisted 

of 500 iterations of 10 pulses each. To initiate chain splitting, the seed neurons were divided 

into two groups and each group was driven on alternate cycles. The splitting stage consisted 

of 2,000 iterations of 5 pulses in each group of seed neurons (1 second total).

Okubo et al. Page 20

Nature. Author manuscript; available in PMC 2016 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Motif strategy (Extended Data Fig. 10e–h): This was implemented in a similar manner 

as alternating differentiation, except that 9 seed neurons were used, and for the splitting 

stage, seed neurons were divided into 3 groups of 3 neurons, each driven on every third 

cycle.

 Bout-onset differentiation (Extended Data Fig. 10a–d): Seed neurons were divided into 

two groups: 5 bout-onset seed neurons and 5 protosyllable seed neurons. At all learning 

stages, external inputs were organized into bouts consisting of four separate input pulses: 

Bout-onset seed neurons were driven at the beginning of each bout. Then, 30 ms later, 

protosyllable seed neurons were driven three times with an interval of T = 100 ms. In the 

protosyllable stage, inputs to all seed neurons were of strength Wmax. In the splitting stage, 

the input to protosyllable seed neurons was decreased to Wmax/10. This allowed neurons in 

the bout-onset chain to suppress, through fast recurrent inhibition, the activity of 

protosyllable seed neurons during bout-onset syllables.

Each iteration of the simulation was 5 seconds long, consisting of 10 bouts, as described 

directly above, with random inter-bout intervals. The protosyllable stage consisted of 100 

iterations, and the splitting stage consisted of 500 iterations.

 Bout-onset syllable formation (Extended Data Fig. 10i–k): Input to seed neurons was 

set high (2.5 * Wmax), and maintained at this high level throughout development. This 

prevented protosyllable seed neurons from being inhibited by neurons in the bout-onset 

chain. Furthermore, strong external input to the protosyllable seed neurons terminated 

activity in the bout-onset chain through fast recurrent inhibition, thus preventing further 

growth of the bout-onset chain, as occurs in bout-onset differentiation.

As in bout-onset differentiation, each iteration of the simulation was 5 seconds long, 

consisting of 10 bouts with random inter-bout intervals. The protosyllable stage consisted of 

100 iterations, and the splitting stage consisted of 500 iterations.

 Synaptic plasticity rule—As in previous models43,44, we hypothesized two plasticity 

rules in our model: Hebbian spike-timing dependent plasticity (STDP) to drive sequence 

formation74,75, and heterosynaptic long term depression (hLTD) to introduce competition 

between synapses of a given neuron43,44. STDP is governed by the antisymmetric plasticity 

rule with a short temporal window (one burst duration):

where the constant η sets the learning rate. hLTD limits the total strength of weights for 

neuron i, and the summed weight limit rule for incoming weights is given by:

and for outgoing weights from neuron j:
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At each time step, total change in synapse weight is given by the combination of STDP and 

hLTD:

where ε sets the relative strength of hLTD.

 Model parameters: subsong (Fig. 5a)—In our implementation of the subsong stage, 

there was no learning. Subsong model parameters were: β = 0.115, α = 30, η = 0, ε = 0, γ = 

0.01.

 Model parameters: alternating differentiation (Fig. 5b–d)—After subsong, 

learning progressed in two stages: the protosyllable stage and the splitting stage. Parameters 

that remained constant over development were: β = 0.115, α = 30, η = 0.025, ε = 0.2. To 

induce chain splitting, wmax was increased from 1 to 2, m was decreased from 10 to 5, and γ 

was increased from 0.01 to 0.18 following a sigmoid with time constant τγ = 200 iterations 

and inflection point t0 = 500 iterations into the splitting stage. No change in parameters 

occurred prior to the chain-splitting stage.

 Model parameters: bout-onset differentiation (Extended Data Fig. 10a–d)—
Parameters that remained constant over development were:β = 0.13, α = 30, η = 0.05, ε = 

0.14. To induce chain splitting, wmax was increased from 1 to 2, m was decreased from 5 to 

2.5, and τγ was increased from 0.01 to 0.04 following a sigmoid with time constant τγ = 200 

iterations and inflection point t0 = 250 iterations into the splitting stage.

 Model parameters: motif strategy (Extended Data Fig. 10e–h)—Parameters that 

remained constant over development were: β = 0.115, α = 30, η = 0.025, ε = 0.2. To induce 

chain splitting, wmax was increased from 1 to 2, m was decreased from 9 to 3, and γ was 

increased from 0.01 to 0.18 following a sigmoid with time constant τγ = 200 iterations and 

inflection point t0 = 500 iterations into the splitting stage.

 Model parameters: formation of a new syllable at bout onset (Extended Data 
Fig. 10i–k)—Parameters that remained constant over development were: β = 0.13, α = 30, η 

= 0.05, ε = 0.15. To induce chain splitting, wmax was increased from 1 to 2, m was decreased 

from 5 to 2.5, and γ was increased from 0.01 to 0.05 following a sigmoid with time constant 

τγ = 200 iterations and inflection point t0 = 250 iterations into the splitting stage.

 Shared and specific neurons—Neurons were classified as participating in a syllable 

type if the syllable onset-aligned histogram exhibited a peak that passed a threshold 

criterion. The criteria were chosen to include neurons where the histogram peak exceeded 

90% of surrogate histogram peaks. Surrogate histograms were generated by placing one 
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burst at a random latency in each syllable. (For example, in the protosyllable stage, the 

above criterion was found to be equivalent to having 5 bursts at the same latency in a bout of 

10 protosyllables.) During the splitting phase, neurons were classified as shared if they 

participated in both syllable types, and specific if they participated in only one syllable type.

 Visualizing network activity—We visualized network activity in two ways: network 

diagrams, and raster plots of population activity (e.g. Fig. 5a–d top and bottom panels, 

respectively). In both cases, we only included neurons that participated in at least one of the 

syllable types (see Shared and specific neurons above for participation criteria).

 Network diagrams: Neurons are sorted along the x-axis based on their relative latencies. 

Neurons are sorted along the y-axis based on the relative strength of their synaptic input 

from specific neurons (or seed neurons) of each type (red or blue). Lines between neurons 

correspond to feedforward synaptic weights, and darker lines indicate stronger synaptic 

weights. For clarity of plotting, only the strongest six outgoing and strongest nine incoming 

weights are plotted for each neuron.

 Population raster plots: Neurons are sorted from top to bottom according to their 

latency. Groups of seed neurons are indicated by magenta arrows. Shared neurons are plotted 

at the top and specific neurons are plotted below. As for network diagrams, neurons that did 

not reliably participate in at least one syllable type were excluded.

 Further details for Figure 5(a–d): Panels show network diagrams and raster plots at four 

different stages. (a) subsong stage (before learning), (b) end of protosyllable stage (iteration 

500), (c) early chain splitting stage (iteration 992), (d) late chain-splitting stage (iteration 

2,500).

Further details for Extended Data Fig. 10(a–d) (a) early protosyllable stage (iteration 5), (b) 

late protosyllable stage (iteration 100), (c) early chain splitting stage (iteration 130), (d) late 

chain splitting stage (iteration 600).
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 Extended Data

Extended Data Figure 1. Bursting and syllable-locked activity in HVC projection neurons of 
juvenile birds
a, Range of bird ages at which songs were classified at different developmental stages 

(Spearman’s rank correlation between age and stage ρ=0.61; red line indicates the median, 

box indicates the 25–75 percentile, and whiskers indicate 10–90 percentile; n=12, 13, 18, 6 

birds, respectively; n=39, 135, 566, 378 neurons, respectively). b, Interspike-interval (ISI) 

distributions (mean ± s.e.m.) of HVC projection neurons that exhibited spiking during 
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singing, at three stages of vocal development (n=38, 130, 922 neurons). ISI distributions 

computed with logarithmic binning show bimodal structure: the peak around 3–5 ms 

indicates inter-spike intervals within bursts, and a broader peak around 100–400 ms 

indicates intervals between bursts (dashed line indicates the 30 ms threshold used for 

defining a burst; dotted line indicates peak). Note the refractory period below 1 ms. c, Burst 

width (top) and firing rate during bursts (bottom) as a function of developmental stage 

(median ± quartiles; n=39, 135, 566, 378, 32 neurons; **P<0.01, ***P<0.001 post-hoc 

comparison with adult stage).

d–i, Syllable-onset-aligned raster plots and histograms for neurons recorded during the 

subsong stage. Syllables are sorted from bottom to top by increasing syllable duration. d, 

Neuron that did not exhibit significant locking to subsong syllable onsets (HVCRA, 50 dph, 

Bird 7). e, Another neuron in the same bird (same neuron as in Fig. 1a; HVCRA, 51 dph). f–
g, Two projection neurons recorded in a different subsong bird (both HVCX; 47 and 48 dph, 

respectively; Bird 9). Note different latencies of bursting. h–i, Two projection neurons 

recorded in a different subsong bird (both HVCX; 47 and 44 dph, respectively; Bird 10).

j–k, Syllable-onset-aligned raster plots and histograms showing strong locking to 

protosyllables (Bird 2). j, For the same neuron as in Fig. 1b (HVCRA; 62 dph). k, For 

another neuron (HVCRA; 65 dph).

l–m, Two neurons recorded in the motif stage (Bird 8). l, Neuron locked just after syllable 

onset (HVCX neuron; 61 dph). m, Same neuron as in Fig. 1c (HVCRA; 68 dph) showing 

locking late in the song syllable.

n, Population raster of 14 neurons aligned to protosyllable onsets (56–59 dph; Bird 1).
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Extended Data Figure 2. Further analysis and examples of HVC projection neuron activity
a–d, Examples of HVC projection neurons showing rhythmic activity during non-rhythmic 

song. a, Bird 2, HVCRA neuron, 57dph, b, Bird 12, HVCX, 53 dph, c, Bird 12, HVCRA, 

57dph, d, Syllable onset-aligned raster plot for neuron shown in panel c. Syllables are sorted 

in order of increasing duration (bottom to top; blue line indicates syllable offset). Also 

shown (top) is onset-aligned spike histogram. Note multiple rhythmic bursts during long 

syllables. Scale bars: (a–c) 1 mV, 100 ms.
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e–l, Bout-related activity of HVC projection neurons. e, Bout-onset neuron (HVCX; 44 dph; 

Bird 11). f, Bout-onset aligned histogram and raster plot for the neuron shown in (e). g, 

Bout-onset aligned histogram and raster plot for the neuron shown in Fig. 1d. h, Distribution 

of pre-bout-onset latencies for all bout-onset neurons (n=187 neurons, 32 birds). i, Bout-

offset neuron (HVCX; 61 dph; Bird 1). j, Bout-offset aligned histogram and raster plot for 

the neuron shown in (i). k, Bout-offset aligned histogram and raster plot for the neuron 

shown in Fig. 1e. l, Distribution of post-bout-offset latencies for all bout-offset neurons 

(n=149 neurons, 32 birds). Vertical scale bars: (e, i) 0.5 mV.

m–o, Developmental progression of HVC activity analyzed separately for HVCRA and 

HVCX neurons. m, Fraction of neurons temporally locked to syllables (mean ± s.e.m.; 

HVCRA: 9, 22, 84, 54, 10 neurons analyzed at each stage, respectively; HVCX: 27, 91, 376, 

244, 22 neurons analyzed at each stage, respectively). n, Fraction of neurons that exhibited 

rhythmic bursts (HVCRA: 9, 22, 84, 54, 10 neurons, respectively; HVCX: 27, 91, 376, 244, 

22 neurons, respectively). o, Mean period of HVC rhythmicity as a function of song stage 

(HVCRA: 0, 16, 51, 41, 7 neurons, respectively; HVCX: 3, 41, 245, 189, 18 neurons, 

respectively). Of the 14 comparisons between HVCRA and HVCX shown in m–o, only the 

period of HVC rhythm (panel o) during the motif stage showed significant difference 

between the cell types (P<0.05 with Bonferroni correction).

p–r, Analysis of probabilistic participation in rhythmic activity during protosyllables. p, 

Distribution of fraction of protosyllables on which spiking occurred (n=70 neurons). In 

contrast to the highly reliable bursting of HVC projection neurons in adult birds19–22, we 

found that neurons in the protosyllable stage participated probabilistically (mean: 53% of 

protosyllables; triangle symbol). q, Histogram of the coefficient of determination r2 for 

protosyllable participation across simultaneously recorded pairs of neurons (median 

r2=0.072; n=11 pairs; see Methods). r, Histogram of mutual information for protosyllable 

participation across simultaneously recorded pairs of neurons (median 0.056 bits; n=11 

pairs; see Methods).

s–t, Analysis of burst coverage by HVC projection neuron bursts. s, Summary histogram of 

the covered fraction for all analyzed syllables (n=20 syllables, 4 birds). Note that 17/20 

syllables had a covered fraction higher than 90%. t, Covered fraction analyzed for 20 

syllables for which raster plots are shown in the main or Extended Data figures. Vertical 

grey bars indicate 95% confidence interval (2.5–97.5%ile) of coverage expected for random 

uniform shuffling of the observed bursts (see Methods). Note that for all syllables, the 

observed coverage is within the confidence interval for randomly shuffled bursts. These 

findings suggest that, even for the three syllables with coverage less than 90% (indicated 

with red square symbol), the lower coverage was consistent with undersampling due to the 

smaller number of recorded neurons in these birds.

Note on two models of HVC coding. Our findings bear on several recent models of song 

representation in HVC. One earlier model hypothesizes that HVC bursts provide timing 

signals to drive premotor activity19,58,67 and to control the temporal precision of 

learning76–79. This model implies a continuous, though not necessarily uniform, coverage of 

HVC bursts throughout song, as observed in our data. Overall, given the very large number 

of HVC neurons in each hemisphere80 (>104), our measurements are consistent with a 

continuous representation of timing signals throughout song syllables.
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Another model of HVC coding has emphasized the finding that bursts may occur more often 

at particular times in the song, related to ‘gestures’ in the vocal control parameters22. Our 

finding that bursts are more concentrated around syllable onsets early in vocal development 

suggests that HVC may generate protosyllables as primitive gestures that serve as a scaffold 

on which later song syllables develop33. During development, HVC activity appears to 

evolve such that, as a population, bursts occur more uniformly throughout song syllables 

(Fig. 2c), while the activity of individual neurons becomes sparser and more precise. At the 

same time, one might imagine that vocal gestures become more complex and precise as 

syllables develop into their adult forms. In this view, the emergence of sequential activity in 

HVC may be viewed to drive an increasingly complex sequence of gestures.

Extended Data Figure 3. Increase in the period of HVC rhythmicity during alternating syllable 
differentiation
All data are from Bird 1. a, Paired recording of a shared neuron (top; HVCRA) and a β-

specific neuron (bottom; HVCX; 69 dph). b, Paired recording of a shared neuron (top; 

HVCX) and a C-specific neuron (bottom; HVCX; 110 dph). c, Neuron switching between 

shared and specific spiking (HVCX; 63 dph). d, Same neuron as in c, switching from 
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specific to shared firing. e, A different neuron switching from shared to specific (HVCp; 68 

dph). Scale bars: (a–e) 0.5 mV, 200 ms.

f–i, Inter-burst interval (IBI) distributions for shared and specific neurons. f, for the neuron 

in Fig. 3c recorded during protosyllable stage. g, for the shared neuron shown in the top 

panel of Fig. 3f. h, for the β-specific neuron shown in Fig. 3d. i, for a γ-specific neuron (not 

shown). j, Population summary of the ‘most-probable IBI’ for the neurons recorded during 

the protosyllable stage (n=9), and during the emergence of syllables β and γ (62–72 dph; 

shared neurons, n=22; specific neurons, n=83). Note that shared neurons had the same 

‘most-probable IBI’ as neurons recorded during the protosyllable stage. Neurons exhibiting 

an increased burst period by skipping cycles of an underlying rhythm were also observed in 

Birds 3, 4, and 6 (see Extended Data Fig. 8f–h, 9f, h).
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Extended Data Figure 4. Analysis of shared neurons: latency and syllable selectivity
a–d, Latencies of shared neuron bursts, color-coded by cell type: HVCRA (red square), 

HVCX (blue circle), and HVCp (green diamond). a, Neurons in Bird 1 shared between 

syllables β and γ (from Fig. 3) during the early and late stages of syllable differentiation 

during early (top) and later (bottom) developmental stages. Note strong correlation of burst 

latencies (early, r=0.91, P<0.001; late, r=0.87, P=0.005). b, Neurons in Bird 1 shared 

between syllables D and B (Extended Data Fig. 7) during the early and late stages of syllable 

differentiation (top, early r>0.99, P<0.001; bottom, late r>0.99, P<0.001). c, Neurons in Bird 
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2 shared between syllables β and α (Fig. 4h) during the early and late stages (top, early 

r>0.99, P<0.001; bottom, late r>0.99, P<0.001). A shared neuron that had two peaks during 

the syllable α is shown with an ‘x’ symbol; this point was not included in the calculation of 

correlation. d, Neurons in Bird 4 shared between syllables ‘b’ and ‘d1’ (Extended Data Fig. 

9l) during early stage (top, r=0.89, P<0.001; neurons that burst in the first part of ‘b’ 

(syllable ‘b1’) are shown with ‘x’ symbol, and were not included in the calculation of 

correlation). Neurons in Bird 4 shared between syllables ‘c’ and ‘d2’ (Extended Data Fig. 

9n) during early stage (bottom, r=0.98, P<0.001).

Bias: As a population, shared neurons exhibited a broad range of selectivity for emerging 

syllable types—some were equally active for both syllable types while others showed higher 

activity in one syllable than the other (‘bias’; see Methods). e, Raw spike data (top left) and 

instantaneous firing rate (bottom left) for a neuron shared between syllables β and γ (HVCp; 

68 dph, Bird 1). Also shown is the syllable-onset-aligned raster plot (bottom right) and 

histogram (top right) showing similar peak firing rates for both syllables (low bias; bias = 

0.07). f, Spike data (left) and syllable-onset-aligned raster plot and histogram (right) for a 

high-bias shared neuron showing higher peak firing rate for syllable β than γ (bias = 0.63; 

HVCRA; 68 dph, Bird 1). g, Low-bias shared neuron (bias = 0.06; HVCX; 69 dph, Bird 2). h, 

High-bias shared neuron showing higher peak firing rate for syllable β than α (bias = 0.55; 

HVCX; 68 dph, Bird 2). i, Scatter plot of the peak firing rates during two different syllable 

types, quantified by the height of the peak in the syllable-aligned spike histogram. Each dot 

is a neuron; shared neurons shown in cyan; neurons near the diagonal have low bias. 

Specific neurons are colored according to the associated syllable and appear near the axes. j, 
Distribution of the bias for shared neurons (cyan) and specific neurons (magenta). Bias 

ranged from 0, representing equal activity, to 1, representing activity exclusive to either one 

of the syllables (see Methods). Specific neurons exhibited a bias tightly clustered around one 

(0.96 ± 0.011, mean ± s.d.). In contrast, shared neurons exhibited a broad range of bias (0.28 

± 0.22).

These observations suggest that individual shared neurons can exist in a state intermediate 

between ‘specific’ and ‘shared’—perhaps reflecting a gradual process by which shared 

neurons become specific. Scale bars: (e–h) 0.5 mV, 100 ms. Inset in (f, h) shows zoom of 

bursts indicated by asterisk; scale bar: 5 ms.
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Extended Data Figure 5. Analysis of the acoustic differences associated with shared neuron 
bursts
One of the distinguishing features of the emergence of new syllable types is an apparent 

differentiation of the acoustic structure within the emerging syllables. However, it is possible 

that shared neurons may only be active at times within emerging syllables at which no 

acoustic differentiation has yet occurred—that is, at times when the emerging syllable types 

are acoustically identical. To test this possibility, we analyzed the trajectories of acoustic 

features of emerging syllable types around the times of shared neuron bursts. a, Shared 
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HVCRA neuron recorded in Bird 1 during alternation between emerging syllable types β and 

γ (same neuron as Fig. 3e). b–c, Average spectrogram (sparse contour representation; see 

Methods) computed for syllables β and γ, centered on a 50 ms window immediately after the 

burst in each syllable. d, Song amplitude as a function of time for syllables β (red) and γ 

(blue), relative to burst time. Lines show average across all syllable renditions on which the 

neuron was active. Shading around lines show s.e.m. (for this and several other examples, 

s.e.m. is too small to be visible). e, Spectral center of gravity as a function of time for 

syllables β (red) and γ (blue). f, Distribution of projected samples for syllables β (red) and γ 

(blue), computed by projecting the 8-dimensional vector of spectral features onto a line that 

yields maximum separability between the two syllables. This distribution is computed at 

each time (1 ms steps) in the 50 ms analysis window after burst time. Shown is the 

distribution at t=25 ms. g, d-prime analysis of separability of projected samples for syllables 

β and γ. The value of d’ is computed as a function of time (1 ms steps; red trace). Also 

shown is the 95% confidence interval (gray band) computed from surrogate datasets with 

randomized labels. Dashed horizontal line shows the 95 percentile of the distribution of peak 

values of d’ in the surrogate data set (identified in the 10–40 ms window). h–j, Acoustic 

analysis for three additional HVCRA neurons. Panels are analogous to a–g. k, Plot of d’ 

trajectories for all shared HVCRA neurons. Significant d’ values (above the 95 percentile of 

peak values) are shown in red. Non-significant values shown as gray line. l, Same as (k) but 

for shared HVCX neurons. m, Population summary of mean d’ (averaged over the 

presumptive premotor window 10–40 ms after burst time). Each symbol represents a 

different shared neuron and each column indicates a different syllable pair. Analysis is 

shown separately for each neuron type: HVCRA neurons (green circles) and HVCX neurons 

(blue squares). Neurons with no significant acoustic differences are indicated with black 

symbols. n, Cumulative distribution of mean d’ for shared HVCRA neurons (green; n=11) 

and shared HVCX neurons (blue; n=36). Only neurons with significant d’ metric are 

included in the cumulative. No significant difference was observed between neuron types 

(P=0.1). Scale bars: (a, h, i, j) 0.5 mV, 100 ms.

Summary of properties of HVCRA and HVCX shared neurons: Shared neurons were found 

in similar proportion across both HVCRA and HVCX neurons (19% and 28%, respectively; 

P=0.08; averaged over all developmental stages) and shared neurons of both cell types 

exhibited the property that bursts have similar latencies during the shared syllables 

(Extended Data Fig. 4a–d). As shown above, for both neuron types, we observed shared 

neurons that burst at times where there was a significant acoustic difference between the 

shared syllables. These findings suggest that both projection neuron types participate in 

shared neural sequences, and that these shared sequences occur during acoustically 

distinguishable parts of the emerging syllables.
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Extended Data Figure 6. Detailed analysis of bout-onset differentiation in Bird 2
(Fig. 4). a, Song examples throughout song development. Panels: i, subsong (49 dph); ii, 

emergence of protosyllable α from subsong (60 dph); iii, appearance of bout-onset element ε 

(63 dph); iv, fusion of ε with first α to form new syllable β (67 dph); v–vi, acoustic 

differentiation of β and α, and incorporation with γ into song motif CBA (70, 90 dph); vii, 

tutor song. b, Schematic of syllable formation (same as Fig. 4a), inferred by tracking 

backward in development the adult syllables C, B and A. Early on, protosyllable (labeled α) 

is produced rhythmically. The first protosyllable in each bout fuses with a brief bout-onset 
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vocal element ε to form a new emerging syllable type β. Both α and β undergo subsequent 

acoustic differentiation to form adult syllables A and B, respectively. (An additional syllable 

γ emerges at bout onset to form adult syllable C). c, Developmental time course of the 

occurrence probability of different syllable types at bout onsets (mean ± s.e.m.). d, Syllable 

duration distribution showing three non-overlapping peaks (67 dph). Colored bars indicated 

syllable duration ranges used for syllable labeling. This separation of durations allowed 

automatic determination of syllable identity. e, Pitch goodness trajectories of syllables α 

(red) and β (blue) at three stages of vocal development (median ± quartiles; n=100 syllables 

per day). Black bar: region used to compute data in Fig. 4b. f, Example of a neuron active 

during both syllables α and β (HVCRA; 69 dph). Note that the activity of this neuron during 

syllable α was weak, and did not quite reach our statistical criterion for being a ‘shared’ 

neuron.
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Extended Data Figure 7. Hierarchical differentiation of syllables
All data are from Bird 1. a, Song examples during the emergence of syllables B and D from 

a common precursor syllable β, which had undergone earlier differentiation from a 

protosyllable α (Bird 1; same bird as Fig. 3). Panels: i (70 dph), After the initial 

differentiation of the protosyllable into β and γ (at ~62 dph), the bird produced a rhythmic 

alternation of these two syllables, and the alternating sequence was reliably preceded at bout 

onsets by a short vocal element ε (ε-β-γ-β-γ-β-γ…). Note that the first repetition of β in each 

bout (labeled D) is acoustically identical to later repetitions (labeled B); panel ii (80 dph), 
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the first repetition of β in the bout (syllable D) undergoes differential acoustic refinement 

compared to later repetitions (syllable B); iii, syllable B, C and D, together with bout-onset 

element ε, crystallize into adult motif EDCB (90 dph), that approximately matches the tutor 

motif (panel iv). b, Schematic of syllable formation. c, Scatter plot of the mean Wiener 

entropy showing differential acoustic refinement of syllables B (orange) and D (green) 

through development (n=100 syllables of each type per day; horizontal jitter added to 

improve data visibility). d, Wiener entropy trajectory of syllables B and D at three stages of 

vocal development (median ± quartiles; n=100 syllables of each type per day). Black bar 

indicates region used to compute data in c. e, Population raster of 60 neurons early in 

syllable differentiation showing shared (top) and specific (bottom) sequences. f, Same as 

panel e, but for 70 neurons recorded late in differentiation of D and B.

Evidence for an incomplete splitting of a neural sequence. The pattern of shared and specific 

neurons observed for these syllables is quite similar to what would be expected in our model 

during an early/intermediate stage of splitting (Fig. 5c or Extended Data Fig. 10c). Of 

particular note in this bird is the large fraction of shared neurons that remained in the later 

recordings (panel f), compared to the smaller fraction of shared neurons at late stages in 

syllables B and C of the same bird (Fig. 3h). However, syllables B and C differentiated from 

parent syllable α early in development (~60 dph, Fig. 3b), while D and B differentiated from 

β at a much later stage (~80 dph, panel c). One might speculate that the splitting of D and B 

may have failed to reach completion before the bird reached adulthood, possibly preventing 

further splitting.

Neural evidence (shared burst sequence) for hierarchical differentiation was also observed in 

Bird 6 (data not shown). Neural evidence (shared burst sequence) for bout-onset 

differentiation was also observed in Bird 5 (data not shown).
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Extended Data Figure 8. Simultaneous formation of multiple syllable types into an entire motif
All data are from Bird 3. Neural recordings from this bird support the view that, in the 

‘motif strategy’, new syllables emerge from a common rhythmic protosequence. a, Song 

examples during the emergence of a motif. Panels: i, subsong (37 dph); ii, the song began to 

acquire rhythmic ‘protosyllable’ modulation in song amplitude around 9 Hz (45 dph), iii, 

over the next five days (47–51 dph), this bird acquired a reliable pattern of 4–5 acoustically 

distinct elements (‘syllables’), each generated in a different cycle of the 9 Hz rhythm (48 

dph); iv, the acoustic structure in each syllable was gradually refined, resulting in an 

Okubo et al. Page 38

Nature. Author manuscript; available in PMC 2016 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



excellent match to the tutor song even at this early age (51 dph); v, tutor song. b, Scatter plot 

of syllable duration and pitch goodness (n=300 syllables per day; color coded according to 

syllable identity in panel a). c, Development of the song rhythmicity quantified as spectrum 

of the sound amplitude38. Gray shade indicates the pass band for the filter used in phase 

segmentation. d, Phase segmentation based on the rhythmicity in the song. Top: song 

spectrogram with phase segments (gray boxes). Middle: sound amplitude (blue) and band-

pass filtered sound amplitude (magenta). Syllable segmentation based on the sound 

amplitude is shown as white boxes. Bottom: instantaneous phase (green) of the band-pass 

filtered sound amplitude. Phase segments (gray boxes) are obtained by detecting threshold 

crossing (black dotted line) of the instantaneous phase. e, Rhythmic neuron (protosyllable 

stage; HVCp; 45 dph). f, Neuron shared between syllables A and B (HVCRA; 48 dph). g, 

Neuron shared between B and E (HVCX; 49 dph). h, Population raster aligned to the five-

syllable motif for neurons that were significantly locked to any syllable (n=10 neurons). 

Each motif and associated spike times were time-warped using a piecewise linear method67 

based on syllable onsets and offsets. i, Histogram of the absolute phase difference between 

the two syllables for all shared neurons (n=8 neurons; mean phase difference: 41 ± 33.9 deg, 

mean ± s.d.). j, Cumulative distribution of the mean absolute phase difference after 

randomizing the pairing (red dotted line indicates threshold for significance P<0.05; red 

triangle indicates observed mean absolute phase difference, P=0.013). Statistical details in 

Methods. Scale bars: (e–g) 30 dB, 0.3 mV, 200 ms.
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Extended Data Figure 9. Another example of shared burst sequences during the emergence of 
new syllable types
All data are from Bird 4. a, Song examples during the emergence of a motif ABCDF. Note 

the nearly simultaneous emergence of multiple syllable types in fixed order (52 dph). Tutor 

song shown at the bottom. Phase segments are shown above the spectrogram for song at 43 

dph. b, Top: Song rhythm spectrum calculated in the protosyllable stage (43 dph) and after 

motif formation (59 dph). Note the pronounced peaks at 5 Hz and 10 Hz in both stages. 

Bottom: Syllable duration distribution in the protosyllable stage (43 dph) and after motif 
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formation (59 dph) showing two peaks. At 43 dph, the peak at 70 ms indicates short 

protosyllables corresponding to one cycle of the 10 Hz rhythm, and the peak at 140 ms 

indicates longer syllables formed by two protosyllables fused across two cycles of the 10 Hz 

rhythm (doubled protosyllables). Example doubled protosyllables are seen in the first and 

third syllables of panel a (43 dph; note that boxes at the top of this panel indicate phase 

segments, not syllable boundaries). c, Hypothesized mechanism of motif construction, based 

on the examination of acoustic structure and analysis of neural burst sequences (see below). 

Notably, in this bird, the majority of syllables emerged nearly simultaneously in a relatively 

fixed order, consistent with a ‘motif strategy.’ d, Scatter plots of syllable duration versus 

mean spectral center of gravity at four stages of vocal development (each dot represents a 

single syllable; n=500 syllables per day; color coded according to syllable identity in panel 

a). e, Neuron bursting at 10 Hz protosyllable rhythm (HVCX; 48 dph). Phase segments 

shown above spectrogram. f, Top: neuron bursting at the 10 Hz rhythm (HVCX; 49 dph). 

Bottom: Simultaneous recording of a neuron bursting on alternate cycles of 10 Hz rhythm 

(HVCRA). g, Shared neuron bursting on second half of syllable ‘b’ (labeled b2) and first half 

of syllable ‘d’ (labeled d1) (HVCRA; 51 dph). h, Shared neuron bursting rhythmically on 

first half of ‘b’ (b1), syllable ‘c’ and second half of ‘d’ (d2) (HVCRA; 51 dph). i, Shared 

neuron bursting on ‘a’ and first half of ‘d’ (d1) (HVCRA; 58 dph). j, Shared neuron bursting 

on second half of ‘d’ (d2), ‘e’, and last part of ‘f’ (HVCRA; 57 dph). k, Population raster of 

12 neurons that were significantly locked to protosyllable onsets (48–49 dph). Protosyllables 

were identified using phase segmentation (see Methods). l, Population raster showing 

neurons active during syllables ‘b’ and/or ‘d’, recorded early in syllable differentiation. 

Neurons shared between ‘b’ and ‘d1’ are grouped at top. Neurons specific for ‘b’ are 

grouped next, and neurons specific for ‘d’ are grouped at bottom. m, Same as panel l but for 

neurons recorded later in development. n, Population rasters showing neurons active during 

syllables ‘c’ and/or ‘d’, recorded early in development. o, Same as panel m, but for neurons 

recorded later in development. Scale bars: (e–j) 0.5 mV, 200 ms.

Neural evidence for hypothesized mechanism of motif construction. Based on an analysis of 

acoustic signals and neural recordings, we have formulated a hypothesis for how the song of 

this bird developed, from the formation of the protosyllable to the emergence of the 

complete motif. We hypothesize that the fundamental protosyllable element corresponds to 

the prominent 10 Hz peak in the rhythm spectrum and the 70 ms peak in the duration 

distribution (panel b). This view is further supported by the presence of neurons in the 

protosyllable stage that generate rhythmic bursts at 10 Hz (panels e, f; 11/18 neurons were 

rhythmic, 5/11 rhythmic neurons exhibited periodicity at 10 Hz), and the existence of a burst 

sequence during the protosyllable (panel k).

In this bird, the rhythmic protosyllables differentiated nearly simultaneously, at an early age 

(52 dph, panel a), into a complete sequence of distinct syllables that subsequently formed 

the adult song, suggesting this bird employed a ‘motif strategy.’ One complication of this 

simple view is that there may have been an early partial splitting of the short protosyllable α 

into two ‘daughter’ protosyllables α1 and α2, which alternated to produce the elements of 

the final motif (panel c). Two lines of evidence based on neural activity support this view: 

First, many neurons recorded at an early stage (<50 dph) exhibited a prominent 5 Hz 

periodicity in their rhythmic bursting. (panels f, h; 6/11 rhythmic neurons), rather than the 

expected 10 Hz period (panel e, f, top). This observation led us to consider the possibility 
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that the 100 ms neural sequence, corresponding to the dominant 10 Hz protosyllable rhythm, 

underwent a partial splitting during the protosyllable stage—similar to the alternating 

differentiation described for Bird 1 (Fig. 3; Extended Data Fig. 4). This would result in two 

distinct alternating protosyllable sequences α1 and α2 (panel c). Such splitting would 

effectively double the period of the protosyllable rhythm, and would account for the 

‘doubled’ protosyllables and the 5 Hz peak in the rhythm spectrum (panel b).

The existence of short and doubled protosyllables led us to hypothesize that the short 

syllables of the adult motif (‘a’, ‘c’, and ‘e’) arose from the short protosyllables, while long 

adult syllables (‘b’ and ‘d’, and possibly ‘f’) arose from the doubled protosyllables (panel c). 

Early syllable ‘e’ is later dropped by the juvenile, although it appears in the tutor song.

Furthermore, the analysis of shared sequences (panels l–o) revealed a predominance of 

shared neurons between syllable elements in alternating cycles of the underlying 10 Hz 

rhythm. For example, shared neurons were observed between syllables ‘a’, ‘b2’ and ‘d1’ 

(panel i for neuron shared between ‘a’ and ‘d1’; panel g and l for neurons shared between 

‘b2’ and ‘d1’). Shared neurons were also observed between syllables ‘b1’, ‘c’, and ‘d2’ 

(panel h for neuron shared between ‘b1’, ‘c’, and ‘d2’; panel n for neurons shared between 

‘c’ and ‘d2’). In contrast, many fewer shared neurons were observed between neighboring 

cycles of the underlying rhythm, although examples of this can be found (panel j).
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Extended Data Figure 10. (Model) Other strategies for syllable formation
a–d, Bout-onset differentiation results from activation of bout-onset seed neurons (blue 

arrow) followed by rhythmic activation of protosyllable seed neurons (red arrow). Network 

diagrams show (a, b) protosyllable formation and (c, d) splitting of chains specific for bout-

onset syllable β and specific for later repetitions of the protosyllable α (blue and red, 

respectively; shared neurons: black).

e–h, Model of simultaneous formation of multiple syllable types into an entire motif (‘motif 

strategy’). e–f, Protosyllable seed neurons (magenta lines) were activated rhythmically to 
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form a protosequence. g, Seed neurons were then divided into three sequentially activated 

subgroups, resulting in the rapid splitting of the protosequence into three daughter 

sequences. In intermediate stages (panel g), individual neurons exhibited varying degrees of 

specificity and sharedness for the emerging syllable types. h, After learning, the population 

of neurons was active sequentially throughout the entire ‘motif,’ but individual neurons were 

active during only one of the resulting syllables, forming three distinct non-overlapping 

sequences.

i–k, Network diagrams and raster plots showing an example of the formation of a new 

syllable chain at bout onset. In the network diagrams, seed neurons are indicated within 

magenta boxes, and bout-onset seed neurons and protosyllable seed neurons are indicated by 

blue and red arrows, respectively. Neurons specific for each emerging syllable type (εand α) 

are colored blue and red, respectively. The three panels represent the early protosyllable 

stage, the late protosyllable stage, and the final stage. The training protocol is similar to that 

for bout-onset differentiation (panel a–d), except that protosyllable seed neurons are driven 

more strongly throughout the learning process. As a result, protosyllable seed neurons did 

not become outcompeted by the growing bout-onset chain. Strong activation of the 

protosyllable seed neurons also terminated activity in the bout-onset chain through fast 

recurrent inhibition, thus preventing further growth of the bout-onset chain, as occurs in 

bout-onset differentiation.

General discussion on the role of chain splitting in the formation of new syllable types: In 

our model, we envision that the formation of daughter chains in HVC is translated into the 

emergence of new syllable types as follows: During the splitting process, as two distinct 

sequences of specific neurons develop, their downstream projections can be independently 

modified67,77 such that each of the emerging chains of specific neurons can drive a distinct 

pattern of downstream motor commands, allowing distinct acoustic structure in the emerging 

syllable types. Such differential acoustic refinement is consistent with the previous 

behavioral observation that the altered acoustic structure of new syllables emerges in place, 

without moving or reordering sound components (‘sound differentiation in situ’)33.

This model naturally explains the apparent ‘decoupling’ of shared projection neuron bursts 

from acoustic structure in the vocal output—i.e., the fact that the bursts of shared neurons 

become associated with two distinct acoustic outputs during the differentiation of two 

syllable types (Extended Data Fig. 5). Specifically, during syllable differentiation, a shared 

neuron participates with different ensembles of neurons during each of the emerging 

sequences, and these different ensembles can drive different vocal outputs.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Singing-related firing patterns of HVC projection neurons in juvenile birds
a, Neuron recorded in the subsong stage, prior to the formation of protosyllables (HVCRA; 

51 dph; Bird 7). Top: song spectrogram with syllables indicated above. Bottom: extracellular 

voltage trace. b, Neuron recorded in the protosyllable stage (HVCRA; 62 dph; Bird 2). 

Protosyllables indicated (gray bars). c, Neuron recorded after motif formation (HVCRA; 68 

dph; Bird 8). d, Neuron bursting exclusively at bout onset (HVCX; 61 dph; Bird 2). e, 

Neuron bursting exclusively at bout offset (HVCRA; 65 dph; Bird 2). f, Developmental 

change in the fraction of neurons locked to syllable onsets (gray) and fraction of neurons 
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with rhythmic bursting (black) (mean ± s.e.m; n=39, 135, 566, 378, 32 neurons, 

respectively). g, Mean period of the HVC rhythmicity as a function of song stage (n=3, 70, 

357, 298, 25 neurons, respectively). ***P<0.001, post-hoc comparison with the adult stage. 

Spectrogram vertical axis 500–8000 Hz. Scale bars: (a–c) 0.5 mV, 200 ms; (d–e) 1 mV, 500 

ms. Inset in (a–c) shows zoom of bursts indicated by asterisk; scale bar: 5 ms.
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Figure 2. Rhythmic sequences in HVC during the protosyllable stage
a, Three neurons recorded from Bird 2 during protosyllable stage (top: HVCX; 63 dph; 

bottom: simultaneous recording two neurons; both HVCX; 64 dph; scale bar 0.5 mV). b, 

Raster plot of 28 HVC projection neurons aligned to protosyllable onsets (sorted by latency; 

57–64 dph, Bird 2). Antidromically identified HVCRA neurons indicated by circles at right. 

c, Distribution of burst latencies relative to syllable onset in subsong stage (top), 

protosyllable stage (middle), and multi-syllable/motif stages (bottom), across all birds 

(n=19, 104, 814 neurons, respectively). Black triangle: median burst times.
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Figure 3. Shared and specific sequences during the emergence of multiple syllable types
All data from Bird 1. a, Song examples during the emergence of syllables β (red) and γ 

(blue). Panels i: subsong stage (46 dph); ii: rhythmic repetition of protosyllable α (grey bars; 

58 dph); iii: rhythmic repetition of variants of the protosyllable (β and γ; 60 dph); iv: further 

acoustic differentiation of β and γ (red and blue bars; 62 dph). b, Scatter plot of syllable 

duration versus mean pitch goodness (each dot is one syllable rendition; n=400 syllables per 

day; unclassified syllables gray). c, Neuron recorded during protosyllable stage (HVCX; 56 

dph). d, β-specific neuron (HVCX; 64 dph). e, Shared neuron active during both β and γ 
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(HVCRA; 68 dph). f, Simultaneously-recorded pair of HVCX neurons: shared neuron (top) 

and γ-specific neuron (bottom; 71 dph). g, Raster of 105 projection neurons early in syllable 

differentiation showing shared and specific sequences. HVCRA neurons indicated by circles 

at right. h, Same as panel g but for 100 neurons recorded after differentiation of β and γ into 

adult syllables B and C. Scale bars: (c–f) 0.5 mV, same time scale.

Okubo et al. Page 53

Nature. Author manuscript; available in PMC 2016 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Shared and specific sequences during the emergence of a new syllable at bout onset
All data from Bird 2. a, Schematic of syllable formation. b, Scatter plot of mean pitch 

goodness of syllables α (red) and β (blue) through development (n=100 syllables per day; 

horizontal jitter added to improve data visibility). c, Bout-onset neuron active before element 

ε (HVCRA; 64 dph). d, New syllable β formed by fusion of ε and α. Neuron shared between 

α and β (HVCRA; 65 dph). e, Neuron shared between α and β (HVCX; 70 dph). f, A-specific 

neuron (HVCRA; 80 dph). g, B–specific neuron (HVCRA; 73 dph). h, Population raster plot 

of 43 projection neurons recorded early in the emergence of syllable β showing shared and 
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specific sequences. l, Raster plot of 32 neurons recorded after differentiation of β and α into 

adult syllables B and A. Scale bars: (c–g) 0.5 mV, same time scale.
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Figure 5. A neural model of sequence formation and splitting in HVC
a–d, Top: network diagrams of participating neurons (darker lines indicate stronger 

connections; magenta boxes indicate seed neurons). Bottom: raster plot of neurons showing 

shared and specific sequences. Neurons sorted by relative latency. Magenta arrows indicate 

groups of seed neurons. a, Subsong stage: activation of seed neurons produces a rapidly-

decaying burst of sequential activity. b, Protosyllable stage: rhythmic activation of seed 

neurons induces formation of a protosyllable chain. c, Alternating activation of red and blue 

seed neurons and synaptic competition drives the network to split into two chains (specific 

neurons: red and blue; shared neurons: black). d, Network after chain splitting. e, 

Distribution of model burst latencies during subsong, protosyllable stage, and chain splitting 

stage (early and late combined).
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