140 research outputs found

    Semi-supervised model-based clustering with controlled clusters leakage

    Full text link
    In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clustering. Our method can be implemented as a module in practical expert systems to detect clusters, which combine expert knowledge with true distribution of data. Moreover, it can be used for improving the results of less flexible clustering techniques, such as projection pursuit clustering. The paper presents extensive theoretical analysis of the model and fast algorithm for its efficient optimization. Experimental results show that C3L finds high quality clustering model, which can be applied in discovering meaningful groups in partially classified data

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    Entropie‐dominierte Selbstorganisationsprozesse birnenförmiger Teilchensysteme

    Get PDF
    The ambition to recreate highly complex and functional nanostructures found in living organisms marks one of the pillars of today‘s research in bio- and soft matter physics. Here, self-assembly has evolved into a prominent strategy in nanostructure formation and has proven to be a useful tool for many complex structures. However, it is still a challenge to design and realise particle properties such that they self-organise into a desired target configuration. One of the key design parameters is the shape of the constituent particles. This thesis focuses in particular on the shape sensitivity of liquid crystal phases by addressing the entropically driven colloidal self-assembly of tapered ellipsoids, reminiscent of „pear-shaped“ particles. Therefore, we analyse the formation of the gyroid and of the accompanying bilayer architecture, reported earlier in the so-called pear hard Gaussian overlap (PHGO) approximation, by applying various geometrical tools like Set-Voronoi tessellation and clustering algorithms. Using computational simulations, we also indicate a method to stabilise other bicontinuous structures like the diamond phase. Moreover, we investigate both computationally and theoretically(density functional theory) the influence of minor variations in shape on different pearshaped particle systems, including the stability of the PHGO gyroid phase. We show that the formation of the gyroid is due to small non-additive properties of the PHGO potential. This phase does not form in pears with a „true“ hard pear-shaped potential. Overall our results allow for a better general understanding of necessity and sufficiency of particle shape in regards to colloidal self-assembly processes. Furthermore, the pear-shaped particle system sheds light on a unique collective mechanism to generate bicontinuous phases. It suggests a new alternative pathway which might help us to solve still unknown characteristics and properties of naturally occurring gyroid-like nano- and microstructures.Ein wichtiger Bestandteil der heutigen Forschung in Bio- und Soft Matter Physik besteht daraus, Technologien zu entwickeln, um hoch komplexe und funktionelle Strukturen, die uns aus der Natur bekannt sind, nachzubilden. Hinsichtlich dessen ist vor allem die Methode der Selbstorganisation von Mikro- und Nanoteilchen hervorzuheben, durch die eine Vielzahl verschiedener Strukturen erzeugt werden konnten. Jedoch stehen wir bei diesem Verfahren noch immer vor der Herausforderung, Teilchen mit bestimmten Eigenschaften zu entwerfen, welche die spontane Anordnung der Teilchen in eine gewünschte Struktur bewirken. Einer der wichtigsten Designparameter ist dabei die Form der Bausteinteilchen. In dieser Dissertation konzentrieren wir uns besonders auf die Anfälligkeit von Flüssigkristallphasen bezüglich kleiner Änderungen der Teilchenform und nutzen dabei das Beispiel der Selbstorganisation von Entropie-dominierter Kolloide, die dem Umriss nach verjüngten Ellipsoiden oder "Birnen" ähneln. Mit Hilfe von geometrischen Werkzeugen wie z.B. Set-Voronoi Tessellation oder Cluster-Algorithmen analysieren wir insbesondere die Entstehung der Gyroidphase und der dazugehörigen Bilagenformation, welche bereits in Systemen von harten Birnen, die durch das pear hard Gaussian overlap (PHGO) Potential angenähert werden, entdeckt wurden. Des Weiteren zeigen wir durch Computersimulationen eine Strategie auf, um andere bikontinuierliche Strukturen, wie die Diamentenphase, zu stabilisieren. Schlussendlich betrachten wir sowohl rechnerisch (durch Simulationen) als auch theoretisch (durch Dichtefunktionaltheorie) die Auswirkungen kleiner Abweichungen der Teilchenform auf das Verhalten des kolloiden, birnenförmigen Teilchensystems, inklusive der Stabilität der PHGO Gyroidphase. Wir zeigen, dass die Entstehung des Gyroids auf kleinen nicht-additiven Eigenschaften des PHGO Birnenmodells beruhen. In ''echten'' harten Teilchensystemen entwickelt sich diese Struktur nicht. Insgesamt ermöglichen unsere Ergebnisse einen besseren Einblick auf das Konzept von notwendiger und hinreichender Teilchenform in Selbstorganistationsprozessen. Die birnenförmigen Teilchensysteme geben außerdem Aufschluss über einen ungewöhnlichen, kollektiven Mechanismus, um bikontinuierliche Phasen zu erzeugen. Dies deutet auf einen neuen, alternativen Konstruktionsweg hin, der uns möglicherweise hilft, noch unbekannte Eigenschaften natürlich vorkommender, gyroidähnlicher Nano- und Mikrostrukturen zu erklären

    Entropically driven self-assembly of pear-shaped nanoparticles

    Get PDF
    This thesis addresses the entropically driven colloidal self-assembly of pear-shaped particle ensembles, including the formation of nanostructures based on triply periodic minimal surfaces, in particular of the Ia3d gyroid. One of the key results is that the formation of the Ia3d gyroid, re-ported earlier in the so-called pear hard Gaussian overlap (PHGO) approximation and confirmed here, is due to a slight non-additivity of that potential; this phase does not form in pears with true hard-core potential. First, we computationally study the PHGO system and present the phase diagram of pears with an aspect ratio of 3 in terms of global density and particle shape (degree of taper), containing gyroid, isotropic, nematic and smectic phases. We confirm that it is adequate to interpret the gyroid as a warped smectic bilayer phase. The collective behaviour to arrange into interdigitated sheets with negative Gauss curvature, from which the gyroid results, is investigated through correlations of (Set-)Voronoi cells and local curvature. This geometric arrangement within the bilayers suggests a fundamentally different stabilisation mechanism of the pear gyroid phase compared to those found in both lipid-water and di-block copolymer systems forming the Ia3d gyroid. The PHGO model is only an approximation for hard-core interactions, and we additionally investigate, by much slower simulations, pear-assemblies with true hard-core interactions (HPR). We find that HPR phase diagram only contains isotropic and nematic phases, but neither gyroid nor smectic phases. To understand this shape sensitivity more profoundly, the depletion interactions of both models are studied in two pear-shaped colloids dissolved in a hard sphere solvent. The HPR particles act as one would expect from a geometric analysis of the excluded-volume minimisation, whereas the PHGO particles show deviations from this expectation. These differences are attributed to the unusual angle dependency of the (non-additive) contact function and, more so, to small overlaps induced by the approximation. For the PHGO model, we further demonstrate that the addition of a small concentration of hard spheres ("solvent") drives the system towards a Pn3m diamond phase. This result is explained by the greater spatial heterogeneity of the diamond geometry compared to the gyroid where additional material is needed to relieve packing frustration. In contrast to copolymer systems, however, the solvent mostly aggregates near the diamond minimal surface, driven by the non-additivity of the PHGO pears. At high solvent concentrations, the mixture phase separates into “inverse” micelle-like structures with the blunt ends at the micellar centres and thin ends pointing out-wards. The micelles themselves spontaneously cluster, indicative of a hierarchical self-assembly process for bicontinuous structures. Finally, we develop a density functional for hard solids of revolution (including pears) within the framework of fundamental measure theory. It is applied to low-density ensembles of pear-shaped particles, where we analyse their response near a hard substrate. A complex orientational ordering close to the wall is predicted, which is directly linked to the particle shape and gives insight into adsorption processes of asymmetric particles. This predicted behaviour and the differences between the PHGO and HPR model are confirmed by MC simulations

    Constrained clustering with a complex cluster structure

    Get PDF
    In this contribution we present a novel constrained clustering method, Constrained clustering with a complex cluster structure (C4s), which incorporates equivalence constraints, both positive and negative, as the background information. C4s is capable of discovering groups of arbitrary structure, e.g. with multi-modal distribution, since at the initial stage the equivalence classes of elements generated by the positive constraints are split into smaller parts. This provides a detailed description of elements, which are in positive equivalence relation. In order to enable an automatic detection of the number of groups, the cross-entropy clustering is applied for each partitioning process. Experiments show that the proposed method achieves significantly better results than previous constrained clustering approaches. The advantage of our algorithm increases when we are focusing on finding partitions with complex structure of clusters

    Structural Analysis Algorithms for Nanomaterials

    Get PDF

    The role of local structure in dynamical arrest

    Full text link
    Amorphous solids, or glasses, are distinguished from crystalline solids by their lack of long-range structural order. At the level of two-body structural correlations, glassformers show no qualitative change upon vitrifying from a supercooled liquid. Nonetheless the dynamical properties of a glass are so much slower that it appears to take on the properties of a solid. While many theories of the glass transition focus on dynamical quantities, a solid's resistance to flow is often viewed as a consequence of its structure. Here we address the viewpoint that this remains the case for a glass. Recent developments using higher-order measures show a clear emergence of structure upon dynamical arrest in a variety of glass formers and offer the tantalising hope of a structural mechanism for arrest. However a rigorous fundamental identification of such a causal link between structure and arrest remains elusive. We undertake a critical survey of this work in experiments, computer simulation and theory and discuss what might strengthen the link between structure and dynamical arrest. We move on to highlight the relationship between crystallisation and glass-forming ability made possible by this deeper understanding of the structure of the liquid state, and emphasize the potential to design materials with optimal glassforming and crystallisation ability, for applications such as phase-change memory. We then consider aspects of the phenomenology of glassy systems where structural measures have yet to make a large impact, such as polyamorphism (the existence of multiple liquid states), aging (the time-evolution of non-equilibrium materials below their glass transition) and the response of glassy materials to external fields such as shear.Comment: 70 page

    Neutrinos and voids in modern cosmology

    Get PDF
    This thesis deals with the study of the large scale structure in the nonlinear regime. In particular, it focuses on two main topics: the impact of massive neutrinos on the cosmic web and the modeling of void profiles and void bias. Neutrinos are known to be massive particles and thus to participate to the matter content of the Universe and to its evolution. In this era of precision cosmology, the analysis of observational datasets must account for neutrinos, both because cosmology can put strong constraints on the sum of their masses, and because ignoring them can bias the estimation of other cosmological parameters. Having this in mind, we provide a theoretical model to describe the nonlinear matter power spectrum in massive neutrino cosmologies. This model is obtained by generalizing the already existing halo model, to account for the presence of massive neutrinos. Then, we also discuss the clustering of galaxies in the same framework and provide a comparison with N-body simulations. A promising environment where to study neutrinos is represented by cosmic voids. We perform a numerical analysis of statistical properties of voids, identified both in \u39bCDM and massive neutrino cosmologies. The aim of this project is to understand how neutrinos change the void properties and which of them are more sensitive to their presence. This is the starting point for thinking about constraining neutrino masses using cosmic voids. Voids are very interesting objects, that have been studied much less than halos and clusters. We present here a model for describing the void density profile. In particular, we present different models describing the abundance and spatial distribution of both halos and voids in the Lagrangian field, and explain how they can be applied to compute density profiles. Then, we evolve these Lagrangian profiles to the Eulerian space, where actual measurements are performed. We discuss the evolution described by the spherical model and the Zel\u2019dovich approximations. Since the density profile around tracers is the cross-correlation between the tracers and the matter field, this quantity is sensitive to the bias of tracers with respect to the matter field. We discuss the void linear bias in Lagrangian and Eulerian space, and how it differs from the linear bias of halos
    corecore