249 research outputs found

    Operation and Utilisation of the High Flux Reactor: Annual Report 2013

    Get PDF
    The High Flux Reactor (HFR) at Petten is managed by the Institute for Energy and Transport (IET) of the European Commission's Joint Research Centre (JRC) and operated by the Nuclear Research and consultancy Group (NRG) which is also the licence holder and responsible for its commercial activities. The High Flux Reactor (HFR) operates at 45 MW and is of the tank-in-pool type, light water cooled and moderated. It is one of the most powerful multi-purpose materials testing reactors in the world and one of the world's leaders in target irradiation for the production of medical radioisotopes.JRC.F.4-Innovative Technologies for Nuclear Reactor Safet

    Operation and Utilisation of the High Flux Reactor: Annual Report 2014

    Get PDF
    The High Flux Reactor (HFR) at Petten is managed by the Institute for Energy and Transport (IET) of the European Commission's Joint Research Centre (JRC) and operated by the Nuclear Research and consultancy Group (NRG) which is also the licence holder and responsible for its commercial activities. The High Flux Reactor (HFR) operates at 45 MW and is of the tank-in-pool type, light water cooled and moderated. It is one of the most powerful multi-purpose materials testing reactors in the world and one of the world's leaders in target irradiation for the production of medical radioisotopes.JRC.F.4 - Innovative Technologies for Nuclear Reactor Safet

    Operation and Utilisation of the High Flux Reactor - Annual Report 2012

    Get PDF
    The High Flux Reactor (HFR) at Petten is managed by the Institute for Energy and Transport (IET) of the European Commission's Joint Research Centre (JRC) and operated by the Nuclear Research and consultancy Group (NRG) which is also the licence holder and responsible for its commercial activities. The High Flux Reactor (HFR) operates at 45 MW and is of the tank-in-pool type, light water cooled and moderated. It is one of the most powerful multi-purpose materials testing reactors in the world and one of the world's leaders in target irradiation for the production of medical radioisotopes.JRC.F.4-Nuclear Reactor Integrity Assessment and Knowledge Managemen

    Quantum mechanics on noncommutative plane and sphere from constrained systems

    Full text link
    It is shown that quantum mechanics on noncommutative (NC) spaces can be obtained by canonical quantization of some underlying constrained systems. Noncommutative geometry arises after taking into account the second class constraints presented in the models. It leads, in particular, to a possibility of quantization in terms of the initial NC variables. For a two-dimensional plane we present two Lagrangian actions, one of which admits addition of an arbitrary potential. Quantization leads to quantum mechanics with ordinary product replaced by the Moyal product. For a three-dimensional case we present Lagrangian formulations for a particle on NC sphere as well as for a particle on commutative sphere with a magnetic monopole at the center, the latter is shown to be equivalent to the model of usual rotor. There are several natural possibilities to choose physical variables, which lead either to commutative or to NC brackets for space variables. In the NC representation all information on the space variable dynamics is encoded in the NC geometry. Potential of special form can be added, which leads to an example of quantum mechanics on the NC sphere.Comment: 18 pages, LaTex file, Extended versio

    Polarization, sign sequences and isotropic vector systems

    Get PDF
    We determine the order of magnitude of the nnth p\ell_p-polarization constant of the unit sphere Sd1S^{d-1} for every n,d1n,d \geq 1 and p>0p>0. For p=2p=2, we prove that extremizers are isotropic vector sets, whereas for p=1p=1, we show that the polarization problem is equivalent to that of maximizing the norm of signed vector sums. Finally, for d=2d=2, we discuss the optimality of equally spaced configurations on the unit circle.Comment: 13 page

    Thermal, Fluid and Neutronic Analysis of an LEU Nuclear Thermal Propulsion Core

    Get PDF
    This paper describes the use of detailed multidisciplinary fluid/thermal/ structural/neutronic simulations to predict performance of the nuclear fuel elements of a Nuclear Thermal Propulsion rocket reactor. To achieve maximum performance, a rocket reactor's fuel must operate near thermal hydraulic, structural and neutronic limits where multidisciplinary interactions are important. Yet physical testing is expensive, time- consuming and risky. Lower-fidelity correlations (heat transfer) and simulations have always existed for design, and one role of detailed numerical analysis is to confirm correlation validity and accuracy. For complex and subtle issues, detailed numerical simulations may prove their value. The paper gives examples of both of these situations. Limitations of the methods and potential extensions will be explored

    Annual Report 2011 Operation and Utilisation of the High Flux Reactor

    Get PDF
    The High Flux Reactor (HFR) at Petten is managed by the Institute for Energy and Transport (IET) of the EC - DG JRC and operated by NRG who are also licence holder and responsible for commercial activities. The HFR operates at 45 MW and is of the tank-in-pool type, light water cooled and moderated. It is one of the most powerful multi-purpose materials testing reactors in the world and one of the world leaders in target irradiation for the production of medical radioisotopes.JRC.F-Institute for Energy and Transport (Petten
    corecore