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ABSTRACT 
 
 

The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at 

Oak Ridge National Laboratory with the objective of conducting the research and development necessary 

to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 

1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-

burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-

type fuels. 

This report provides a review of development efforts related to the preparation of sphere-pac fuels 

and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are 

summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac 

options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are 

also outlined. 
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1.  INTRODUCTION 
 

Sphere-pac (and vi-pac) fuels, which have potential advantages as a transmutation fuel form, were 

evaluated in the United States and worldwide from ~1960 until 1990 for the purpose of plutonium-

utilization in both thermal and fast reactors.1-4  For minor-actinide-bearing fuels, the sphere-pac form is 

likely to accept the large helium-release from 241Am transmutation with less difficulty than pellet forms 

and is especially well suited to remote fabrication as a dustless fuel form that requires a minimum number 

of mechanical operations. Sphere-pac (and vi-pac) fuel is being explored as a plutonium-burning fuel by 

the European Community, the Russian Federation, and Japan.5–9  

A project, sponsored by the U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI), has 

been initiated at Oak Ridge National Laboratory (ORNL) with the objective of conducting the research 

and development necessary to evaluate sphere-pac fuel for transmutation in thermal and fast-spectrum 

reactors. This AFCI work is unique in that it targets minor actinide transmutation and explores the use of 

a resin-loading technology for the fabrication of the remote-handled minor actinide fraction. 

This report provides a review of development efforts related to the preparation of sphere-pac fuels 

and their irradiation tests.  Based on the results of these tests, comparisons with pellet-type fuels are 

summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac 

options for the AFCI are recommended.  The ORNL development activities are also outlined. 

 

2.  OVERVIEW OF SPHERE-PAC TECHNOLOGY 
 

Spherical compaction (sphere-pac) and vibratory compaction (vi-pac) are two methods for loading 

fuel pins with particle fuels.  In the case of sphere-pac, the fuel is in the form of small spheres—often in 

two or three different size fractions.  Vi-pac fuel consists of shards or debris that are produced by 

crushing and milling pellets.  Both techniques use vibration to increase the density of the fuel during 

loading.   

Peddicord et al. provide a review of the development of sphere-pac fuels up to 1986,1 while  

refs. 2–4 provide a more comprehensive summary of the methods used to produce spherical fuel particles, 

rod-loading techniques, quality assurance methods, and irradiation experience.  All of these authors agree 

that the use of sphere-pac fuels offers several advantages.  The wet-chemical production methods for 

spheres require fewer mechanical steps than does pellet production.10  Furthermore, no dust is produced.  

The fuel production and fabrication methods can be adapted to remote operations—an important 

consideration for use with minor actinide transmutation fuels.  Irradiation test data show less fuel-clad 

mechanical interaction (FCMI) as compared with pellet fuel, which results in reduced strain and 
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probability of pin failure by stress corrosion cracking.  There is also evidence of reduced fuel-clad 

chemical interaction (FCCI).  However, Peddicord et al. indicate that it is still an open question as to 

whether or not this advantage is maintained during rapid power transients.1 

Methods that have been typically used to produce spheres include water extraction gelation, external 

chemical gelation, and internal chemical gelation. Each of these methods is summarized in ref. 1.  A 

recent ORNL report11 describes the internal gelation method in detail.  To make smaller, dense fractions, 

resin-loading methods have been used at ORNL, in particular for the production of 244Cm targets and 

fuels (e.g., refs. 12–14).  Such methods could also be used for the production of minor actinide spheres 

and have a special advantage because of the simplicity of the process for remote operations.  

The smear density of typical light-water-reactor (LWR) pellets is 91–95%.  To approach such 

densities with sphere-pac fuels, multiple fraction loadings are used.  For optimum binary packing, the 

diameters of the two sphere fractions need to differ by at least a factor of 7. (ref. 2)  Blending of spheres 

at smaller diameter ratios results in difficult blending and some segregation.4  Additionally, a mixture of 

70 vol % coarse and 30 vol % fine spheres is needed.2,15,16   The limiting smear density for binary packing 

is 86%, with about 82% achieved in practice. Ternary packing provides greater smear densities, with 

theoretical values ranging from 93 to 95%.  There are three options for loading rods with a ternary 

mixture:  (1) blending all three sizes during loading; (2) sequential infiltration of the three sizes; and  

(3) a combination of the first two, in which the two larger sizes are preblended, followed by infiltration of 

the smallest size. Infiltration is the most common method used in laboratory work with short tubes.  

Blending during loading is potentially faster than infiltration and was successfully demonstrated at ORNL 

on long fuel rods to give high packing densities. ORNL infiltration tests with plutonium-bearing rods 

yielded smear densities ranging from 73.2 to 86.1% (ref. 2).  For ternary packing, ref. 2 reports that the 

ratio of the tube diameter to the largest particle diameter, as well as the ratio of the successive diameters, 

must be about 10 to achieve optimum packing. 

To perform infiltration, the larger spheres must be held down to prevent levitation of the bed by the 

smaller spheres.  Multidirectional and variable-frequency vibration is sometimes used to facilitate rod 

loading.1 After loading, pins are inspected by methods such as gamma densitrometry to verify the uniform 

density of the loading. 
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3.  IRRADIATION EXPERIENCE WITH SPHERE-PAC FUELS 
 

Irradiation programs have often compared the performance of pellet and sphere-pac fuels.  Three 

types of irradiations have been performed:  LWR fuel in thermal reactors, fast fuel in thermal reactors, 

and fast fuel in fast reactors.1  Table 1 provides a selected summary of past experiments with sphere-pac 

fuels. As available, the characteristics of the fuels that were irradiated (e.g., sphere size, smear density, 

fuel type) and the irradiation characteristics (e.g., linear power, temperatures) are provided.  The majority 

of the irradiation experiments were performed in a thermal spectrum (even for the testing of fast fuels), 

with a limited number of experiments performed in a fast spectrum.  Note that for fast fuels that are tested 

in thermal reactors, the heat source depression because of self-shielding of the thermal flux has to be 

considered when interpreting the results from these experiments.  This depression results in lower 

centerline temperatures than would be seen for a fast spectrum. 

 

3.1 ORNL SPHERE-PAC DEVELOPMENT EFFORTS 
 

During the 1960s and early 1970s, an extensive program was undertaken at ORNL to develop oxide 

fuels for the Fast Breeder Reactor program.4  As part of this effort, the use of sphere-pac fuels was 

investigated and compared with the use of conventional pellet-type fuels.  After the completion of this 

program, an assessment was performed regarding the use of sphere-pac technology for the preparation of 

fast breeder reactor oxide and carbide fuels.3  A similar report was prepared for thermal reactor fuels.2  

These reports provide a thorough review of the development program including methods to prepare 

spheres, rod-loading techniques, characterization of loaded rods, and test-fuel irradiation and 

performance.  Also addressed were the considerations for remote fabrication and the scale-up of fuel 

fabrication operations.  In general, these reports found that the sphere-pac fuels performed as well as or 

better than pellet fuels.  

The irradiation tests performed by ORNL are described in refs. 2–4. The following discussion 

summarizes the major results from those tests. The irradiation program consisted of noninstrumented and 

instrumented thermal flux tests, transient tests, and fast flux tests.  Fuels consisted of (U,Pu)O2, and 

typically both sphere-pac and pellet fuels were irradiated for comparison.  The results of these irradiations 

were described in terms of the thermal performance, fuel restructuring (i.e., sintering of the spheres into a 

more pellet-like form), actinide and fission product redistribution, FCMI, and FCCI. 
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The thermal conductance of a fuel pin consists of two components:  fuel thermal conductivity  

and fuel-cladding gap conductance.  The ORNL tests found the gap conductance of sphere-pac  

fuel at linear heat rates up to 16 kW/ft (525 W/cm) and burnups up to 6% fissions of initial metal  

atoms (FIMA) to be about twice that of pellet-fueled pins.  In the case of the instrumented tests for 

irradiations in the Oak Ridge Research Reactor (ORR), the gap conductance in the pellet fuel was 

measured as 0.273 W/(cm2 • ºC), while it was 1.93 W/cm2C for the sphere-pac fuel.  These higher 

conductances result in lower fuel-surface temperatures. 

The ORNL tests showed that the primary mode of restructuring at high temperatures is a 

vaporization-condensation mechanism.  The rate of restructuring was found to increase rapidly with 

increasing temperature and oxygen potential.  Most restructuring occurs early in the life in the fuel.  For 

fast flux irradiations, it was found that for rods that reach restructuring temperatures, the same structure as 

a pellet fuel rod develops—namely a central axial void is found with radial cracks emanating from the 

void.  These cracks terminate at the outer edge of the restructured region, which is surrounded by a non-

restructured annulus.  The nonrestructured annulus was found to provide two benefits.  (1) Lower stress is 

exerted on the clad (because spheres are able to move vertically), as compared with pellet fuel rods.  

(2) Reduced fission product transport to the cladding occurs because cracks in the fuel do not extend to 

the cladding. Therefore, no particular location exhibits a concentration of fission products.  These two 

benefits should act to “improve fuel element performance and decrease cladding failures.”3  The fuel 

restructuring in the fast flux irradiations was found to be similar to that in the thermal irradiations. 

For the sphere-pac fuels, some preferential movement of uranium down the temperature gradient in 

columnar grain-growth regions occurred.  This resulted in regions that were depleted in uranium and 

therefore concentrated in plutonium (near the central void).  Consequently, the fission heat generation rate 

increased in that area.  For the fission products, there was a “distinct accumulation of molybdenum, 

cesium, and tellurium . . .” in the fuel adjacent to the cladding.4 

FCMI can result from two phenomena:  differential thermal expansion between the fuel and cladding 

and fuel volume changes resulting from fission product accumulation.  For the ORNL tests, which had 

smear densities <85% and burnup < 50 GWd/t, no significant mechanical deformation was seen.  In one 

case, a small amount of plastic deformation was seen for one of the transient tests conducted at the 

Transient Reactor Test Facility (TREAT).  This deformation likely resulted from the high differential 

thermal expansion during a rapid power excursion.  The results from the ORNL tests showed that sphere-

pac fuels can reach high burnup with essentially no mechanical interaction between the fuel and the 

cladding. 

FCCI has been observed in pellet fuels, with oxidation being the primary reaction.  For the sphere-pac 

tests, the only significant chemical interaction seen was for some high-burnup thermal irradiations.  But 

even for this test, the interaction was one-half that for a similarly irradiated pellet pin.  The ORNL 
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investigators reported that the evidence to date supports improved performance of sphere-pac fuels (as 

compared with pellet fuels) with respect to FCCI.  It is suggested that the improved performance may 

result from better gap conductivity (and hence, lower clad temperatures), lower cladding stresses, and 

lower potential for localized chemical attack.4 

Because, in many of the experiments, both pellet fuels and sphere-pac fuels were irradiated, 

comparisons were made between the results for the two technologies.  For an Experimental Breeder 

Reactor–II (EBR-II) experiment that consisted of pellet, sphere-pac and vi-pac fuels all irradiated together 

in the same subassembly, after 4% burnup, a nondestructive examination showed no major differences 

among the rods.  Both steady-state and transient tests showed that “sphere-pac oxide fuel should behave 

similarly to pellet oxide under fast breeder reactor operating conditions.”3   Tests comparing sphere-pac 

and pellet fuel in the ORR showed FCCI for the pellet fuel but none for the sphere-pac fuel.  Similar 

results were seen for an irradiation in the Engineering Test Reactor (ETR) in Idaho.3 

 
3.2 OTHER IRRADIATION EXPERIMENTS 
 

As indicated in Table 1, a number of irradiation experiments have been performed on sphere-pac 

fuels in addition to the ORNL work.  The major insights gained from each of these experiments are 

summarized in the following paragraphs. 

Cervellati et al. irradiated (U,Pu)O2 spheres in both a thermal and fast flux; however, only post-

irradiation examination results from the thermal experiments were reported.17  Cladding attack was seen 

for the higher-power-level samples (reaching up to 920 W/cm).  This attack was attributed to hydriding 

and oxidation resulting from impurities initially present in the fuel.  Cervellati et al. concluded that better 

control is needed over the fuel product specification to prevent the cladding attack. 

Calza-Bini et al. performed a series of irradiation tests on (U,Pu)O2 spheres.18  Short-term tests  

(2 to 800 min) at linear powers up to 1000 W/cm were used to study the restructuring of the sphere-pac 

fuel.  Post-irradiation examination (PIE) showed five distinct zones in the fuel from the center outward:   

(1) molten, (2) gross void, (3) densified, (4) modified, and (5) as-fabricated.  The authors found that most 

of the microstructure changes occurred within the first 2 min of the irradiation. 

Sens and Majoor performed thermal irradiations of pins with either spheres of (U,Pu)O2 or UO2.19  

They found low mechanical interaction between the fuel and cladding. Sens and Majoor measured the 

strain produced in sphere-pac and pellet rods after irradiation.  The strain in the pellet rod was almost 

twice that of the sphere-pac rod.  Strain relaxation occurred much more quickly in the sphere-pac rod.  

Therefore, they expect that the behavior of sphere-pac fuel will be better than that of pellets during 

transients, because of “reduced strain concentration processes.” 
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Stratton irradiated (U,Pu)C spheres under fast, thermal, and epithermal flux conditions.20  For the 

thermal irradiations, which had linear heat rates up to 1070 W/cm, 6 of 15 test pins failed because of local 

clad carburization. 

Lahr et al. summarized the results of thermal irradiations of  pins containing either (U,Pu)O2 or UO2 

spheres.21,22  For the tests with (U,Pu)O2, short irradiations were performed.  For pins with 76% smear 

density and pin power ~ 700 W/cm, they found that “substantial restructuring of the fuel takes place 

within 2 minutes.”  As part of this restructuring, a central channel was formed.  Lahr et al. made a number 

of general observations about the sphere-pac fuel, which indicated certain advantages.  “Uniform and 

relatively low mechanical interaction between the cladding and the fuel” was noted.  Compared with 

pellet fuel, “axial dilations of length are small and more or less elastic.”  Ovality formation is reduced.  

Heat transfer between the fuel and the cladding is better for sphere-pac fuel than for pellet fuel.  The 

authors noted that “after initial restructuring, the kernel [sphere-pac] fuel has an effectively higher 

thermal conductivity.”  

 

3.3  SUMMARY OF OBSERVATIONS FROM SPHERE-PAC IRRADIATION EXPERIMENTS 
 

Peddicord et al. provided a comparative summary of sphere-pac fuels and pellet fuels for the types of 

effects that were observed during irradiation tests.1  These effects are discussed in the following 

paragraphs and include restructuring, FCMI, migration of fuel constituents and fission products, and 

thermal response. 

During irradiation, sphere-pac fuel can undergo significant restructuring in the center of the fuel pin, 

with an unrestructured annulus remaining at the fuel-clad interface, and sometimes the appearance of a 

void in the center of the pin.  The presence of the unrestructured annulus acts to relieve stress.  

Additionally radial cracks do not reach the clad (because of the unrestructured region), which results in a 

more tortuous path for corrosive fission products to the clad.  Because a “short-circuit” path does not exist 

in the fuel, concentrations of fission products at the clad tend to be more uniform in sphere-pac fuels.  In 

general, with respect to restructuring, sphere-pac fuel behaves very similarly to pellet fuels with grain 

growth and the formation of a central core.   However, an annular unrestructured zone remains. 

With respect to thermal response, sphere-pac temperatures can be higher or lower than those for pellet 

pins, depending on the initial fuel-clad gap and operating history.  The lower thermal conductivity of the 

unrestructured sphere-pac fuel may be somewhat offset by the lack of a fuel-clad gap.  The thermal 

response in a sphere-pac pin is a “strongly damped system.”1  At higher temperatures, restructuring 

occurs, which increases conductivity and thereby lowers the temperature.  The amount of fission gas 

release is dependent on the temperature of the fuel. 
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A final point of comparison was with respect to the potential for loss of fuel from a breached pin.  For 

failed pins resulting from carburization,20 no fuel was lost.1  Hence, to prevent loss, sufficient sintering 

and necking of the spheres at the outer region of the fuel must have occurred.  Out-of-core beginning-of-

life simulations of a cladding breach showed that some fuel could be lost before initial startup.  However, 

no loss would occur immediately after startup.1  It should also be noted that a thermodynamic analysis 

performed in the AFCI program determined that the volatility of americium carbide would likely be very 

high.  Thus, this compound is not a favorable fuel form for americium-containing fuel.23 

Peddicord et al.1 reviewed a number of models that have been developed regarding sphere-pac fuel 

performance. Modeling of the effective thermal conductivity evolved in an attempt to account for 

restructuring and heat transfer through the noncontact (gas) regions of the bed.  Both theoretical and 

semiempirical methods have been used.  Monte Carlo models have been developed to simulate the 

packing of beds.  This has led to the derivation of a “coordination number,” which is the average number 

of contacts for a sphere.  Such numbers have been incorporated into thermal conductivity models.  The 

mechanical response of the sphere-pac bed has been incorporated into restructuring models, which, in 

turn, affects the thermal conductivity. 

Another important property for the thermal behavior of the sphere-pac fuel is the thermal conductance 

at the fuel-clad interface.  As Peddicord et al. indicate, “estimates of sphere-pac gap conductance range 

from 60% to 300% of typical pellet pin values.”1 Based on experimental evidence, no open gap formed 

during steady-state or transient tests.  Intimate contact occurs between the clad and the spheres.  Four 

major approaches have been used to model the thermal conductance:  (1) use estimated values that depend 

on whether the bed is two fraction or three fraction,  (2) calculation based on empirical models, (3) use of 

a two-region model with a “temperature jump” immediately at the wall, and (4) assumption that a 

temperature jump due to gap conductance is negligible because of the good contact between the fuel and 

clad. 

Models for fission gas release have been based on pellet-fuel models.  In the restructured region, the 

behavior of sphere-pac fuel is essentially like that of a pellet.  In the unrestructured region, temperatures 

are sufficiently low that little diffusion of gas atoms occurs.  Retained gases result in swelling, and pellet 

models have also been applied to sphere-pac fuels with respect to swelling.  Note that swelling in sphere-

pac fuel can actually enhance restructuring. 
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Codes that have been developed to model the overall performance of sphere-pac fuels include 

COBRA-3SP, GAPCON-THERMAL-2, and SPECKLE.1   Members of the modeling group at the Paul 

Scherrer Institute (PSI) have developed several models for sphere-pac fuels:  SPHERE, PINTEMP, and 

SPACON.24 

 
3.4  RECENT IRRADIATION EXPERIMENTS 
 

More recent efforts to evaluate sphere-pac fuels are being performed by the FUJI (Fuel irradiation for 

JNC and PSI) project, which represents a collaboration of Japan Nuclear Cycle Development Institute 

(JNC), Nuclear Research and Consultancy Group (NRG), and PSI.5–7  The FUJI project is investigating 

the performance of mixed-oxide (MOX) fuel pellets, as well as vi-pac, and sphere-pac forms, with respect 

to their use in fast reactors using stainless steel cladding.  The authors recognize that particle fuels are 

good candidates for the fabrication of low-decontaminated fuels and minor actinide transmutation fuels 

because of remote handling requirements  for these materials. 

The FUJI project will study the early-in-life restructuring of the particle fuels by their irradiation in 

the pool-side facility of the High Flux Reactor at Petten.  Four different irradiations will be performed7:    

(1) initial sintering test (0 to full power in 36 h); (2) restructuring test I (startup and then 48 h at steady 

state), (3) restructuring test II (startup and then 96 h at steady state); and (4) power-to-melt test (startup, 

followed by 48 h at steady state and then an increase in power until fuel center melting occurs).  The 

maximum linear power for the first three tests is planned to be ≤550 W/cm, while that for the power-to-

melt test is <900 W/cm. 

For the sphere-pac fuel pins, filling tests were performed first with metal spheres and the MOX pins 

were then prepared.6  MOX microspheres were prepared by the internal gelatin technique as described by 

Pouchon et al.5  The MOX microspheres were nominally 20% Pu and 80% U.  In addition, some 

neptunium-containing MOX microspheres, designated “Np-MOX,” were also prepared.  The composition 

of the Np-MOX is nominally 20% Pu, 5% Np, and 75% U.  Two filling methods were investigated6:  

infiltration and simultaneous.  For infiltration loading, a coarse fraction (710–800 µm) is first loaded into 

the pin, followed by the infiltration of a fine fraction (63–75 µm).  A smear density of about 82% was 

achieved.  For simultaneous loading, the coarse fraction and a larger fine fraction (180–212 µm) are 

loaded at the same time.  Simultaneous loading resulted in smear densities of about 73%.  

Three of the four planned short-time irradiations have been completed, with PIE of the third test 

ongoing.  Results from these tests are not yet available, and papers will be prepared as the work is 

completed.25  The FUJI experiments should increase the understanding of the early restructuring behavior 

of sphere-pac fuels. 
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4.  DISCUSSION AND RECOMMENDATIONS 
 

The extensive experimental program that has been conducted for sphere-pac fuels has shown their 

advantages over pellet fuel forms in terms of the potential for improved fuel performance. Additional 

performance benefits are expected for transmutation applications, especially with respect to the ease of 

remote fabrication of minor actinide transmutation targets.  Sphere-pac fuels have been shown to behave 

much like pellet fuels after restructuring. However, the former maintain an advantage with respect to 

FCMI and FCCI because of their ability to relieve stress in the nonrestructured zone and the lack of 

channeling pathways for fission products to accumulate at particular clad locations (thus limiting the 

development of corrosive concentrations at the clad).  Such behavior is expected for both thermal and fast 

fuels. 

While not as mature as pellet fuels, a significant effort has been undertaken to model the behavior of 

sphere-pac fuels during irradiation.  These models have attempted to account for the thermal conductivity; 

gap conductance; and, importantly, restructuring of the fuel after irradiation.  Consideration of these 

models and their underlying experimental work can lead to useful estimates of the thermal behavior of 

AFCI sphere-pac fuels. 

For this AFCI program, the interest is in the development of a transmutation fuel for minor actinides.  

One characteristic of such fuels is the evolution of large amounts of helium during an irradiation, which 

results in pressures much larger than those typically encountered in LWR fuels.  One of the recent 

transmutation tests for 241Am has measured the production of helium, and this test can be used to project 

such production in a sphere-pac transmutation pin.26  Note that the smear density of a sphere-pac fuel is 

less than that of a pellet fuel, and, at high burnup, an unrestructured zone remains well distributed along 

the fuel column.  This zone may help accommodate the relatively large helium production in 

transmutation fuels. 

The current development activities at ORNL for sphere-pac fuels center initially on reestablishment 

of the capability to remotely reload sphere-pac fuel pins.  Follow-on work will be to load test pins with 

minor actinides (probably making up some portion of the fine-sphere fraction), irradiating these pins, and 

then performing PIE.  These tests can then directly address the performance of the transmutation fuels, 

which is expected to be satisfactory based on the prior testing results for both thermal and fast sphere-pac 

fuels. 

The recommended parameters for the initial irradiation investigation of a sphere-pac transmutation 

fuel are listed in Table 2.  Such a test would be performed as part of the LWR-2 experiments and would 

thus be a thermal-spectrum irradiation.  In summary, the fuel would consist of a two-fraction oxide bed.  

The coarse fraction would contain the uranium (and perhaps plutonium) fissile driver, while the fine  
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fraction would contain the americium oxide, with a balance of uranium oxide (to achieve the desired 

loading).  It is expected that the coarse fraction would be prepared by internal gelation, while the fine 

fraction would be prepared by resin loading.  Zircaloy would be used as the cladding. 

Based on the extensive irradiation programs that have been conducted, oxides have been shown to be 

a suitable form for sphere-pac fuels in terms of their thermal behavior, as well as FCMI and FCCI.  In 

studies that have compared sphere-pac and pellet performance, the sphere-pac fuel in general has 

performed as well as or better than pellet fuels. 

Cladding materials studied have included various zircaloy and stainless steel compositions (see  

Table 1).  For one thermal zircaloy-clad experiment, cladding attack was seen at high powers.  However, 

this attack was attributed to lack of tight control over the fuel specification, which resulted in impurities 

in the fuel.17  Tests performed at KFA Jülich with zircaloy-4 cladding to burnups of 44,700 to 50,300 

MWd/t showed no evidence of either FCMI or FCCI.2 

Some concerns have been expressed about the performance of zircaloy-clad sphere-pac fuel during 

power transients.  Knudsen et al. performed transient tests that compared pellet and vi-pac UO2 fuel clad 

in zircaloy-2.27  The vi-pac fuel consisted of sintered granules ranging from 45 to 4000 µm, with a smear 

density of 84%.  Prior to the ramp tests, the rods were irradiated to 20,600 MWd/t.  Ramp rates used in 

the tests were 50–60 W/cm•min.  For the pellet fuel pins, the linear power was ramped from 330 to 470 

W/cm and then to 720 W/cm, which resulted in immediate failure of the pin.  For the vi-pac pin, the linear 

power was ramped from 390 to 640 W/cm, which resulted in failure after 7 min.  Knudsen et al. 

concluded that “the performance of the vi-pac pin at the high-burnup stage was not essentially different 

from that of the pellet pin.” 

More recently, Kjaer-Pederson and Woods have performed ramp tests that compared pellet, annular 

pellet, and (three-fraction) sphere-pac particle fuels.28  The  pellet rods were not prepressurized, while  

some of the annular pellet rods and all of the sphere-pac rods were prepressurized (to 4.5 atm).  The fuel 

was clad in zircaloy-2.  Prior to the ramp tests, the fuels had been irradiated to burnups of 18,000–22,000 

MWd/t or 28,000–32,000 MWd/t, depending on the number of irradiation cycles.  Ramp rates were much 

more severe than those used in the Knudsen test, with values of either 600 or 1200 W/cm•min being used.  

The pellet and annular rods survived the various ramp tests. It was found that the sphere-pac rods “failed 

consistently when ramped to 520 W/cm or higher in a fast single-step ramp.”  These rods survived fast 

single-step ramps to 460 W/cm.  In addition, sphere-pac rods that were first ramped to 460 W/cm and 

then, after a holding time, ramped to linear powers as high as 600 W/cm also survived.  The failure of the 

sphere-pac rods was “attributed to high hoop stress in the cladding due to the absence of a fuel-to-

cladding-gap.” It should be noted that the sphere-pac rods had the lowest fission gas release of the three 

fuel types. 
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The failure of some sphere-pac rods during severe ramping conditions is cause for concern.  

However, the factors that play a role in such failure need further exploration.  Does the number of 

fractions used, and hence the smear density, matter?  Use of two-size-fraction spheres will result in a 

lower smear density.  The many tests performed with two size fractions have consistently shown the 

ability of a sphere-pac fuel to relieve stress.  Additionally, can some preconditioning of the fuel eliminate 

the potential for failure under severe transients?  Once again, note that the rods that were fast ramped to 

460 W/cm, held at that linear power, and then ramped to the higher power did not fail.  The fuel, 

especially early in life, may be preconditioned to limit the stresses experienced in extreme transients.  Of 

course, answers to these questions can be addressed only by further experimental testing of these ideas. 

The concentration of 241Am to be used in the target pins is estimated to be up to 10 wt %.  This value 

would be consistent with that used in analyses for separations flow sheets and could also be compared 

with the EFTTRA-T4 (Experimental Feasibility of Targets for Transmutation) experiment in which  

10-12 wt % 241Am was irradiated.  In the case of EFFTRA-T4, the targets were prepared by infiltrating 

MgAl2O4 pellets with americium nitrate solution, followed by calcination under Ar/H2 at 700°C and then 

sintering at 1650°C (ref. 26).    

Finally, the literature regarding development and evaluation of sphere-pac fuels can be divided into 

several major areas:  thermal conductivity, fabrication, quality assurance, preparation of spheres by resin 

loading, testing, and transmutation.  The bibliography included as an appendix to this report provides a 

list of references in each of these areas that were consulted in the preparation of this report. 
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