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This paper describes the use of detailed multidisciplinary fluid/thermal/ 

structural/neutronic simulations to predict performance of the nuclear fuel elements of a 

LEU Nuclear Thermal Propulsion rocket reactor. To achieve maximum performance, a 

rocket reactor’s fuel must operate near thermal hydraulic, structural and neutronic limits 

where multidisciplinary interactions are important. Yet physical testing is expensive, time-

consuming and risky.  Lower-fidelity correlations (heat transfer) and simulations have 

always existed for design, and one role of detailed numerical analysis is to confirm 

correlation validity and accuracy.  For complex and subtle issues, detailed numerical 

simulations may prove their value.  The paper gives examples of both of these roles. 

Limitations of the methods and potential extensions will be explored.   

I. Nomenclature 

CFD = computational fluid dynamics 

Cp = specific heat, J/kg-K 

D = coolant channel diameter, m 

E = modulus of elasticity, Pa 

fturb = turbulent Fanning friction factor, dimensionless 

FE = fuel element 

g = acceleration due to gravity, m/s
2
  

Isp = specific impulse, s 

ITT, OTT = inner tie tube, outer tie tube and associated coolant passages of moderator element 

k = coefficient of thermal conductivity, W/m-K 

LEU = low enriched uranium 

MCNP = Monte Carlo n-particle transport, a neutronics simulation code 

ME = moderator element or tie tube 

MOM = method of mixtures, mixture properties by vol% of component materials 

MW = molecular weight, g/mol 

NTP = nuclear thermal propulsion 

p = fuel element channel pitch to diameter ratio 

PPF = power peaking factor, ratio of local power density, Q, to fuel element average 

Pr = Prandtl number 

q = heat flux, W/m
2
  

Q = volumetric heat deposition rate, equivalently power density, W/m
3
  

𝑟0, r = borehole radius of fuel, radial distance to coolant channel center, m 

Re = Reynolds number based on coolant channel diameter 

Ru = universal gas constant, J/mol-K 

s = half coolant channel pitch, m 

SNRE = small nuclear rocket engine 

T = temperature, K 

TD = theoretical density 

y
+
 = non-dimensional normal spacing of the grid at the wall in a boundary layer  

z = axial distance from channel inlet, m 

, CTE = coefficient of thermal expansion (secant method), m/m-K 
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 = ratio of specific heats 

 = Poisson’s ratio 

 = density, kg/m
3
  

𝜌𝑈2̅̅ ̅̅ ̅ = momentum flux, average over channel cross-section, Pa 

τw = shear stress at the wall, Pa 

Subscripts: 

b = bulk fluid, refers to a channel average at an axial station 

out = outlet 

t = thermal 

w = wall, fluid-solid interface 

II. Introduction 

NASA’s Game Changing Development (GCD) program has undertaken a conceptual design study of a Low 

Enriched Uranium (LEU) Nuclear Thermal Propulsion (NTP) rocket reactor.  The reactor design lead is BWXT 

Technologies. Although NTP engines have been developed and tested in the past, this LEU engine promises a 

significantly reduced risk of nuclear proliferation, due to the low enrichment of its uranium fuel, namely less than 

20% versus greater than 90 atom% U235 for its predecessors.  With 20% of the fissionable target atoms, an LEU 

design is challenging. Neutrons must be conserved by excluding neutron absorbing materials, limiting leakage, 

sizing the reactor, and using relatively large volumes of neutron moderating material.  Similarly, the CANDU 

reactor also trades uranium enrichment (natural uranium fuel) for low neutron absorption materials, reactor size and 

large moderator volume (heavy water).  

 

Nuclear thermal rockets have the promise of high levels of thrust while efficiently using propellant. Uniquely for 

a rocket, nuclear heat is deposited in the solid fuel, diffuses to nearby coolant channels containing flowing 

propellant; fuel is cooled, propellant is heated. In contrast, chemical rocket engines release heat directly into the gas 

phase; incidentally, walls are carefully cooled. Electric propulsion accelerates ions in an electric field—not 

thermally, but, their prodigious efficiency, Isp, does not include high thrust. 

The propulsion advantage of NTP comes from the molecular weight (MW) of the hydrogen propellant; Eq. (1) 

gives specific impulse, Isp.  Hydrogen has MW = 2 g/mol, while a chemical rocket’s water vapor propellant—from 

burning hydrogen and oxygen—has MW = 18 g/mol.  In principle, specific impulse, Isp, is three times higher; 

practically, fuel melting temperature limits Isp to twice that of the best chemical rockets, 800-900 s.  

 𝐼𝑠𝑝 =  
1

𝑔
√2 

𝛾 𝑅𝑢

(1−𝛾)𝑀𝑊
 𝑇𝑜𝑢𝑡  (1) 

Except for the fuel, NTP engine components (turbopumps, nozzles, control drums) have demonstrated operating 

performance in proven designs.  Hence fuel design is important here
2
. Propulsion efficiency for rocket engines 

increases with higher coolant (propellant) outflow temperature, 𝑇𝑜𝑢𝑡, in Eq. (1). For Isp = 875 s the propellant 

temperature exceeds 2500 K; while most of the fuel is cooler, the peak fuel temperature will be hotter, and the fuel 

must be chemically stable while not melting significantly.  Nuclear fuel for commercial reactors does not approach 

this operating temperature, or the power density required for a compact rocket.  Consequently, thermal 

considerations require short distances (~1 mm) between nuclear heat deposition and cooling propellant. Instead of a 

terrestrial reactor’s solid fuel pellets (~1 cm), fuel elements need coolant channels (1 mm scale) to achieve high 

power density, non-melting fuel, and high rocket Isp. An important part of NTP fuel element design is dealing with 

the heat physics in the ~350K between the peak propellant and fuel melting temperatures. 

 

Nuclear thermal rockets were first conceived in 1946 [1]. During the Space Race, the Rover and NERVA 

programs were initiated in 1955 and 1961 to develop NTP technology. In these programs the KIWI, NRX, 

PHOEBUS, PEWEE, and NF reactors were designed, built, and tested; excellent histories of graphite reactor 

development are given in References [2] and [3]. 

In parallel efforts during the 1960’s, fast spectrum reactors with cermet fuel elements were developed to lower 

technical readiness levels (TRL) than graphite fueled reactors. Considerable basic materials research was done at 

                                                           
2
 Also, demonstration is required that cryocoolers can control boil off of stored liquid hydrogen during long duration 

spaceflight. Also, tank permeability to hydrogen. 



3 

 

 

Figure 1: Reactor section views of one Design Analysis Cycle 

(DAC) of GCD LEU NTP rocket reactor.  Radial section (left) and 

axial-radial section (right).  The inset at left corresponds to Figure 

2. 

NASA and DOE laboratories to characterize cermet fuel behavior [4], particularly at high temperatures. Argonne 

National Laboratory designed, but did not test, the ANL200 [5] and ANL2000 engines—200 MWt  and 2000 MWt  

fast spectrum propulsion reactors. 

By the early 1970’s, chemical rockets had become operationally successful, and the initial goals of the Space 

Race had been achieved.  With changing priorities, the programs were cancelled in early 1973. Yet, interest in NTP 

continues since it may be an enabling technology for crewed inter-planetary missions, among others. 

III. Fuel and Reactor Models and Simulation Methods 

This thermal, hydraulic, neutronic and structural analysis involves a detailed multidisciplinary simulation of the 

fuel elements and tie tubes within an NTP rocket reactor core.  There are three principle simulation components: 

reactor neutronic analysis, fluid/thermal simulation of adjacent fuel and moderator elements, and their structural 

analysis.  Each model is outlined in the following sections, with explanations of geometry, grid generation, and 

required material properties.  Further, this high fidelity analysis is compared with preliminary design methods. 

These multidisciplinary analysis methods have been used to simulate other NTP engines: the graphite composite 

(U(Zr,C)-graphite) SNRE [6] from the NERVA program, and the cermet (UO2/tungsten) ANL200 [7] engine. 

These multidisciplinary simulations are independent of the engineering analysis within the GCD program—a 

valuable confirmation of predictions.  

A. Nuclear Rocket Reactor and Neutronic Modeling 

The simulated reactor is one of the design iterations in the conceptual design of a LEU NTP engine.  Figure 1 

shows sectional views of the reactor. The neutronic analysis uses the Monte Carlo N-Particle (MCNP) [8] [9] 

transport code. 

The fluid/thermal analysis of the 

reactor requires, as input, the heat 

deposition distribution within fuel 

components. This heat deposition comes 

from MCNP neutronics simulations. This 

analysis involves resolving the detailed 

geometry of the fuel elements and tie 

tubes within the entire reactor core and 

modeling the interaction of neutrons with 

component materials in a Monte Carlo 

simulation.  In particular, the simulation 

tracks source neutrons, their collisions, 

fissions, and fission products, using the 

probability of these events.  

Reactor material properties (chemical 

composition, isotopic fraction, density, 

theoretical density) are important for 

these neutronic predictions. They have 

been carefully developed, and are 

outlined in Table 1.  Further, cross 

section data for MCNP is needed [10].  

In reality, power density varies axially and radially within reactor component; the most important variations, by 

far, are in the fuel. These include axial variations, local radial variations at an axial station in the fuel element, and 

variations over all fuel elements in the simulated core. Note carefully that calculated heat deposition, with good 

statistical validity, is an average—and a high local concentration of power density may be lost to averaging and 

statistical validity.  Note that fuel element edge heating is a variation to include in simulations. 
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Figure 2: Fuel and moderator element geometry incorporated into a grid. MCNP radial section (left) 

corresponds to the inset in Figure 1. The inset triangle, at left, is a symmetric sector of the core developed into 

the grid (center, right) which is full length. 

 

 

Figure 3: y
+
 values measured from the simulation axially along 

coolant channel walls (above) and along the OTT and ITT walls. 

B. Fluid/Thermal Geometry, Grid Generation 

Although these simulations are described as a multidisciplinary reactor core simulation, the computational cost 

of the fluid simulation limits this analysis to only part of a fuel element and tie tube. In particular, symmetry is used 

to reduce the problem to a 30 degree sector fuel element (full-length axial) and a 60 degree sector of an adjacent 

moderator element (full-length axial), as shown in Figure 2.  This symmetry corresponds to a pattern of fuel 

elements surrounded by moderator elements, Figure 2, which does not exactly match the complex FE/ME placement 

scheme of some designs. 

The grid for a symmetric sector is a composite (non-overlapping) structured grid containing 9.95×10
5
 nodes and 

1.06×10
6
 elements, as shown in Figure 2 center and right. Of these elements, the vast majority are fluid elements. 

The radial resolution of the solid elements 

is O(2.5×10
-4

 m). Axially, the grid is full 

length, and the grid resolution is 

uniformly 4.52 mm.  For ease of grid 

generation, the complex 2D radial grid 

(Figure 2, center) is generated with 4 

small, simple, ‘jigsaw puzzle’ grid pieces 

plus moderator element grids; then this 

radial grid is axially extruded into a full 

length grid (Figure 2, right). To reduce 

numerical error in high gradient regions, 

the 2D radial grids are designed to keep 

grid singularities away from the boundary 

layer, channel coating, and the thermal 

gradients in the channel walls. The 

coolant channel coating thickness, the gap 

spacing, and the high fuel element length-

to-width ratio all create high aspect ratio 

elements.  

Predicting heat transfer from solid fuel 

to coolant channel propellant is critical to 

the design.  To capture heat transfer, the 

fluid simulation solves the thermal and 

momentum boundary layers, which the 

grid must resolve.  Heat transfer modeling 
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Figure 4: Temperature dependent thermal conductivity functions used in 

simulations. 

best practices are surface normal grid spacing at the wall of y
+
 ≅ 1 (physically 1.27 m), and normal grid spacing 

increases by a factor of 1.1 away from the wall.  As confirmation, Figure 3 shows the measured y
+
 values from the 

simulation.  These results were achieved with more than 16 cells across the coolant channel boundary layers, and 38 

cells across the OTT passage. 

C. Material Properties  

Isotropic, temperature dependent material properties are used for each of the FE/ME materials. Figure 4 shows 

temperature dependent thermal conductivity, k, and Figure 5 shows secant coefficient of thermal expansion, α. Table 

1 gives the data sources for coefficients of thermal conductivity, k, thermal expansion, α, modulus of elasticity, E, 

Poisson’s ratio, μ, and specific heat, CP.  

Where a stabilizer is used in a 

material, material properties may 

revert to the unstabilized material, 

for example, (CeO2) 8 mol% ZrO2 

may use the properties of 

Zirconia, ZrO2.  

1. Sintered, Partially 

Consolidated, and Particle 

Materials 

Fabrication of fuel elements 

with fine coolant channels is a 

challenge, and many approaches 

have been taken.  In the current 

simulations, materials are 

assumed to consolidated (not 

particle), with high theoretical 

density.  The available literature 

suggests that particle fuel has 

relatively low thermal 

conductivity compared with fully 

consolidated material.  2-10% is 

supported by the literature [11] 

[12] [13] [14]. 

 

 

Table 1: Sources for material properties used in simulations.  Although there are many sources, these 

are the best found. 

Material 

Thermal 

Conduct, 

k 

Thermal 

Expans, 

 

Elastic 

Modulus, 

E 

Poisson 

Ratio, 

 

Specific 

Heat, 

CP 

Melting 

Point (K) 

Density, 

 

UN [31] [33] [32] [33] [18] [18] - 3120 14.3 
UO2  [40] [36] [40] [36] [44] [44] - 3140 11.0 
Mo 30%m W [33] MOM [33] [19] [19] -  11.9 
W [33] [33] [19] [19] - 3695 19.3 
Mo [33] [33] [38] [41] [43] [38] [41] - 2896 10.2 
YSZ [42] [42] [42] [42] - ~2970 6.0 
Zircaloy-4 [34] [37] [34] [37] [37] [41] [37] [41] - 2123 6.58 
ZrH1.89 [33] [35] [33] [35] [35] [35] - - 5.62 
H2, Para [15] [15] - - [15] - [15] 
BeO [39] [33] [39] [33] [39] [39] - - 2.86 

Reactor / Nuclear Only 
Be  1560 1.85 
B4C   2.52 
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Figure 5: Temperature dependent thermal expansion (secant method) used in 

simulations.  These data are stress free at 300 K; high fabrication temperatures 

which leave residual stresses during cooling may warrant a different form. 

2. Temperature and Pressure Dependent Hydrogen Properties 

The thermodynamic and transport properties of hydrogen are temperature and pressure dependent.  Parahydrogen 

property data are from an NTP program standard [15]. These data are a combination of REFPROP [16] for 

cryogenic properties, matched to high temperature data.  Although ANSYS Multiphysics [17] allows temperature 

dependent properties, it 

does not adequately 

accommodate pressure 

dependence.  Hydrogen 

properties are specified 

at a representative 

pressure. 

3. Fuel Mechanical 

Deformation, Plasticity 

and Creep 

Although not part of 

this work, important 

references for fuel 

mechanical deformation, 

plasticity and creep are: 

[18] [19] [20] [21] 

4. Fuel High 

Temperature Stability 

Although not part of 

these simulations, 

important references for 

high temperature fuel 

stability are: [22] [23] 

[24] [25]. 

D. Fluid and Thermal Models 

The steady, incompressible flow through the fuel element coolant tubes and the support element passages is 

simulated with FLOTRAN which solves the three-dimensional Reynolds Averaged Navier-Stokes (RANS) 

equations. Turbulence effects are simulated with the κ- turbulence closure model. 

A common outlet pressure is specified for all coolant channels. The inflow boundary condition for each coolant 

channel is a constant fluid temperature and axial velocity. The corresponding mass flow is the reactor average mass 

flow for each channel. All solid walls have a no-slip boundary condition, and the geometrically symmetric 

boundaries have symmetric fluid boundary conditions. An improvement would be a common pressure drop across 

all channels.  No orificing is included in these simulations, although it was part of the SNRE design [26]. 

The thermal simulation of the solid material solves the heat equation.  Due to symmetry, the external boundaries 

are treated as adiabatic surfaces. 

E. 3D Multidisciplinary Analysis Methodology  

The baseline 3D multidisciplinary analysis is ANSYS [17] Multiphysics which combines FLOTRAN for the 

fluid analysis, ANSYS thermal for the thermal analysis, and ANSYS structural for the stress analysis. First an 

MCNP analysis provides an axial nuclear heat deposition distribution (volumetric) for each material in the 

fluid/thermal analysis. Second, the fluid and thermal analyses are performed so that both analyses are consistent—

that is, temperatures and heat fluxes match at the fluid-solid interfaces. Third, the structural analysis uses pressures 

and temperatures from the second analysis to find displacements—and where appropriate, strains and stresses. 

Currently, feedback—for example, geometry displacements modifying the FE grid—does not occur. 

F. Traditional Design Methodology  

The contrast between the current 3D multidisciplinary methods and traditional methods is important. Fifty years 

ago, in the NERVA/Rover program, NTP design analysis techniques focused on correlations, formulae and early 

particle transport codes. These traditional methods are much faster and simpler; a correlation can be implemented in 

minutes and checked in hours, but specialized experiments must validate these formulae. In contrast, developing a 

CFD simulation (generating grids, formulating material properties, checking results) is measured in weeks, if not 
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Figure 7: Overworked edge coolant channels, 

in red. The Sparrow Equation, Eq. (2), 

assumes an infinite array of coolant 

channels—not valid at the fuel element edge. 

Without orange channels, red channels have 

more fuel to cool. 

 

 

Figure 6: Graph of the Sparrow equation’s 

predictions, Eq. (2), of temperature difference, fuel 

peak to channel wall temperature. Graph uses 

conditions, Q, k, for peak fuel temperature region. 

The thermal boundary layer has an additional 

temperature jump. 

 

months, but these methods are general and can be applied widely across many engineering disciplines.  Modern 

numerical methods solve the fundamental differential equations (Navier-Stokes, heat, stress-strain, Monte Carlo 

particle transport). In particular, fluid equations and grids resolve the momentum and thermal boundary layers in 

coolant channels; fuel element edges are resolved to predict temperatures. Consequently, modern numerical methods 

can detect subtleties in a problem.   Since these two approaches are so different, comparing them is an important 

validation, and this comparison is made in Section IV-

C. 

1. Sparrow Equation for FE Peak Temperature  

The Sparrow equation, Eq. (2) [26] is an important, 

traditional solution to the heat equation for predicting 

fuel temperature.  In particular, it quickly reveals the 

sensitivity of peak fuel temperature to fuel thermal 

conductivity, k, fuel channel pitch, s, and heat 

deposition, Q, as shown in Figure 6. It does not include 

the temperature jump through the thermal boundary 

layer.  For a plausible difference (< 150K) between the 

peak fuel and wall temperatures, the channel pitch to 

diameter ratio must be p = 2 or less. However, Eq. (2) 

works for an infinite array of uniformly spaced coolant 

channels, and will not predict temperatures—and 

temperature peaks—at the edges of a fuel element.  In 

Figure 7, it is clear that without the orange virtual 

channels cooling the fuel, the red channels have more 

fuel to cool—they are overworked.  In the 

NERVA/Rover program, this deficiency was avoided 

and FE edge temperatures were predicted by solving the 

heat equation on 2D sections [27, pp. 155, Vol 2].   

 𝑇 − 𝑇𝑤𝑎𝑙𝑙  =  
𝑄

𝑘
𝑠2 [

√3

𝜋
ln (

𝑟

𝑟0
) −  

1

4
[(

𝑟

𝑠
)

2

− (
𝑟0

𝑠
)

2

] +  𝑓𝑡𝑛(𝑟, 𝑟0, 𝑠, 𝜃)]         (2) 

In Eq. (2), ftn() refers to additional Fourier series terms that match zero heat flux on symmetric surfaces. 

2. Coolant Channel Wall Heat Transfer  

Another important design prediction is heat transfer at coolant channel walls.  Traditional heat transfer 

correlations remain a fast and effective method of predicting 

the heat transfer at coolant channel walls.  Equation 3 gives 

the SNRE standard formula [27, pp. 138, Vol 2], and there are 

a number of similar correlations [28] which all fit 

experimental data [29] to non-dimensional parameters. 

𝑞 = 0.023 
𝑘𝑏

𝐷𝑏
 𝑅𝑒𝑏

0.8 𝑃𝑟𝑏
0.4  (

𝑇𝑤

𝑇𝑏
)

[−0.57− 
1.59

𝑥
𝐷𝑏

⁄
]

  (3) 

Coolant channel pressure drop is traditionally predicted 

with Eq. (4); here the first RHS term, Bernoulli term, is 

negligible. The Fanning friction factor, 𝑓𝑡𝑢𝑟𝑏, is given by a 

correlation Eq. (5), and was fitted [30] so that 90% of 

experimental data fell within ±10%. 

∆𝑝 =  −
1

2
∆𝜌𝑈2̅̅ ̅̅ ̅ −  𝑓𝑡𝑢𝑟𝑏 (

1

2
𝜌𝑈2̅̅ ̅̅ ̅)

2 ∆𝑧

𝐷𝑏
    (4) 

 𝑓𝑡𝑢𝑟𝑏 =  
𝜏𝑤

1

2
𝜌𝑈2̅̅ ̅̅ ̅̅ =  (0.0014 + 

0.125

𝑅𝑒0.32) (
𝑇𝑏

𝑇𝑤
)

1/2

  (5) 
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Figure 9: Heat deposition axial profiles from MCNP analysis applied to the fluid/thermal analysis. Linear 

scale (left) and log scale (right) to show all component materials. 

 

Figure 8: Typical temperature distribution (left) and velocity distribution (right) through fuel and 

moderator element.  Average fuel element with a power peaking factor of PPF = 2 on the edge. Thermal and 

momentum boundary layer development is clear. 

 

Note that the methods described in this section, F, are distinct from the CFD and multidisciplinary methods used 

in this paper. 

IV. Results 

The principal results of these fluid / thermal / structural / neutronic simulations are nuclear heat deposition into 

component materials, coolant exit temperature (and range), maximum fuel temperature and location, temperature 

distribution through the fuel and moderator, propellant velocity, heat fluxes at coolant tube and moderator passage 

surfaces (comparison with correlations), FE to ME heat transfer, material thermal expansion and stresses, and the 

role of fuel thermal conductivity.  Figure 8 shows the temperature distribution through the FE and ME. 

A. Neutronic Analysis and Nuclear Heat Deposition 

Neutronic analysis using MCNP provides a heat deposition axial profile for each material in the FE/ME model, 

as shown in Figure 9. The axial distributions come from MCNP tallies for each material (1 cm axial resolution). 

They are an average over many FEs or MEs, some hotter and some colder than average.  No fuel grading is included 

in these MCNP simulations. The Figure 9 axial profiles are scaled to the reactor power and applied to the 

thermal/fluid simulations.  The fuel heat deposition profile is adjusted upward to include edge heating (Figure 12). 

Flow 
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Figure 11: TMESH/MCNP plot of power density in hottest 20cm 

axial of reactor.  Results are qualitative; linear color scale is a 

factor of ~5, extreme values are cutoff—to blue.   

 

 

Figure 10: TMESH/MCNP plot of power density in hottest 

axial 20cm of reactor at the reactor’s axial axis.  Results are 

qualitative; linear color scale is a factor of ~3, extreme values 

are cutoff—to blue. 

 

1. Fuel Element Edge Heating 

For a reactor material, particularly fuel, 

heat deposition varies radially. An important 

effect occurs when adjacent moderator 

elements induce a higher thermal neutron 

flux at the edges of fuel elements. Higher 

fission and heat deposition rates result near 

the adjacent fuel element edges. Figure 10 

shows these radial heat deposition variations 

qualitatively.  Peak heat deposition appears 

to occur at FE hexagonal corners.  Some FE 

sides have different heat deposition rates than 

others. Figure 11 suggests variations across 

the reactor. No fuel grading was used here, 

but the SNRE design included radial grading 

of uranium loading—a factor of three 

concentration variation [27, p. 96 Vol 2]. 

Tally averages can be deceptive. With so 

many averages, how does one find a local 

peak in nuclear heat deposition? Averages 

over many FEs or larger volumes improve 

the statistical validity of Monte Carlo 

predictions, but do not necessarily quantify 

local concentrations of nuclear heating.  

Quantitative predictions are increasingly 

difficult as tally region volumes decrease and 

become less statistically valid. 

 

Figure 12 shows the predicted power 

peaking factor, PPF, in nuclear heat 

deposition rate approaching an average 

FE element edge. This prediction is 

statistically valid, and comes from 

specifying MCNP simulation geometry as 

a hexagonal prism just inside the 

hexagonal prism defining the FE fuel 

(clad is exterior, coolant channels 

interior).  The resulting thin edge 

hexagonal shell is instrumented with a 

tally over all fuel elements.  By varying 

the size of the “hex outside a hex” and 

measuring the heat deposition in this 

shell, this estimate is made of the average 

edge heat deposition approaching a FE 

edge. 
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Figure 13: Temperature profiles measured through the fuel element at six axial stations.  Specified edge 

heating is PPF=2, as in Figure 12. 

 

 

Figure 12: Predicted fuel element power peaking factor, PPF, near an average FE edge. Predicted factor (left) 

and inclusion in the fluid/thermal model as a heat deposition source term (right). 

B. Temperature Predictions through Fuel and Moderator Elements 

The thermal/fluid simulations predict temperatures throughout the fuel and moderator elements.  Figure 13 

shows the temperatures along a path through the simulation at six axial stations.  The thermal/fluid simulations also 

give velocity profiles and heat fluxes through fuel and moderator elements. Figure 14 shows velocity profiles, and 

Figure 15 shows heat flux profiles along coolant channel walls. 

The effect of edge heating and edge coolant channels is clear in each of these figures. 

C. Heat Transfer Comparison between Correlations and CFD Simulation  

Early NTP reactors were designed with heat transfer correlations, Eq. (3) [27, pp. 138, Vol 2], and these 

correlations remain a fast and effective method of predicting the heat transfer at coolant channel walls, particularly 

when they have been as carefully developed and validated as they were in the NERVA/Rover program [28] [30]. 

  

  
 

 

 

90% 

70% 

55% 

40% 

30% 

10% 

A B C 

D 

E 

Coolant Channel 
Mean Outlet T 



11 

 

 

Figure 15: Heat flux measured at eight locations on the fuel element (FE) coolant channel walls. Locations are 

shown in the map at right.  Edge coolant channels deviate from interior channels. Exterior sides at ‘A’ absorb 

more heat than interior sides at ‘C’, ‘D’ and ‘E’. 

 

 

Figure 14: Velocity profiles measured through the fuel element at six 

axial stations.  Profiles are as in Figure 13. 

 

Yet, modern computational 

methods calculate fluid flow and 

heat transfer in dramatically 

different manners—they solve fluid 

equations in detail through the 

boundary layer. Hence, CFD 

provides an additional tool, and a 

valuable comparison. Figure 16 

shows this comparison; in particular, 

the graph shows the heat flux ratio, 

namely the ratio of correlation 

predicted heat flux to this 

simulation’s predicted heat flux.  

The orange line is a value of 1 

which would indicate exact 

agreement.  Values below one, 

suggest the correlation, Eq. (3), is 

conservative, that is, correlations 

under predict the heat transfer, 

relative to CFD. This margin makes predictions and designs more tolerant of modeling and experimental limitations. 

Figure 16 suggests a disagreement of 10% to 30% for the interior coolant channels. Best practice suggests that 

CFD is doing well to predict heat transfer within 10%. 

Figure 16 also indicates that coolant channels near the FE edge are unique.  Figure 13 suggests that FE edge 

effects are having a significant effect. In particular, heat transfer is not symmetrical between the two sides, FE edge 

and interior 

On the right hand side of Figure 16, several vertical asymptotes occur, and they are not considered significant. 

Heat transfer is greatly reduced and the two predictions reverse sign at different axial locations leading to vertical 

asymptotes in the heat flux ratio.  Figure 15 shows the reversal of heat flux on the right side in FE edge coolant 

channels.  The clear interpretation is that hot propellant in edge coolant channels at the hot end is heating the fuel. 

Note that heat transfer correlations, Eq. (3) and (4), use ‘bulk’ values—station averages—of fluid temperature, 

Tb, Reynolds number, Reb, and Prandtl number, Prb, while CFD has detailed profiles across the channel.  Further, 

correlations assume transferred heat is instantly mixed, instead of mixing gradually through the boundary layer and 

into the bulk. 
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Figure 16: Comparison between heat transfer correlations and CFD by plotting the heat flux ratio. Sample 

locations are the same as in Figure 15.  Edge coolant channels behave differently, as suggested by Figure 13.  

Vertical asymptotes occur when heat transfer reverses sign at different axial locations, as can be seen in 

Figure 15. 

 

 

Figure 17: FE to ME heat flux measured at four locations on the moderator element (ME) outer and inner 

passage walls. The map at right indicates locations. 

 

 

D. Fuel Element to Moderator Element Heat Transfer 

Moderator elements (ME) provide structural support for the reactor core, neutron moderating ZrHx (x=1.89), plus 

cooling of this moderator with cryogenic hydrogen flow through axial passages; further this heated hydrogen drives 

propellant turbopumps.  The heat flow into the ME hydrogen is important as it must be properly matched to the 

turbopumps—in all operational phases—for successful operation of these rocket reactors. Heat conducts (Figure 2, 

Figure 8, Figure 13) from the FE through multiple materials in the ME, including moderator and high performance 

insulator layers, annular support tube (tie tube), all with intervening gaps. This model assumes heat conduction 
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through uniform thickness gaps (6.35x10
-5

 m) filled with stagnant hydrogen gas—no radiative heat transfer. Figure 

17 plots the predicted heat flux at the walls of the annular hydrogen passages in the ME, and Figure 8 and Figure 13 

show the temperature distribution in the outer part of the ME. 

For this simulation, 5% of the heat deposited into the FE is transferred to the ME. In the SNRE design [27] and 

simulations [6] the comparable SNRE value was 6%. 

 

Conclusion 
 “Longest pole in the tent” is a common expression for ‘the problem holding everything up’ in a development 

project, while consuming time, money and patience.  The hope of this paper—and the entire design team’s work— 

is to simulate a design thoroughly enough, early enough to understand the physics, fabrication, and cost well enough 

to avoid issues that delay the project during full development.   
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