500 research outputs found

    Error-tolerant Finite State Recognition with Applications to Morphological Analysis and Spelling Correction

    Get PDF
    Error-tolerant recognition enables the recognition of strings that deviate mildly from any string in the regular set recognized by the underlying finite state recognizer. Such recognition has applications in error-tolerant morphological processing, spelling correction, and approximate string matching in information retrieval. After a description of the concepts and algorithms involved, we give examples from two applications: In the context of morphological analysis, error-tolerant recognition allows misspelled input word forms to be corrected, and morphologically analyzed concurrently. We present an application of this to error-tolerant analysis of agglutinative morphology of Turkish words. The algorithm can be applied to morphological analysis of any language whose morphology is fully captured by a single (and possibly very large) finite state transducer, regardless of the word formation processes and morphographemic phenomena involved. In the context of spelling correction, error-tolerant recognition can be used to enumerate correct candidate forms from a given misspelled string within a certain edit distance. Again, it can be applied to any language with a word list comprising all inflected forms, or whose morphology is fully described by a finite state transducer. We present experimental results for spelling correction for a number of languages. These results indicate that such recognition works very efficiently for candidate generation in spelling correction for many European languages such as English, Dutch, French, German, Italian (and others) with very large word lists of root and inflected forms (some containing well over 200,000 forms), generating all candidate solutions within 10 to 45 milliseconds (with edit distance 1) on a SparcStation 10/41. For spelling correction in Turkish, error-tolerantComment: Replaces 9504031. gzipped, uuencoded postscript file. To appear in Computational Linguistics Volume 22 No:1, 1996, Also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/clpaper9512.ps.

    Design and implementation of a spelling checker for Turkish

    Get PDF
    This paper presents the design and implementation of a spelling checker for Turkish. Turkish is an agglutinative language in which words are formed by affixing a sequence of morphemes to a root word. Parsing agglutinative word structures has attracted relatively little attention except for application areas for general purpose morphological processors. Parsing words in such languages even for spelling checking purposes requires substantial morphological and morphophonemic analysis techniques, and spelling correction (not addressed in this paper) is significantly more complicated. In this paper, we present the design and implementation of a morphological root-driven parser for Turkish word structures which has been incorporated into a spelling checking kernel for on-line Turkish text. The agglutinative nature of the language complex word formations, various phonetic harmony rules, and subtle exceptions present certain difficulties not usually encountered in the spelling checking of languages like English and make this a very challenging problem. © 1993 Oxford University Press

    Rapid Development of Morphological Descriptions for Full Language Processing Systems

    Full text link
    I describe a compiler and development environment for feature-augmented two-level morphology rules integrated into a full NLP system. The compiler is optimized for a class of languages including many or most European ones, and for rapid development and debugging of descriptions of new languages. The key design decision is to compose morphophonological and morphosyntactic information, but not the lexicon, when compiling the description. This results in typical compilation times of about a minute, and has allowed a reasonably full, feature-based description of French inflectional morphology to be developed in about a month by a linguist new to the system.Comment: 8 pages, LaTeX (2.09 preferred); eaclap.sty; Procs of Euro ACL-9

    Component processes of early reading, spelling, and narrative writing skills in Turkish: a longitudinal study

    Get PDF
    The study examined: (a) the role of phonological, grammatical, and rapid automatized naming (RAN) skills in reading and spelling development; and (b) the component processes of early narrative writing skills. Fifty-seven Turkish-speaking children were followed from Grade 1 to Grade 2. RAN was the most powerful longitudinal predictor of reading speed and its effect was evident even when previous reading skills were taken into account. Broadly, the phonological and grammatical skills made reliable contributions to spelling performance but their effects were completely mediated by previous spelling skills. Different aspects of the narrative writing skills were related to different processing skills. While handwriting speed predicted writing fluency, spelling accuracy predicted spelling error rate. Vocabulary and working memory were the only reliable longitudinal predictors of the quality of composition content. The overall model, however, failed to explain any reliable variance in the structural quality of the composition

    Integrated speech and morphological processing in a connectionist continuous speech understanding for Korean

    Full text link
    A new tightly coupled speech and natural language integration model is presented for a TDNN-based continuous possibly large vocabulary speech recognition system for Korean. Unlike popular n-best techniques developed for integrating mainly HMM-based speech recognition and natural language processing in a {\em word level}, which is obviously inadequate for morphologically complex agglutinative languages, our model constructs a spoken language system based on a {\em morpheme-level} speech and language integration. With this integration scheme, the spoken Korean processing engine (SKOPE) is designed and implemented using a TDNN-based diphone recognition module integrated with a Viterbi-based lexical decoding and symbolic phonological/morphological co-analysis. Our experiment results show that the speaker-dependent continuous {\em eojeol} (Korean word) recognition and integrated morphological analysis can be achieved with over 80.6% success rate directly from speech inputs for the middle-level vocabularies.Comment: latex source with a4 style, 15 pages, to be published in computer processing of oriental language journa

    Hungarian-Somali-English Online Dictionary and Taxonomy

    Get PDF

    Detection of semantic errors in Arabic texts

    Get PDF
    AbstractDetecting semantic errors in a text is still a challenging area of investigation. A lot of research has been done on lexical and syntactic errors while fewer studies have tackled semantic errors, as they are more difficult to treat. Compared to other languages, Arabic appears to be a special challenge for this problem. Because words are graphically very similar to each other, the risk of getting semantic errors in Arabic texts is bigger. Moreover, there are special cases and unique complexities for this language. This paper deals with the detection of semantic errors in Arabic texts but the approach we have adopted can also be applied for texts in other languages. It combines four contextual methods (using statistics and linguistic information) in order to decide about the semantic validity of a word in a sentence. We chose to implement our approach on a distributed architecture, namely, a Multi Agent System (MAS). The implemented system achieved a precision rate of about 90% and a recall rate of about 83%
    corecore