62 research outputs found

    Modifying and Accelerating the Method of Moments Calculation

    Get PDF
    This manuscript deals with optimizing the numerical method called the method of moments (MoM). This method is widely utilized for field computation of 3D structures. MoM is exploited in hydraulics as well as in the electromagnetic field theory. Emphasis is put on minimizing calculations necessary for constructing a system of linear equations exploiting symmetry or similarity of elements of geometric structure. The manuscript also contains a comparison of computing times using standard MoM and a proposed modified MoM keeping the same structure of the solved construction

    Enhancing numerical modelling efficiency for electromagnetic simulation of physical layer components.

    Get PDF
    The purpose of this thesis is to present solutions to overcome several key difficulties that limit the application of numerical modelling in communication cable design and analysis. In particular, specific limiting factors are that simulations are time consuming, and the process of comparison requires skill and is poorly defined and understood. When much of the process of design consists of optimisation of performance within a well defined domain, the use of artificial intelligence techniques may reduce or remove the need for human interaction in the design process. The automation of human processes allows round-the-clock operation at a faster throughput. Achieving a speedup would permit greater exploration of the possible designs, improving understanding of the domain. This thesis presents work that relates to three facets of the efficiency of numerical modelling: minimizing simulation execution time, controlling optimization processes and quantifying comparisons of results. These topics are of interest because simulation times for most problems of interest run into tens of hours. The design process for most systems being modelled may be considered an optimisation process in so far as the design is improved based upon a comparison of the test results with a specification. Development of software to automate this process permits the improvements to continue outside working hours, and produces decisions unaffected by the psychological state of a human operator. Improved performance of simulation tools would facilitate exploration of more variations on a design, which would improve understanding of the problem domain, promoting a virtuous circle of design. The minimization of execution time was achieved through the development of a Parallel TLM Solver which did not use specialized hardware or a dedicated network. Its design was novel because it was intended to operate on a network of heterogeneous machines in a manner which was fault tolerant, and included a means to reduce vulnerability of simulated data without encryption. Optimisation processes were controlled by genetic algorithms and particle swarm optimisation which were novel applications in communication cable design. The work extended the range of cable parameters, reducing conductor diameters for twisted pair cables, and reducing optical coverage of screens for a given shielding effectiveness. Work on the comparison of results introduced ―Colour maps‖ as a way of displaying three scalar variables over a two-dimensional surface, and comparisons were quantified by extending 1D Feature Selective Validation (FSV) to two dimensions, using an ellipse shaped filter, in such a way that it could be extended to higher dimensions. In so doing, some problems with FSV were detected, and suggestions for overcoming these presented: such as the special case of zero valued DC signals. A re-description of Feature Selective Validation, using Jacobians and tensors is proposed, in order to facilitate its implementation in higher dimensional spaces

    On the Application of Multiobjective Optimization to Software Development Process and Antenna Designing

    Get PDF
    Esta tesis doctoral, presentada como compendio de artículos, explora los beneficios prácticos del uso combinado de la optimización multi-objetivo con aplicaciones de simulación. En esta tesis, con un caracter de aplicación, se aportan ideas prácticas sobre cómo combinar meta-heurísticas aplicadas a la optimización de problemas con herramientas y técnicas de simulación. La simulación permite estudiar problemas complejos antes de implementarlos en el mundo real. Los problemas de optimización son de los más complicados de resolver. Involucran 3 o más variables y en muchos casos no pueden ser resueltos matemáticamente. La simulación permite modelar el problema, pero son una ayuda insuficiente a la hora de encontrar las mejores soluciones a dicho problema. En estos casos, el trabajo conjunto de la herramienta de simulación con metaheurísticas de optimización permiten abordar estos problemas con costes computacionales razonables, obteniendo resultados muy cercanos al óptimo. Debe tenerse en cuenta que las soluciones de los problemas multiobjetivo contienen un conjunto de variables donde habitualmente mejorar (optimizar) una variable, suponga empeorar (hacer menos óptima) otra(s). Por tanto, lo deseable es encontrar un conjunto de soluciones donde cada variable se optimiza teniendo en cuenta el posible impacto negativo en el resto de variables. A ese conjunto de soluciones, se le suele conocer como el Frente de Pareto Óptimo. Esta tesis presenta dos problemas reales, complejos y pertenecientes a campos totalmente distintos, que han sido resueltos de forma existosa, aplicando la misma técnica: Simulación combinada con optimización multiobjetivo. Esta tesis comienza presentando un caso de técnicas de optimización multiobjetivo a través de la simulación para ayudar a los directores de proyectos de software a encontrar las mejores configuraciones para los proyectos basados ITIL (Information Technology Infrastructure Library), de manera que se optimicen las estimaciones de calendario para un proyecto determinado, el tiempo y la productividad. Los datos de gestión de proyectos pueden obtenerse mediante simulación, por ejemplo, para optimizar el número de recursos utilizados en cada fase de la vida del proyecto. También se presenta otro caso de estudio sobre la forma en que la optimización de la simulación puede ayudar en el diseño de cualquier tipo de antena. En este caso de estudio, el objetivo es lograr una antena helicoidal, de doble banda, lo más compacta posible, para la telemetría, el seguimiento y el control (TTC) de los satélites. En los satélites es esencial reducir el volumen y el peso de los dispositivos instalados, manteniendo al mismo tiempo los requisitos de funcionamiento. Adicionalmente, esta tesis realiza un aporte teórico proponiendo un nuevo algoritmo llamado MNDS (Merge Non-Dominated Sorting) que mejora el rendimiento de los algoritmos de optimización multi-objectivo basados en el cálculo del Pareto Front

    Detection of Man-in-the-middle Attacks Using Physical Layer Wireless Security Techniques

    Get PDF
    In a wireless network environment, all the users are able to access the wireless channel. Thus, if malicious users exploit this feature by mimicking the characteristics of a normal user or even the central wireless access point (AP), they can intercept almost all the information through the network. This scenario is referred as a Man-in-the-middle (MITM) attack. In the MITM attack, the attackers usually set up a rogue AP to spoof the clients. In this thesis, we focus on the detection of MITM attacks in Wi-Fi networks. The thesis introduces the entire process of performing and detecting the MITM attack in two separate sections. The first section starts from creating a rogue AP by imitating the characteristics of the legitimate AP. Then a multi-point jamming attack is conducted to kidnap the clients and force them to connect to the rogue AP. Furthermore, the sniffer software is used to intercept the private information passing through the rogue AP. The second section focuses on the detection of MITM attacks from two aspects: jamming attacks detection and rogue AP detection. In order to enable the network to perform defensive strategies more effectively, distinguishing different types of jamming attacks is necessary. We begin by using signal strength consistency mechanism in order to detect jamming attacks. Then, based on the statistical data of packets send ratio (PSR) and packets delivery ratio (PDR) in different jamming situations, a model is built to further differentiate the jamming attacks. At the same time, we gather the received signal strength indication (RSSI) values from three monitor nodes which process the random RSSI values employing a sliding window algorithm. According to the mean and standard deviation curve of RSSI, we can detect if a rogue AP is present within the vicinity. All these proposed approaches, either attack or detection, have been validated via computer simulations and experimental hardware implementations including Backtrack 5 Tools and MATLAB software suite

    The Proceedings of 14th Australian Information Security Management Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fourteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Fifteen papers were submitted from Australia and overseas, of which ten were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conferences. To our sponsors also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    NASA Tech Briefs, September 2012

    Get PDF
    Topics covered include: Beat-to-Beat Blood Pressure Monitor; Measurement Techniques for Clock Jitter; Lightweight, Miniature Inertial Measurement System; Optical Density Analysis of X-Rays Utilizing Calibration Tooling to Estimate Thickness of Parts; Fuel Cell/Electrochemical Cell Voltage Monitor; Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor; Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks; Antenna Calibration and Measurement Equipment; Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling; Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors; Plasma Treatment to Remove Carbon from Indium UV Filters; Telerobotics Workstation (TRWS) for Deep Space Habitats; Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer; On Shaft Data Acquisition System (OSDAS); ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays; Flexible Architecture for FPGAs in Embedded Systems; Polyurea-Based Aerogel Monoliths and Composites; Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds; Self-Cleaning Particulate Prefilter Media; Modular, Rapid Propellant Loading System/Cryogenic Testbed; Compact, Low-Force, Low-Noise Linear Actuator; Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link; Process for Measuring Over-Center Distances; Hands-Free Transcranial Color Doppler Probe; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Developing Physiologic Models for Emergency Medical Procedures Under Microgravity; PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores; Portable Intravenous Fluid Production Device for Ground Use; Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System; Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators; Whispering Gallery Mode Optomechanical Resonator; Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles; Self-Sealing Wet Chemistry Cell for Field Analysis; General MACOS Interface for Modeling and Analysis for Controlled Optical Systems; Mars Technology Rover with Arm-Mounted Percussive Coring Tool, Microimager, and Sample-Handling Encapsulation Containerization Subsystem; Fault-Tolerant, Real-Time, Multi-Core Computer System; Water Detection Based on Object Reflections; SATPLOT for Analysis of SECCHI Heliospheric Imager Data; Plug-in Plan Tool v3.0.3.1; Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum; Nonlinear Estimation Approach to Real-Time Georegistration from Aerial Images; Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications; Low-Cost Telemetry System for Small/Micro Satellites; Operator Interface and Control Software for the Reconfigurable Surface System Tri-ATHLETE; and Algorithms for Determining Physical Responses of Structures Under Load

    Real-time video rate terahertz digital holographic imaging system

    Get PDF
    Terahertz (THz) radiation describes electromagnetic (EM) radiation with a frequency of between 0.1-10 THz. There has been widespread interest in THz imaging which has been demonstrated in numerous applications from medical to non-destructive evaluation (NDE) due to the unique properties of radiation at these wavelengths. Current THz imaging systems suffer many drawbacks including the requirement of expensive components, slow imaging frame-rates and poor resolution. In this thesis, a digital THz holography system is demonstrated which could offer a high-performance and potentially low-cost alternative. The design and implementation of the first full video-rate (50 Hz) THz digital holography system is presented in this thesis. The system operates with coherent radiation of 2.52 THz (118.8 µm) and features low-cost optical components. The system’s ability for imaging concealed objects is shown which suggests potential as a NDE tool. The potential to be used as a 3D depth imaging tool is also shown. The publication relating to this work along with the movies and data-set can be found from the following reference along with in the thesis data-set: M. Humphreys, J. Grant, I. Escorcia-Carranza, C. Accarino, M. Kenney, Y. Shah, K. Rew, and D. Cumming, "Video-rate terahertz digital holographic imaging system," Opt. Express 26, 25805-25813 (2018)
    • …
    corecore