8 research outputs found

    An Innovative Mission Management System for Fixed-Wing UAVs

    Get PDF
    This paper presents two innovative units linked together to build the main frame of a UAV Mis- sion Management System. The first unit is a Path Planner for small UAVs able to generate optimal paths in a tridimensional environment, generat- ing flyable and safe paths with the lowest com- putational effort. The second unit is the Flight Management System based on Nonlinear Model Predictive Control, that tracks the reference path and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control system solves on-line (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that min- imizes the tracking error with respect to the ref- erence path, driving the aircraft far from sensed obstacles and towards the desired trajectory

    Robust hovering controller for uncertain multirotor micro aerial vehicles (MAVS) in gps-denied environments: IMAGE-BASED

    Get PDF
    This paper proposes an image-based robust hovering controller for multirotor micro aerial vehicles (MAVs) in GPS-denied environments. The proposed controller is robust against the effects of multiple uncertainties in angular dynamics of vehicle which contain external disturbances, nonlinear dynamics, coupling, and parametric uncertainties. Based on visual features extracted from the image, the proposed controller is capable of controlling the pose (position and orientation) of the multirotor relative to the fixed-target. The proposed controller scheme consists of two parts: a spherical image-based visual servoing (IBVS) and a robust flight controller for velocity and attitude control loops. A robust compensator based on a second order robust filter is utilized in the robust flight control design to improve the robustness of the multirotor when subject to multiple uncertainties. Compared to other methods, the proposed method is robust against multiple uncertainties and does not need to keep the features in the field of view. The simulation results prove the effectiveness and robustness of the proposed controller

    NMPC and genetic algorithm based approach for trajectory tracking and collision avoidance of UAVs

    Get PDF
    Research on unmanned aircraft is improving constantly the autonomous flight capabilities of these vehicles in order to provide performance needed to employ them in even more complex tasks. UAV Path Planning (PP) system plans the best path to per- form the mission and then it uploads this path on the Flight Management System (FMS) providing reference to the aircraft navigation. Tracking the path is the way to link kine- matic references related to the desired aircraft positions with its dynamic behaviours, to generate the right command sequence. This paper presents a Nonlinear Model Predictive Control (NMPC) system that tracks the reference path provided by PP and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control sys- tem solves on-line (i.e., at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that minimises the tracking error with respect to the reference path, driving the aircraft far from sensed obstacles and towards the desired trajectory

    Towards Practical Visual Servoing in Robotics

    Full text link

    Spherical image-based visual servo and structure estimation

    Get PDF
    This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3)

    Advanced Path Planning and Collision Avoidance Algorithms for UAVs

    Get PDF
    The thesis aims to investigate and develop innovative tools to provide autonomous flight capability to a fixed-wing unmanned aircraft. Particularly it contributes to research on path optimization, tra jectory tracking and collision avoidance with two algorithms designed respectively for path planning and navigation. The complete system generates the shortest path from start to target avoiding known obstacles represented on a map, then drives the aircraft to track the optimum path avoiding unpredicted ob jects sensed in flight. The path planning algorithm, named Kinematic A*, is developed on the basis of graph search algorithms like A* or Theta* and is meant to bridge the gap between path-search logics of these methods and aircraft kinematic constraints. On the other hand the navigation algorithm faces concurring tasks of tra jectory tracking and collision avoidance with Nonlinear Model Predictive Control. When A* is applied to path planning of unmanned aircrafts any aircraft kinematics is taken into account, then practicability of the path is not guaranteed. Kinematic A* (KA*) generates feasible paths through graph-search logics and basic vehicle characteristics. It includes a simple aircraft kinematic-model to evaluate moving cost between nodes of tridimensional graphs. Movements are constrained with minimum turning radius and maximum rate of climb. Furtermore, separation from obstacles is imposed, defining a volume around the path free from obstacles (tube-type boundaries). Navigation is safe when the tracking error does not exceed this volume. The path-tracking task aims to link kinematic information related to desired aircraft positions with dynamic behaviors to generate commands that minimize the error between reference and real tra jectory. On the other hand avoid obstacles in flight is one of the most challenging tasks for autonomous aircrafts and many elements must be taken into account in order to implement an effective collision avoidance maneuver. Second part of the thesis describes a Nonlinear Model Predictive Control (NMPC) application to cope with collision avoidance and path tracking tasks. First contribution is the development of a navigation system able to match concurring problems: track the optimal path provided with KA* and avoid unpredicted obstacles detected with sensors. Second Contribution is the Sense & Avoid (S&A) technique exploiting spherical camera and visual servoing control logics

    Contributions to shared control and coordination of single and multiple robots

    Get PDF
    L’ensemble des travaux présentés dans cette habilitation traite de l'interface entre un d'un opérateur humain avec un ou plusieurs robots semi-autonomes aussi connu comme le problème du « contrôle partagé ».Le premier chapitre traite de la possibilité de fournir des repères visuels / vestibulaires à un opérateur humain pour la commande à distance de robots mobiles.Le second chapitre aborde le problème, plus classique, de la mise à disposition à l’opérateur d’indices visuels ou de retour haptique pour la commande d’un ou plusieurs robots mobiles (en particulier pour les drones quadri-rotors).Le troisième chapitre se concentre sur certains des défis algorithmiques rencontrés lors de l'élaboration de techniques de coordination multi-robots.Le quatrième chapitre introduit une nouvelle conception mécanique pour un drone quadrirotor sur-actionné avec pour objectif de pouvoir, à terme, avoir 6 degrés de liberté sur une plateforme quadrirotor classique (mais sous-actionné).Enfin, le cinquième chapitre présente une cadre général pour la vision active permettant, en optimisant les mouvements de la caméra, l’optimisation en ligne des performances (en terme de vitesse de convergence et de précision finale) de processus d’estimation « basés vision »

    Spherical image-based visual servo and structure estimation

    No full text
    Abstract-This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3)
    corecore