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ABSTRACT

Photonic Interconnection Networks for Applications in

Heterogeneous Utility Computing Systems

Cathy Chen

Growing demands in heterogeneous utility computing systems in future cloud and

high performance computing systems are driving the development of processor-

hardware accelerator interconnects with greater performance, flexibility, and dy-

namism. Recent innovations in the field of utility computing have led to an

emergence in the use of heterogeneous compute elements. By leveraging the

computing advantages of hardware accelerators alongside typical general purpose

processors, performance efficiency can be maximized. The network linking these

compute nodes is increasingly becoming the bottleneck in these architectures,

limiting the hardware accelerators to be restricted to localized computing.

A high-bandwidth, agile interconnect is an imperative enabler for hardware

accelerator delocalization in heterogeneous utility computing. A redesign of

these systems’ interconnect and architecture will be essential to establishing high-

bandwidth, low-latency, efficient, and dynamic heterogeneous systems that can

meet the challenges of next-generation utility computing.

By leveraging an optics-based approach, this dissertation presents the design

and implementation of optically-connected hardware accelerators (OCHA) that

exploit the distance-independent energy dissipation and bandwidth density of

photonic transceivers, in combination with the flexibility, efficiency and data par-

allelization offered by optical networks. By replacing the electronic buses with

an optical interconnection network, architectures that delocalize hardware accel-

erators can be created that are otherwise infeasible.

With delocalized optically-connected hardware accelerator nodes accessible by

processors at run time, the system can alleviate the network latency issues plague

current heterogeneous systems. Accelerators that would otherwise sit idle, waiting



for it’s master CPU to feed it data, can instead operate at high utilization rates,

leading to dramatic improvements in overall system performance.

This work presents a prototype optically-connect hardware accelerator module

and custom optical-network-aware, dynamic hardware accelerator allocator that

communicate transparently and optically across an optical interconnection net-

work. The hardware accelerators and processor are optimized to enable hardware

acceleration across an optical network using fast packet-switching. The versatility

of the optical network enables additional performance benefits including optical

multicasting to exploit the data parallelism found in many accelerated data sets.

The integration of hardware acceleration, heterogeneous computing, and optics

constitutes a critical step for both computing and optics.

The massive data parallelism, application dependent-location and function,

as well as network latency, and bandwidth limitations facing networks today

complement well with the strength of optical communications-based systems.

Moreover, ongoing efforts focusing on development of low-cost optical compo-

nents and subsystems that are suitable for computing environment may benefit

from the high-volume heterogeneous computing market. This work, therefore,

takes the first steps in merging the areas of hardware acceleration and optics

by developing architectures, protocols, and systems to interface with the two

technologies and demonstrating areas of potential benefits and areas for future

work. Next-generation heterogeneous utility computing systems will indubitably

benefit from the use of efficient, flexible and high-performance optically connect

hardware acceleration.



Contents

List of Figures iv

List of Tables ix

Glossary x

Relevant Author Publications xii

1 Introduction 1

1.1 Large-Scale Utility Computing . . . . . . . . . . . . . . . . . . . . 2

1.1.1 High-Performance Computing . . . . . . . . . . . . . . . . 2

1.1.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Heterogeneous Utility Computing . . . . . . . . . . . . . . 7

1.2 Hardware Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Programming Innovations . . . . . . . . . . . . . . . . . . 15

1.3 The Computing-Optics Interface . . . . . . . . . . . . . . . . . . . 17

1.3.1 Optical Interconnection Networks . . . . . . . . . . . . . . 18

1.3.2 Optically Connected Hardware Accelerators . . . . . . . . 19

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Optical Interconnection Networks for Heterogeneous Utility Com-

puting 23

2.1 Optical Network Design . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Switching Conventions . . . . . . . . . . . . . . . . . . . . 24

i



CONTENTS

2.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Implications for Heterogeneous Computing Systems . . . . . . . . 29

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Dynamic Data on Optical Interconnection Networks 32

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Optical Interconnection Network Interface . . . . . . . . . . . . . 34

3.3 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 WiMax Data Generation . . . . . . . . . . . . . . . . . . . 36

3.3.2 VLAN and ONIC . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 A Photonic Network for Hardware Accelerator Enabled Utility

Computing 43

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Lessons from Previous Work . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Bandwidth Mismatches . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Burst Mode Receivers . . . . . . . . . . . . . . . . . . . . 45

4.3 Optically Connected Resources Module . . . . . . . . . . . . . . . 46

4.3.1 FPGA Hardware Design . . . . . . . . . . . . . . . . . . . 47

4.4 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 XOR Phase-Encoded Header . . . . . . . . . . . . . . . . . 50

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 FPGA Implemented Bidirectional OCHA 56

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Overview of OCHA . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Experimental Set Up and Results . . . . . . . . . . . . . . . . . . 59

5.3.1 PRBS Generation . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Wavelength-stripped Phase-encoded Header . . . . . . . . 60

5.3.3 Error Checker and Results . . . . . . . . . . . . . . . . . . 62

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii



CONTENTS

6 Summary and Conclusion 67

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Architectural Design . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Optically Connected Memory . . . . . . . . . . . . . . . . 70

6.2.3 Silicon Photonic Integration . . . . . . . . . . . . . . . . . 70

6.2.4 Burst-Mode Receivers . . . . . . . . . . . . . . . . . . . . 71

6.2.5 Runtime Allocation Integration . . . . . . . . . . . . . . . 72

6.2.6 Commercialization . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 75

iii



List of Figures

1.1 Performance of Top500 HPC Systems - The Performance (in

FLOPs) of the first and 500th supercomputers on the Top500 list.

As well as the sum of the two together. If these trends continue,

an ExaFLOP machine could be possible in the next 5-10 years.

Source: Top500.org . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Optical Interconnects in IBM Power 775 - An IBM Power

775 system drawer, with eight router multichip modules (MCMs),

each with 28 transmit and receive modules, with 12x10 Gb/s band-

width. The inset shows the underlying glass-ceramic substrate.

Source: IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Acceleration in HPC - Percentage of High Performance Com-

puting Systems (surveyed by Intersect360 Research with Acceler-

ators from 2009 to 2013. Between systems installed in 2011 and

2012, there was a doubling of systems with accelerators, in 2013

this increased by another 3%. Source: Intersect360 Research . . . 8

1.4 Photograph of NVIDIA GIRD Server - Each server contains

12 GPUs, 20 of these servers are packed into a single GRID Gam-

ing Rack, which in turn is capable of 200 TFLOPS of computing

(equivalent to 700 Xbox 360s) [1]. . . . . . . . . . . . . . . . . . . 11

1.5 GPU-acceleration Speed Up - Time to price a 15 year can-

cellable range accrual on a Constant Maturity Swap Spread, using

a 2-factor Heath-Jarrow-Morton model with 1 million Monte Carlo

simulation paths. The model uses a full term structure for volatil-

ities and includes calibration of correlations. [2]. . . . . . . . . . . 12

iv



LIST OF FIGURES

1.6 JPEGs in Facebook - Illustration of the JPEG encoding in Face-

book data centers. Each picture that is uploaded is regenerated

as 4 JPEGs of varying sizes, for use in various parts of the sight.

Source: Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Multicast in Spade Algorithm - Multicasting in the Spade

Algorithm for bargain discovery. Source: [3] . . . . . . . . . . . . 14

1.8 Power8 Die Photo - Die photo of the IBM Power8 chip, an-

nounced in August of 2013, to be used by the OpenPOWER Foun-

dation for use in big data and cloud computing applications. The

PCIe slot on the die can be seen in bright green on the middle

bottom of the chip. Source: IBM . . . . . . . . . . . . . . . . . . 15

1.9 Gaming latency in NVIDIA GRID - Comparison of game

latency of NVIDIA GRID, Cloud Gen 1, and Console +TV game.

The network (light green) takes up approximately a fourth of the

overall gaming latency time. Source: NVIDIA Corp . . . . . . . . 16

1.10 Block Diagram of Optically Connected Hardware Acceler-

ators - Block level schematic depicting how a next-generation het-

erogeneous system can be connected to many optically-connected

hardware accelerators across an optical interconnection network. . 19

2.1 Photonic Switching Node- (A) Schematic and (B) photograph

of the SOA-based switching node - routing information is encoded

on the header wavelengths that are decoded through an OEO con-

version, where a CPLD computes the logic to control a number

of SOAs. This scheme allows for the elimination of many OEO

conversions that limit current switching nodes. . . . . . . . . . . . 25

2.2 Wavelength-Striped Message Format - Low-speed header

switching wavelengths (controlled by the GPIO MICTOR on the

FPGA) are combined with high-speed payload wavelengths using

WDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



LIST OF FIGURES

2.3 3×3 switching - (A) Schematic of how the switching node would

be configured in a 3×3 set up, with an FPGA as the control logic

and (B) photograph of the 4x4 SOA-based switching node that

this could be implemented on . . . . . . . . . . . . . . . . . . . . 27

3.1 Vision - (A) With an RSSI below the threshold value, the gamer

is allocated one GPU for a GaaS application, but as she nears the

base station and the RSSI increase (B) her game is dynamically

streamed to two GPUs now that she has a RSSI above a certain

threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Optical Interconnection Network Interface - (A) Schematic

of the Optical Interconnection Network Interface showing the Myri-

com 10 GE card, QSFP, top level logic of on the Stratix II FPGA

and (B) photographs of the components used to build the set up,

including the Stratix II Development board . . . . . . . . . . . . . 35

3.3 Block Diagram of Optical-WiMax Test Bed - The architec-

ture setup. Video from the client is dynamically streamed through

the WiMAX basestation, transmitted over a VLAN and through

an O-NIC and WDM encoded on the optical network, and then

decoded at the end node. This process is transparent to the end

users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Software Stack - UDP packets are streamed from the Client using

VLC. The packets reach the base station and are processed by the

NetServ application module. The module polls for the downstream

RSSI value (distance of client from the base station) periodically

and modifies the packet changing the destination IP based on the

RSSI value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Optical-WiMax Test Bed - The physical network setup. A

Vertex IV FPGA is used as the Optical-Network Interface Card

(ONIC) and modulators are used to encode the WDM striped data. 39

3.6 Optical-WiMax Results- Eyes - the output eye diagrams for

CH36-CH39 of the WiMAX generated video. . . . . . . . . . . . 40

vi



LIST OF FIGURES

3.7 Optical-WiMax Results - At the end node, the CPU is listening

on the two IP ports. The VLC video packets can been seen switch-

ing from the lower RSSI value IP destination to the stronger RSSI

valute IP destination after being streamed through the WiMax

base station, a VLAN and a transparent optical network. . . . . . 41

4.1 Picture of OCRM - A picture of the OCRM module featuring

a Altera Stratix IV FPGA, DDR3, 10/100 Mb/s ethernet port, bi-

directional transceivers, expansion ports for daughter cards, and

MICTOR GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Diagram Overlaying Picture of OCRM - A diagram of the

OCRM overlaying a photograph of the module identifying the lo-

cations of the Altera Stratix IV FPGA, the DDR3, 10/100 Mb/s

ethernet port, bi-directional transceivers, expansion ports and the

MICTOR GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Experimental Set-up - FPGA A modulates four payload chan-

nels and four network control wavelengths over a 2x2 actively

switched network test-bed. FPGA B and the BERT receive these

payloads from the optical network using four PIN-TIA receivers. . 50

4.4 Message Format of XOR Phase-encoded Header - Low-

speed header wavelengths are phase-encoded and sampled on the

positive edge of a phase-offset sample clock. These header wave-

lengths are combined with high-speed payload wavelengths using

WDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Photograph of Experimental Set-up - FPGA A modulates

four payload channels and four network control wavelengths from

the laser source trays over a 2x2 actively switched network test-

bed. FPGA B and the BERT receive these payloads from the

optical network using four PIN-TIA/LA receivers. . . . . . . . . . 52

4.6 XOR Phase Encoded Header - XOR-Phase-encoded header

network control- for (a) switch to output A (b) multicast (c) switch

to output B and (d) both off . . . . . . . . . . . . . . . . . . . . 53

vii



LIST OF FIGURES

4.7 Packet Routing - input and output Packets when (a) switch to

output A (b) multicast (c) switch to output . . . . . . . . . . . . 54

5.1 Architectural Design - (A) CPU nodes with separate optically-

connected hardware accelerator nodes that can be dynamically

configured. The hardware modules could either be configured as a

scheme where (B) the hardware accelerators are organized as a cen-

tral bank or (C) each CPU has a dedicated hardware accelerator

that it rents out to the system when not in use. . . . . . . . . . . 58

5.2 Experimental Setup - FPGA 0 acts as the CPU emulator and

modulates four payloads and four network control wavelengths over

a 4x4 actively switched network testbed. The packets traverse a

bidirectional optical network that utilizes a wavelength-stripped

Phase-encoded header (see Fig. 2.). FPGAs A, B. and C act as the

hardware accelerator nodes. They receive these payloads from the

optical network and send an error count on a unique wavelength.

FPGA 0 reads these wavelengths and confirms error-free propagation. 60

5.3 PRBS generated using Linear Feedback Shift Registers -

A 40-bit PRBS generator. The XNOR gate provides feedback to

the registers are it shifts from right to left. The maximal sequence

consists of every possible state. . . . . . . . . . . . . . . . . . . . 61

5.4 Phase-encoded header design scheme - On the positive edge

of the sample clock, which is time delayed, the output SOAs are

controlled by the state of their control bit. This allows the system

to individually control each output port and allows for a logical

multicast. In these scenarios, this system would multicast, switch

to A and B, and turn all the ports off, respectively. . . . . . . . . 63

5.5 Data Packet Switching - Switching of a 100 us packet through

the network in a multicast, a switch to A and B, and all off. The

input packet can be seen in the top box, while the optical outputs

can be seen in each scenario in the lower boxes. . . . . . . . . . . 64

viii



List of Tables

2.1 Wavelength-striped header logic table - When the frame wave-

length is valid, the output SOAs are controlled by their control bit.

In the above table, these bits are labeled A and B. The logic ex-

plains what nodes would be switched to in each scenario. This

combinational logic implementation allows for simplified logic in

the CPLD. In later work, this scheme was modified to allow for

fast switching of longer packet. . . . . . . . . . . . . . . . . . . . 28

3.1 Logic for wavelength-striped control - Whenever the Frame

address bit is on, indicating a valid packet, the address bit controls

the destination address, indicating a switch to node A or node B

(1 or 0, respectively) . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 XOR Phase-encoded Header logic table - On the positive

edge of the sample clock, which is time delayed, the output SOAs

are controlled by an XOR of their control bit with the frame bit. In

the above table, these bits are labeled A and B. The logic explains

what Nodes would be switched to in each scenario. This state is

held until the next positive edge of the sample clock. . . . . . . . 51

5.1 Phase-encoded Header logic table - On the positive edge of

the sample clock, which is time delayed, the output SOAs are con-

trolled by the state of their control bit. In the above table, these

bits are labeled A2, A1, and A0. The logic explains what Nodes

would be switched to in each scenario. This state is held until the

next positive edge of the sample clock . . . . . . . . . . . . . . . 62

ix



Glossary

3D Three Dimensional

ASIC Application-specific Integrated

Circuit

BER Bit Error Rate

BERT Bit Error Rate Tester

CAPEX Capital Expenditure

CMOS Complementary Metal Oxide

Semiconductor

CPLD Complex Programmable Logic

Device

CPU Central Processing Unit

CSA Continuous Spectrum Analyzer

DaaS Data as a Service

DIMM Dual In-line Memory Module

E-O Electrical-Optical

FDL Fiber Delay Line

FFP Floating Point Processor

FLOPS Floating Point Operation per Sec-

ond

FPGA Field-Programmable Gate Array

FPP Floating Point Processing

GaaS Gaming as a Service

GE Gigabit Ethernet

GPIO General Purpose Input Output

GPP General Purpose Processing

GPU Graphics Processing Unit

HaaS Hardware as a Service

HDL Hardware Description Language

HHPC Heterogenous High Performance

Computer

HPC High-Performance Computing

I/O Input Output

ITU International Telecommunications

Union

LA Limiting Amplifier

LAN Local Area Network

LiNbO3 Lithium Niobate

MAC Media Access Control

MCM Multichip Module

MEMs Microelectromechanical systems

MICTOR Matched Impedance Connec-

TOR

NoC Network on Chip

O-E Optical-Electrical

OCHA Optically Connected Hardware

Accelerators

OCRM Optically Connected Resource

Module

OEO Optical-Electronic-Optical

OIN Optical Interconnection Network

OPEX Operating Expenditure

OSA Optical Spectrum Analyzer

x



GLOSSARY

PCIe Peripheral Component Intercon-

nect Express

PD Photo Diode

PHY Physical Layer

PIN P-i-n photodiode

PLL Phase Lock Loop

PM Phase Modulator

PPG Pulsed Pattern Generator

PRBS Psuedo-random Bit Sequence

QSFP Quad Small Form-factor Plug-

gable

RSSI Received Signal Strength Indica-

tion

SaaS Software as a Service

SerDes Serializer-Deserializer

SMF Single-mode fiber

SOA Semiconductor Optical Amplifier

SQL Structured Query Language

TIA Trans Impedance Amplifier

TL Tunable Laser

TLB Translation Lookaside Buffer

UDP User Datagram Protocol

VLAN Virtual Local Area Network

WDM Wavelength Division Multiplexing

WiMax Worldwide Interoperability for

Microwave Access

xi



Relevant Author Publications

� C. Chen, J. Chan, H. Wang, K. Bergman, ”A Photonic Interconnection Net-

work for Hardware Accelerator Enabled Utility Computing,” Optical Intercon-

nects Conference 2013 WA2 (May 2013).

� H. Wang, C. Chen, K. Sripanidkulchai, S. Sahu, K. Bergman, ”Dynamically

Reconfigurable Photonic Resources for Optically Connected Data Center Net-

works,” Optical Fiber Communication Conference (OFC) 2012 OTu1B.2 (Mar

2012).

� A. S. Garg, H. Wang, C. Chen, K. Bergman, ”Experimental Demonstration

of Attenuation-Based All-Optical Time-To-Live Indicator,” ECOC Technical

Digest 2011 We.10.P1.42 (Jul 27, 2011).

� M. S. Wang, A. Wang, B. G. Bathula, C. P. Lai, I. Baldine, C. Chen, D.

Majumder, D. Gurkan, G. Rouskas, R. Dutta, K. Bergman, ”Demonstration

of QoS-Aware Video Streaming over a Metro-Scale Optical Network Using a

Cross-Layer Architectural Design,” National Fiber Optic Engineers Conference

(NFOEC) NThC4 (Mar 2011).

xii



Acknowledgements

The adventure that is graduate school is a long and winding one, and in my

case, at least, took place over some of the most defining years of my life. However,

learning how to be a scientist and engineer was only a small percentage of the

knowledge that I gained at Columbia. For a lack of a better phrase, I became a

grown up in graduate school. I learned a great deal these past six years, and to

the many people that helped me get to this point, thank you from the bottom of

my heart.

First and foremost, my advisor, Dr. Keren Bergman, deserves the most credit.

Your guidance and support kept me motivated throughout the highs and lows of

my graduate school years. You were always available when I needed you, steered

me when I was wondering off course, and most importantly, never lost faith in

me, even if I did. Like the best advisors, you knew when to push me and when

to let me discover on my own, and trained me to be a scientist and engineer.

Thank you for all the group meetings, lab dinners, celebrations, and above all,

thank you for the past six years. Without you I certainly would not have gotten

to where I am today.

Secondly, to my parents, John and Sue Chen. To my hero and father, John

Chen, to whom this dissertation is dedicated, thank you. Even though you missed

seeing me complete this work by a mere 6 months, I know that I would not be

where I am today without you. Your unyielding support, advice, and guidance

were what drove me throughout the past six years and to which I owe to greatest

debt. I hope you know, wherever you are, that you are still a guiding force in my

life, and will forever strive to make you proud. To my mom, Sue Chen, while we

are different in many ways, and at times, you didn’t understand what I did in

lab all day, you have always been there for me in anyway you can, and that has

meant the world.



To the staff of the Electrical Engineering Department, both past and present,

you have truly be the most supportive and greatest group of people I have ever

encountered. Specifically, I would like to thank Elsa Sanchez, whom I affection-

ately refer to as my Electrical Engineering department mommy, since my first

day on campus, you have been my biggest cheerleader, a great listener, and an

amazing champion. I will forever be thankful to the great community in Electrical

Engineering we build in my years here.

I would like to thank the dissertation committee members, Professors Deba-

sis Mitra, Gil Zussman, Dan Kilper, and Luca Carloni, who have provided me

valuable input, both directly, and through their students, over the course of my

graduate studies. In addition, I thank Professor Heinz and Professor Christine

Hendon (nee Flemming) for their support and encouragement of our OSA/SPIE

student chapter through the years. I would like to thank Dean Ellie Bastani,

Dean Jonathan Stark, Dr. Jennifer Piro, Dr. Karen Singleton, and Dean Carlos

J. Alonso for their support during my years active in graduate student government

at Columbia.

I am indebted to Howard Wang, Dan Brunina, Caroline Lai, Noam Ophir, and

Johnnie Chan, whom I affectionately refer to as my academic older brothers and

sisters, for their mentorship early in my graduate career and throughout its com-

pletion. I am grateful to Atiyah Ahsan, Jan Janak, Wenjia Zhang, Elliot Katz,

and Berk Birand for their assistance in the work that comprises this dissertation,

and thankful to all of the members of the Lightwave Research Laboratory, past

and present, for their collaboration and friendship.

Additionally, I would like to thank Robert Margolies, Atiyah Ahsan, and Lee

Zhu (The 815 crew) for being my officemates, colleagues, and friends during my

studies at Columbia. From Qualifying Exams to Dissertation Defenses, we faced

it all together. We have shared the same office for the better part of five years,

and my experiences here would have been vastly less fulfilling without you all as

part of them.

To all my friends and colleagues that made this adventure the amazing journey

it has been, thank you. Thank you for coming to the parties I organize and

humoring me when I tell you I can play basketball, and going to trivia with me,

and dim sum trips to Chinatown, and weekends at the beach and the hundreds



of other adventures we had together. These are some of my favorite memories of

graduate school (besides the research, of course) and without you all, it certainly

would not have been as great as it was.

Lastly, I would like to thank and acknowledge the National Science Foun-

dation, and the Engineering Research Center for Integratted Access Networks

(CIAN) for fellowship support; the Wei Family Foundation and Neil and Mandy

Grossman for scholarship support; and the Institute of Electrical and Electron-

ics Engineers, SPIE - The International Society for Optical Engineering, OSA-

The Optical Society, and GENI- Global Environment for Network Innovations

for travel support throughout the course of my graduate studies.

Special thanks to Intersect360 Research which provided copies of their reports

for use in this dissertation.

”Live as if you were to die tomorrow, learn as if you were to live forever.”

Thank you all.

Cathy Chen

New York, NY

Spring 2015



To...

My Inspiration and Hero

John Chen, in memorium

Best. Daddy. Ever.



Chapter 1

Introduction

The rise of high-performance computing and cloud computing models has brought

with it a trend towards utility computing. These processing-as-a-service systems

offer many advantages over traditional computing models, and have increasingly

utilized specialized hardware acceleration to increase computation efficiencies.

However, today’s electronic networks have limited the performance of these het-

erogeneous systems due to low bandwidth densities, distance energy dissipation,

and data-rate-dependent energy depletion [4]. Consequently, specialized hard-

ware has been limited to physically close locations in the utility architecture.

However, oftentimes, the location, and thereby function of the hardware acceler-

ation is a application-specific problem [4, 5].

Many systems are now held back by the network latency [1], spending much

of the compute time waiting for data to be moved around the system. The inter-

connection network is becoming a bottleneck in efficiency in heterogeneous utility

computing systems, causing increased latency in compute times. Communication

between the CPU and hardware accelerators must be high bandwidth, low la-

tency, and energy efficient [6]. While it is feasible for electronic interconnection

networks to reach per-channel data rates up to 25 Gb/s [7], the power dissipa-

tion at these high bandwidths becomes overwhelming and contributes to increase

overall system cost and complexity.

In contrast with current electronic designs, the large bandwidth-distance prod-

uct enabled by an optical interconnect to the hardware accelerators can provide

the bandwidth, latency, and efficiency necessary to support dynamic allocation
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via an interconnection network. Thusly, a photonic interconnection network for

heterogeneous computing is a optimal solution to current network limitations

and computing efficiencies. The design maintains the through puts required by

CPU-accelerator communications, and can enable the scaling of processing capac-

ity by allowing a CPU to dynamically use more accelerators than are accessible

electronically.

1.1 Large-Scale Utility Computing

Large-Scale Computing systems like High Performance Computing and Cloud

Computing models allow used access to computing resources outside the tradi-

tional Capital Expenditure (CAPEX) model of buying computing resources that

depreciate over a period of time. They instead move toward an Operating Ex-

pense (OPEX) model, in which a shared infrastructure is used in a pay-per-use

model similar to traditional utilities like water or electricity [5].

Consequently known as utility computing, from a hardware allocation and

pricing perspective, utility systems offer new aspects to consider in computing

models. Firstly is the appearance of infinite computing resources that are avail-

able on-demand, that are quick enough to follow load surges, that eliminate the

need for computing users to plan far ahead for provisioning.

Secondly, there is the elimination of up-front commitments to hardware re-

sources by users, allowing companies or individuals to start small and increase

hardware resources in cases when there is an increase in need. Additionally, is the

ability to pay for computing resources on a short-term basis, and release them

when not in use, thereby rewarding conservation [8]. Utility computing offers

many advantages over traditional General Purpose Processing (GPP) models, al-

lowing for the parallelization of a workload of an application, as well as being

faster, more efficient, and cost effective [8].

1.1.1 High-Performance Computing

High-Performance Computers (HPCs), also known as supercomputers, are com-

puters that are designed for optimized processing capacity, typically for calculation-
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intensive operations in data-intensive research fields such as particle physics, ge-

ographic information systems, and biology [9]. Supercomputers today employ

tens of thousands of processors to achieve targeted performance metrics, rated in

floating-point operations per second (FLOPS). The current world record holder

is the Tianhe-2 machine in Guangzhou, China with a peak performance of 22.96

PetaFLOPS. And, if current trends continue (see Figure 1.1), it is feasible an

exa-scale machine will exist in the near future [10].

Figure 1.1: Performance of Top500 HPC Systems - The Performance (in

FLOPs) of the first and 500th supercomputers on the Top500 list. As well as the

sum of the two together. If these trends continue, an ExaFLOP machine could be

possible in the next 5-10 years. Source: Top500.org
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In many HPC systems, limitations in I/O performance are reshaping plat-

forms, and as a result, hardware accelerators (see Section 1.1.3) and optical in-

terconnects are propelling new architecture designs [11]. Channel data rates for

off-chip interconnects have been steadily increasing in response to system needs,

in order to improve cost per transported bit, power per transported bit and to

meet bandwidth density requirements for wiring and area density. However, elec-

trical interconnects become more difficult to scale past 10 Gb/s, due to frequency

depend losses, frequency resonance effects, and crosstalk. Copper traces suffer

from larger losses at higher frequencies due to the skin effect and dielectric losses

[12].

Mitigating the issue with larger, fatter wiring exacerbates wiring density and

routing problems. Optical interconnects, on the other hand, do not suffer from

such strong signal degradation effects. They also provide other benefits such as

smaller connector size, reducing cable bulk, and reduced electromagnetic interfer-

ence. Due to the benefits of optical interconnects, the use of optics in large-scale

HPC systems is increasing [12], in fact, the number of optical channels in a sin-

gle HPC super computing system can be on par with the worldwide volume in

parallel optical interconnects in a few years.

IBM’s Power7-chip based Power 775 super computing system is an example on

such system that is leveraging the advantages of optical interconnects, integrating

a fiber cable optical backplane within the rack as well as for the rack-to-rack

cluster fabric. Optics modules in the Power 775 are located on the same first

level package as router chips, on a glass-ceramic multichip module (MCM). The

MCM contains 28 transmit and receive modules with 12x10 Gb/s capabilities.

These MCMs are connected electronically to the microprocessor MCMs on the

same card and optically ton the router MCM. Figure 1.2 show one side of the

system card, with eight router chip MCMs and their associated optics [12].

1.1.2 Cloud Computing

Clouding computing is quickly emerging as a resources for many work flows due

to its ability to meet the needs of numerous diverse costumers [13]. From search

engines to video streaming and cloud computing applications, the cloud is capable
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Figure 1.2: Optical Interconnects in IBM Power 775 - An IBM Power

775 system drawer, with eight router multichip modules (MCMs), each with 28

transmit and receive modules, with 12x10 Gb/s bandwidth. The inset shows the

underlying glass-ceramic substrate. Source: IBM
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of running every data-intensive computations that require a high level of com-

munication [14]. This architectural model has led to a direct shift in recent years

to on-demand computing services like Hardware as a Service (HaaS), Data as a

Service (DaaS), Software as a Service (SaaS), and Gaming as a Service (GaaS)

[1, 8].

HaaS emerged as a result of advances in hardware virtualization, usage meter,

pricing, and IT automation, and provides customers with scalable and manage-

able hardware as needed, examples include Amazon’s EC2, IBM’s Blue Cloud

project, Nimbus, Eucalyptus, and Enomalism [15]. Nvidia’s GaaS platform,

NVIDIA Grid provides high-quality multi-device gaming with less hassle, and

click-to-play simplicity, with no need to purchase new gaming hardware, game

patches, or digital downloads needed [1, 16]. In SaaS, applications that are tradi-

tionally desktop based, like word processing and spreadsheets, and move them to

the cloud, alleviating the customer of the burden of software maintenance, and

simplifying testing and development for the provider [17].

According to research from IBM, 85 percent of new software today is being

built for the cloud. One-quarter of the world’s applications will be available on

the cloud by 2016, and almost three-quarters of developers say that they are using

the cloud in applications they are developing now [18]. Recently, several cases of

cloud computing being used to solve mobile computing issues have been seen.

Current mobile computing applications are demanding compute intensive ca-

pabilities like natural language processing, computer vision, augmented reality,

and speech recognition. These demands and computations are not being per-

formed in the mobile devices themselves, but rather in the cloud. Amazon’s Silk

browser is an example of mobile applications that leverage the cloud. Silk is a

”cloud accelerated” Web browser, where the software resides both on the Kindle

as well as Amazon’s EC2 cloud. Silk divided the labor of a page request between

the mobil hardware and the Amazon E2, looking at factors like network condi-

tions and location of content. As a whole these applications are known as mobile

cloud computing applications (mCloud)[19].

Due to the diverse and data-intensive nature of cloud applications, high inter-

action is needed between servers. This requirement poses a significant challenge

to the networking in data centers, needing to create interconnection networks
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with high bandwidth and low latency [14]. Networks in cloud computing systems

must improve to sustain increasing network traffic nodes, in addition to keeping

the total power consumption inside the rack almost the same, due to thermal

constraints [14].

Recent developments in cloud architectures have focused on improving the

ratio of performance to cost, mainly by addressing the physical-layer technology

within the network. High-radix microelectromechanical systems (MEMs) based

optical circuit switches have been proposed for use in data centers in cloud com-

puting [20, 21]. MEMs are attractive due to their energy efficiency and bandwidth

density of optics when compared to electronic switches. However, MEMs switches

have a relatively high latency, leading to inflexibility in network topologies. More-

over, MEMs based approaches are inadequate for diver and unpredictable traffic

in cloud computing applications and thusly, additional physical-layer advances

are necessary for next-generation cloud computing systems.

1.1.3 Heterogeneous Utility Computing

These large systems are quickly becoming heterogeneous in design, and next-

generation large-scale computing systems must leverage novel physical-layer tech-

nologies to close the network latency gap, enabling Large-Scale Systems to reach

their full potential. By leveraging economies of scale and optimizing resource

utilization, utility computing is beneficial to both operators as well as the end

users, allowing for lower costs, higher efficiencies, greater flexibility and scalabil-

ity in the utilization of hardware resources [22]. Computational and data centers

are often limited by power density, efficiency, and computer density, and while

GPP microprocessors are working toward improving power efficiencies, heteroge-

neous processing (in the form of hardware accelerators) can provide an order of

magnitude improvement in these metrics[23].

Beyond the ability to offer massive parallelization, specialized computation

hardware can be used to accelerate tasks such as regular expressions evaluation,

linear algebra solving, or digital signal processing (all common computations in

these utility machines). As a result, the use of hardware acceleration (specialized

hardware for specific computational tasks) has emerged as a critical architectural
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entity [4]. Heterogeneous systems show a lot of promise by combining the bene-

fits of conventional architectures with those of specialized accelerators [24]. Not

only are these cloud computing systems able to parallelize the workload of an

application across multiple processors, they can also offer specialized hardware

to off-load and accelerate programming execution [6].

Following the trend of acceleration adoption in the past several years, this

year, more than half of newly installed systems will incorporate accelerators as

HPC system operators move from the initial ”heat seeker” phase of technological

innovation toward the early adopter phase. The large numbers seen in this de-

ployment phase are an indication of the high user expectations for performance

gains relative to CPUs [11].

Figure 1.3: Acceleration in HPC - Percentage of High Performance Computing

Systems (surveyed by Intersect360 Research with Accelerators from 2009 to 2013.

Between systems installed in 2011 and 2012, there was a doubling of systems with

accelerators, in 2013 this increased by another 3%. Source: Intersect360 Research

Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FP-

GAs), Floating Point Processing (FPP), Regular Expressions hardware, and other

forms of hardware acceleration are already being used commercially in industry.
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Known as heterogeneous computing, these systems offer users a unique platform

for computation that traditional Personal Computers can’t offer. Using different

kinds of processors - x86, CPUs, GPUs, FPGAs, Encryption engines - in coopera-

tion on a computing task in a pay-per-use systems creates an ecosystem for utility

computing operators to invited in specialized hardware that would be inefficient

in traditional non-utility computing models. As seen in Figure 1.6 between 2012

and 2013, Intersect360 Research’s High Performance Computing (HPC) User Site

Census found that the percentage of High Performance Computing Systems with

Accelerators increased from 24 percent to 44 percent [2, 25].

Additionally, in HPCs, the number of accelerators per systems is increasing.

This increase is indicative of HPC sites moving from a phase of testing the concept

of acceleration, but rather putting accelerators into real problems, at times large

problem sets. From 2013 to 2014, of the systems surveyed by Interset360, the

average number of accelerators per systems was 121, as compared to 58 in 2013

reports (excluding outlier systems of more than 2,000 compute nodes and single

systems with more than 1,000 accelerators per system [25].

The Department of Defense’s Heterogeneous High Performance Computer

(HHPC) combines 48 Pentium4 Xeon nodes with a 12 million gate Annapolis

Microsystems Wildstar FPGA, using it to accelerate the parsing for Joint Bat-

tlespace Infosphere pub-sub brokering from 2 ms to 14 us using the FPGA [26].

The HHPC sustained a rate of 34 trillion operations per second on 48 nodes

and one FPGA, comparable to the top HPC at the time, the Earth Simulator in

Japan, which had a peak rate of 36 trillion operations per second, on 640 nodes.

1.2 Hardware Acceleration

Hardware Accelerators are compute nodes that are faster at performing specific

calculations than general purpose processors. Computation kernels that are often

found in cloud computing algorithms, such as pattern matching and digital sig-

nal processing, can greatly benefit from hardware acceleration.Utility computing

systems offer a unique platform for specialized hardware. Known as hardware

acceleration, these units are build not to compute any task, as General Purpose

9



1.2 Hardware Acceleration

Processing is, but rather to compute specific tasks or to work on specific data

sets.

The GPU is an example of such a hardware system. GPUs are specially

designed to manipulate and create data sets specific to graphics processing. Re-

sultantly, these hardware accelerators offer large parallel computing capabilities.

Many compute tasks and applications with highly parallel data manipulation, like

those algorithms found in Monte Carlo simulations in financial analysis and video

game graphics rendering in Gaming as a Service (GaaS), are perfectly aligned for

hardware acceleration on GPUs.GPUs, Floating Point Processers, and Regular

Expressions Hardware are all forms of Application Specific Integrated Circuits

(ASIC) that are specially designed for computationally intensive software code.

Hardware accelerators are much faster than software, at the expense of taking up

more space and specialization to a specific task.

In the financial services industry, as firms push towards executing trades at

faster speeds, many are turning to GPUs to get an extra edge [6]. There is a

200-300 percent increase in performance in GPU/CPU systems when compared

to a single x86 core. These systems are lower latency, consume less power and

deliver higher performance for the same power. As seen in 1.5, Murex has been

able to acheive 150x speedup using Nvidia GPUs in when compared to a single

core Xenon processor [2].

The NVIDIA Corporation recently announced their GPU-accelerated Gaming

as a Service (GaaS) system (Cloud gaming), NVIDIA GRID. GaaS allows for the

game to be rendered on a cloud system, and design scheme known as any-device

gaming. GRID allows for high-quality, low latency, multi device gaming on any

PC, Tablet, smartphone or television. Additionally, anytime accessibility to a

library of gaming titles allows the game to be saved on the cloud, so playing and

continuing to play games is device agnostic. These systems also eliminate hard-

ware setups, game discs, digital downloads game installations and game patches.

This system has been proven to achieve a 30 ms reduction in latency on the

NVIDIA GRID platform [1]. In Grid, each server (pictured in figure 1.4) con-

tains 12 GPUs, 20 servers are packed into a GRID rack, equaling the computing

power of 700 Xbox 360s.
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Figure 1.4: Photograph of NVIDIA GIRD Server - Each server contains 12

GPUs, 20 of these servers are packed into a single GRID Gaming Rack, which in

turn is capable of 200 TFLOPS of computing (equivalent to 700 Xbox 360s) [1].

The Field Programmable Gate Array (FPGA) can also be used in hetero-

geneous systems to provide direct implementation of an algorithm in hardware.

The FPGA provides this ability with custom logic arrays and programmable logic

devices, though this comes at the expense of logic speed and density. Though,

modern FPGAs provide very-large logic arrays, at reasonable clock speeds [27, 28].

1.2.1 Location

Oftentimes, the location and function of the hardware accelerator is task-dependent.

Where you place the accelerator and what you have it do is heavily influenced by

the situation. One such example is database acceleration - the SQL domain-

by aggregation can be DRAM-limited, cache-bound, TLB-prefetch-bound, or
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Figure 1.5: GPU-acceleration Speed Up - Time to price a 15 year cancellable

range accrual on a Constant Maturity Swap Spread, using a 2-factor Heath-Jarrow-

Morton model with 1 million Monte Carlo simulation paths. The model uses a full

term structure for volatilities and includes calibration of correlations. [2].

instruction-bound depending on the cardinality, the particular data set, and the

operations you are performing [4]. An aggregation operation spanning many disk

drives could benefit from accelerators that decompress, formate and select rel-

evant field as a flow-through process, but another type of database operation

could require the entire data set to be streamed through caches, and thus need

12



1.2 Hardware Acceleration

accelerators to process as CPUs and FPGAs. As data sets and tasks change, one

may want to rethink both location and function of accelerators [4].

Communication between the Central Processing Unit (CPU) and these hard-

ware accelerators must be high bandwidth, low latency, and energy efficient [3].

Due to these demands and the power limitations associated with high-speed elec-

tronic communications over long distances, accelerators must be placed physically

close to the CPU (localized on the motherboard). This architectural limitation

severely constrains the number of accelerators each CPU can directly access (only

those local to it), and can lead to the under-utilization of these accelerators (cant

access more accelerators than those local to it) [3].

1.2.2 Communication

JPEG
encoding

Figure 1.6: JPEGs in Facebook - Illustration of the JPEG encoding in Face-

book data centers. Each picture that is uploaded is regenerated as 4 JPEGs of

varying sizes, for use in various parts of the sight. Source: Facebook

As these systems grow, the interconnect is becoming a bottleneck that limits

the speed of computation [8]. Communication between the Central Processing

Unit (CPU) and these hardware accelerators must be high bandwidth, low la-

tency, and energy efficient. The Peripheral Component Interconnect Express

(PCIe) [29] protocol used in many GPU platforms has a peak capacity of 2 GB/s

per lane (in each direction). Typical GPU systems require 16-32 lanes (32-64

GB/s) to accommodate their bandwidth needs. In order to strive towards zero

latency, market data is distributed uncompressed, driving applications toward

terabit networking [30].
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The input/output (I/O) interface (ie. PCIe) of a processor chip is a well

suited interface point for architectures are paired with general-purpose processing

cores, and allow for standard server models to be augmented with application-

specific accelerators. However, traditional I/O attachment protocols introduce

significant device driver and operating system software latencies [31]. And, while

electronically interconnects can theoretically reach per-channel data rates of 25

Gb/s, the power dissipation at these bandwidths become overwhelming [32].In

NVIDIA GRID, a third of the game latency time is caused by the network in the

system [2].

Figure 1.7: Multicast in Spade Algorithm - Multicasting in the Spade Algo-

rithm for bargain discovery. Source: [3]

Additionally, current network models do not exploit the data parallelism found

in many utility computing applications.Multicasting data is an integral part of

many hardware accelerator architectures. As seen in Figure 1.7, in the SPADE

application for bargain discovery for example, Trade Quotes are multicast to a

Trade Filter and Quote Filter to help determine if the current asking price for a

stock is less than the volume-weighted average price [3]. In Facebook data centers,

every uploaded picture is encoded and saved as four jpegs of differing size for use

on various parts of the site [33]. Over 220 million new photos are uploaded to

Facebook per week, resulting in 25TB of additional data being generated a week

in these data centers.

Resultantly, in many of these heterogeneous systems, a large portion of the

processing time is now due to networking. As seen in Fig. 1.9, in the NVIDIA

GRID system, approximately a fourth of the overall gaming latency time is caused

by the networking within the architecture. Due to these demands and the power
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Figure 1.8: Power8 Die Photo - Die photo of the IBM Power8 chip, announced

in August of 2013, to be used by the OpenPOWER Foundation for use in big data

and cloud computing applications. The PCIe slot on the die can be seen in bright

green on the middle bottom of the chip. Source: IBM

limitations associated with high-speed electronic signaling over long distances, the

placement of such accelerators have been necessarily constrained to close physical

proximities to the CPU.

1.2.3 Programming Innovations

Various programming languages exist for CPUs, GPUs, FPGAs and various other

accelerators in isolation. OpenCL [34], CUDA [35], and OpenMP [36] are all

languages used in programming GPUs that are extensions of the C programming

language [37, 38]. In order to extract the high-performance benefits of these

systems a programmer must program in different languages and models. This

makes it hard for the programmer to work equally well on all aspects of an
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Figure 1.9: Gaming latency in NVIDIA GRID - Comparison of game latency

of NVIDIA GRID, Cloud Gen 1, and Console +TV game. The network (light

green) takes up approximately a fourth of the overall gaming latency time. Source:

NVIDIA Corp

application. Additionally, at current, very little attention is paid to the idea of

co-execution - the problem of arranging programming execution using multiple

distinct computing elements that work seamlessly together [37].

Co-execution requires that a programmer be able to do a number of things in

different languages. Namely, partition a program into tasks that are mapped to

specific processing nodes, schedule tasks on these computational elements, and

handle the communications between the computational elements, which requires

serializing data and preparing it for transmissions, routing data between pro-

cessing elements and receiving and deserializing data. This complexity if further

aggravated by the fact that some accelerators require very specific programming

to run efficiently. This places a large burden on programmers and had thus far,

in part limited the abilities and full potential of heterogeneous systems [37].
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However, recent innovations in this realm seek to improve these limitations.

One such compiler and runtime are IBM’s Liquid Metal, a compiler and run-

time for a programming language called Lime . Liquid Metal allows for the co-

execution of the resulting programming on CPUs and accelerators that include

GPUs and FPGAs, and allows for the use of a single programming language for

heterogeneous computing platforms [37]. When using Liquid Metal, a program

is presented as a representation that describes the computation as independent

but interconnected computational nodes. The end result after compilation is a

collection of artifacts for different architectures, labeled with the computational

node that is implemented.

Consequently, the runtime can then choose a number of functionally-equivalent

configurations depending on what nodes are available. With Liquid Metal, one

is no longer bound to static, premature partitioning of a problem, and runtime-

partitioning is not permanent, is adaptable to program workloads, phase changes,

availability of resources, and other dynamic features [37, 38]. Another tool in de-

velopment is LegUp, an open source high-level synthesis tool that aims to improve

the C to Verilog synthesis, making FPGA programming easier for software pro-

grammers [39].LegUp accepts standard C as an input and compiles the program

to a hybrid architecture containing an FPGA-based MIPS soft processor and

custom hardware accelerators [40].

1.3 The Computing-Optics Interface

The use of photonic technologies holds the potential to enable high-bandwidth

links with novel functionalities to reduce off-chip data access latency and power

dissipation [41]. Optical interconnects can not only achieve high per-channel data

rates, they can also significantly improve communication bandwidths through

wavelength-division multiplexing (WDM), and can support terabits-per-second

of optical band switching using single optical fiber [42].

While active optical cables have started the shift towards optics in comput-

ing, these implementations rely on traditional, inefficient electrical transceivers,

providing only moderate energy and performance advancements. Concurrently,
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the development of optical switching can significantly improve the overall perfor-

mance and energy efficiency of utility computing systems [43, 44, 45, 46].

By combining these distinct technologies of optical networks and computing,

maximal benefits can be achieved in future optically-enabled utility computing

systems. It is important to note that electronic technology in current micro-

processors has been optimized for short-distance, bursty communication, thereby

relying heavily on point-to-point links in which data is frequently buffered and

retransmitted. Contrastingly, a lack of optical buffering technology has resulted

in optical network technology development that utilize unique communication

protocols. As a result, there is no directly mapping of existing electronic sys-

tems to optical networking technologies. Therefore, it is necessarily to develop a

computing-optics interface that will be able to enable future processors to both

leverage the benefits of optical interconnects, while simultaneously minimizing

significant modifications to the surrounding processing technologies.

1.3.1 Optical Interconnection Networks

Optical Interconnection Networks (OINs) are an attractive solution to the com-

munication bottleneck (See: 1.2.1) within future large-scale computing systems

[44, 46, 47, 48]. Currently microelectromechanical system (MEMs) switches are

being considered for integration into data center architectures. However, due to

the inherent mechanical nature of MEMs based switches, and consequently their

high switching latency, these switches are unsuitable for most networks.

Semiconductor Optical Amplifiers (SOAs) on the other hand, have been demon-

strated to provide high-bandwidth, low-latency switching for optical switches

[45, 49]. Silicon photonic devices show great promise in their ability to provide

high-bandwidth, low-latency, and energy-efficient switches, and could then be

used to create large-scale optical networks [50]. However, silicon photonic tech-

nologies are still in its infancy and due to this immature state are not yet suitable

for creating large-scale networks. As a result, SOA-based OINs serve as the basis

for this dissertation. It should be noted that the developed protocols in this work

remain compatible with both SOA-based and silicon photonic switches.
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1.3.2 Optically Connected Hardware Accelerators

Heterogeneous Utility computing architectures are well suited for the deploy-

ment of optical interconnects, especially optical networks, due to performance

and energy requirement of hardware accelerated computing, as well as the nec-

essary flexibility needed in the network to support needed to support the inher-

ent data parallelism in traffic patterns, and the application-dependent location

and function of hardware accelerators. By leveraging the bandwidth-density and

distance-immunity of optics, optically connected hardware accelerators can allevi-

ate the electronic-interconnect constraints facing current heterogeneous systems.

Latency in optical links is purely a function of distance, therefore allowing ef-

ficient, transparent optical networks low access latency [51]. With these OINs,

delocalized, dynamically allocated hardware acceleration can be realized.

Processor 
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OCHA

OCHA

OCHA

OCHA

Optical Link
Optical Link

Optical Link

Optical Link

Optical Link
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Optical Link

Figure 1.10: Block Diagram of Optically Connected Hardware Accel-

erators - Block level schematic depicting how a next-generation heterogeneous

system can be connected to many optically-connected hardware accelerators across

an optical interconnection network.

There has been continuing work into alleviating the network latency in het-

erogeneous systems. In [31] the authors present CAPI, a Coherent Accelerator

Processor Interface that attaches the accelerator as a coherent CPU peer over the

I/O physical interface. Designed for the POWER8 platform, the CAPI provides

the capability for off-chip accelerators to be plugged into PCIe slots, participating

in the system memory coherence protocols and enabling the use of effective ad-

dresses to reference data structures in the same manner as applications running
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on the cores. This bypasses the costly driver and software I/O stacks used in

most systems impose a high overhead and a cumbersome communication model,

decreasing the speedup with heterogeneous systems could have.

Ongoing work into 3D heterogeneous computing integration at the chip level

shows promise. In [52], a scalable heterogeneous multi-core processor is presented

as 3D heterogeneous chip stacking of a CPU and reconfigurable multi-core accel-

erators in massive parallel computing. In this chip, the interconnect is a scalable

3D Network on Chip (NoC). In this work, a change in the number of stacked

accelerator chips can scale processor parallelism through an inductive-coupling

ThruChip Interface. This chip was fabricated at 65nm CMOS.

1.4 Scope

The primary contribution of this dissertation is the development and implemen-

tation of an OCHA system. In this system, the electronic bus between proces-

sor and accelerators is replaced by an optical interconnection network, thereby

allowing the delocalization of hardware accelerator resources. To achieve this,

processors and accelerators interface with local photonic transceivers. Moreover,

this work encompasses the creation of a novel optical-network-aware hardware

accelerator allocator that functions as the optic-computing interface, as well as a

novel switching protocol for a wavelength-stripped phase encoded header. A se-

ries of experiments is presented that characterize the OCHA systems across three

key metrics that must be addressed in next generation heterogeneous systems.

• Bandwidth - The low bandwidth-density of electrical interconnects [53]

limit hardware accelerator bandwidth. OCHA must allow a road map to-

wards larger, delocalized heterogeneous system architectures.

• Latency - The network latency in heterogeneous systems is a large part of

the overall system latency. Optical networks must be designed to minimized

additional latency when compared to a traditional electronic link.

• Efficiency - In many systems, the efficiency of the systems is directly corre-

lated to profit margins [4]. Depending on the industry and the application,
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1.4 Scope

efficiency can be defined differently. The speedups provided for optical in-

terconnected heterogeneous systems must compare in efficiency to electronic

systems.

This dissertation is organized as follows.

• Chapter 2 - This chapter details the optical network architecture utilized

throughout this dissertation. Optical networks are paramount to enabling

technology for future optically connected hardware accelerators (OCHA) in

utility computing systems. Here, the protocols and network functionalities

are analyzed with respect to their abilities and impact on future utility

computing systems.

• Chapter 3 - This chapter details initial work done in dynamic optical

interconnection networks. Next-generation mobile computing cloud appli-

cations will need to be user aware and be able to dynamically route data

and allocate resources as a function of location and network conditions of

the mobile client. In this chapter, a Wimax/Optical network testbed is

presented, utilizing the a Optical Interconnection Network Interface in con-

junction with a WiMax antenna and a VLAN connection to a transparent

WDM optical network.

• Chapter 4 - This chapter details initial work done to explore the multicas-

ting abilities of OCHA systems in the areas of bandwidth and latency. The

OCRM used in this work and the work presented in Chapter 5 is outlined

and detailed in this chapter. This is the first demonstration of a optical test

bed that is able to leverage the phase encoded header as a fast-switching

control of large hardware accelerator packets.

• Chapter 5 - In the work presented here, the OCHA network is demon-

strated as a bidirectional dynamically reconfigurable functional system.

This critical step demonstrates that the flexibility provided by optical in-

terconnects provides improved bandwidth, latency, and efficiency. In this

experiment we validate our proposed architecture with a FPGA-based bidi-

rectional emulation test bed. The optical packets generated by the FPGA
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1.4 Scope

are sent through a semiconductor optical amplifier (SOA)-based, wave-

length stripped, optical network, and utilizes a phase-encoded header for

routing.Additionally, it demonstrates the ability of optical interconnects to

provide novel architectures in heterogeneous computing.

• Chapter 6 - This chapter summarizes the contributions of this disserta-

tion and describes ongoing and future work towards developing OCHAs in

heterogeneous utility computing systems.
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Chapter 2

Optical Interconnection

Networks for Heterogeneous

Utility Computing

This chapter details the optical network architecture utilized throughout this dis-

sertation. Optical networks are paramount to enabling technology for future,

dynamically allocated, reconfigurable, and optically connected hardware acceler-

ators (OCHA) in utility computing systems. Here, the protocols and network

functionalities are analyzed with respect to their abilities and impact on future

utility computing systems.

2.1 Optical Network Design

The optical networks used throughout this dissertation makes use of SOA-based

optical switching nodes [54] to implement 2×2 or 4×4 switching fabric test beds.

The modular switching nodes can be linked together to create larger, multi-staged

networks. Utilizing a wavelength-stripped format for messages, this these switch-

ing node minimize latency by eliminating many inefficiencies in current switching

technologies, namely those caused by Optical-Electronic-Optical conversions.

Figure 2.1shows the wavelength-striped format that enables messages to be

transparently routed through the switching node. By using wavelength-striped

routing, routing is simplified and switching latency is minimized. In this scheme,
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2.1 Optical Network Design

routing information is encoded on header wavelengths that are combined with the

hardware accelerator data using WDM, as seen in Figure 2.2. Each header utilizes

a phase-encoded header (see section 4.4.1 or section 5.3.2 for control logic). This

system allows for dynamic switching to each destination node independently.

The switching node utilizes a broadcast-and-select architecture, the wavelength-

striped message enters the input port, where passive optical elements(eg. cou-

plers, filters, fiber) direct the appropriate header wavelength to low-speed (155-

Mb/s)photo detectors (PD) on the switch boards on the 30 side of the splitter.

The now-electrical header is then passed to simple, high-speed control logic that

in turn gates an SOA on or off. The SOAs act as a broadband optical amplifier

at each output port; the gain provided by the SOA restores power equivalent to

any optical losses incurred throughout the switching node.

Concurrently with this process, the payload data packet (70 side of splitter)

passes through a fiber delay line (FDL) that matches the time required to fil-

ter, receive, and process the aforementioned header information (approximately

10 ns). The FDL routes the payload data into the SOAs, and should the logic

indicate that the node is to be switched to, the SOA is enabled just-in-time to

allow transparent, low-latency routing. The control logic is implemented using

a complex programmable logic device (CPLD) [55] or an FPGA, depending on

the board used. The FPGA allows for more diverse and advanced network func-

tionality. Figure 2.3 shows and illustration of how the switching node could be

configured in a 3×3 network.

2.1.1 Switching Conventions

The photonic switching nodes outlined in 2.1 have been demonstrated to op-

erate as a packet switch [49], circuit switch [56], or hybrid packet and circuit

switches[57]. Wavelength-striped optical packet switching is achieved by modu-

lating the header wavelength such that they are consistent for the duration of

each packet, with some guard time at the beginning and end of the packet. In

this scheme, optical packets can range from tens of nanoseconds to milliseconds

in length, with a payload ranging from 10 Gb/s to 8×40 Gb/s WDM channels

per packet [58]. Table 2.1 indicates the combinational logic used in the CPLD to
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Figure 2.1: Photonic Switching Node- (A) Schematic and (B) photograph

of the SOA-based switching node - routing information is encoded on the header

wavelengths that are decoded through an OEO conversion, where a CPLD com-

putes the logic to control a number of SOAs. This scheme allows for the elimination

of many OEO conversions that limit current switching nodes.

control the SOAs. This protocol was modified in later work to create the phase
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Figure 2.2: Wavelength-Striped Message Format - Low-speed header

switching wavelengths (controlled by the GPIO MICTOR on the FPGA) are com-

bined with high-speed payload wavelengths using WDM

encoded header schemes detailed in Sections 4.4.1 and 5.3.2. An attractive in-

herent feature of optical interconnection networks, as illustrated in Section 2.1,

is the inherent ability to perform a multicast in the optical domain using passive

devices that can split the power of an input signal into several outputs [59].

OCHA systems may exhibit unpredictable communication patterns and ben-

efit greatly from quick switching abilities. Communication patterns also involve

messages of varying lengths. It is therefore desirable to make runtime decisions

regarding resource allocation and switching implementations.
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Figure 2.3: 3×3 switching - (A) Schematic of how the switching node would be

configured in a 3×3 set up, with an FPGA as the control logic and (B) photograph

of the 4x4 SOA-based switching node that this could be implemented on
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2.1 Optical Network Design

C B A Frame Output

X X X 0 No Packet

0 0 0 1 Valid Packet, ALL off

0 0 1 1 Switch to Node A

0 1 0 1 Switch to Node B

0 1 1 1 Switch to Node A and B

1 0 0 1 Switch to Node C

1 0 1 1 Switch to Node A and C

1 1 0 1 Switch to Node B and C

1 1 1 1 Switch to Node A, B, and C

Table 2.1: Wavelength-striped header logic table - When the frame wave-

length is valid, the output SOAs are controlled by their control bit. In the above

table, these bits are labeled A and B. The logic explains what nodes would be

switched to in each scenario. This combinational logic implementation allows for

simplified logic in the CPLD. In later work, this scheme was modified to allow for

fast switching of longer packet.

2.1.2 Scalability

In order for optical interconnection network to enable future computing systems

to achieve greater performance and scalability, high data rates and advanced

modulation formats must be adapted. Though the traditional non-return-to-zero

on-off keying (NRZ-OOK) is popular for it’s simplicity,differential-binary-phase-

shift keying (DPSK) has been seen as a potential improvement, due to it’s 3-dB

improved receiver sensitivity (with balanced detection) as compared to OOK.

These benefits become more apparent as data rates exceed 40 Gb/s and even 100

Gb/s, and the optical network elements begin to exceed the abilities of driver and

receiver electronic circuitry.

Next-generation large-scale systems will require optical interconnection net-

works that utilize high per-channel data rates and advanced modulation formats

that improved resilience and spectral efficiency. The photonic switching nodes

outline in 2.1 have been demonstrated to transmit 8x40Gb/s WDM packet across
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2.2 Implications for Heterogeneous Computing Systems

a 4x4 optical interconnection network test bed using OOK and DPSK [60]. These

experiments correctly routed 8x40 Gb/s data with error free operation (¡BER 10-

12) with best case power penalties of 1 dB for OOK and .52dB for DPSK streams.

2.2 Implications for Heterogeneous Computing

Systems

The latency characteristics of an optical interconnect approach to hardware accel-

eration is a critical issue to exam. Current networking latencies in heterogeneous

systems are already growing, additional latencies are not desirable. The trans-

parency of the photonic switching nodes reduces the overall latency to the time-of-

flight between a processor and accelerator. Each additional meter of single-mode

fiber (SMF) adds approximately 5 ns [51] of latency to the communications path.

And, while this may be negligible at a single rack, it may become problematic

for links that span large-scale computing systems. A goal of this OCHA design is

the minimize the accesses to accelerators that are more than a few meters away

(similar to the case of today’s electronic networks). One of the main advantages

of the OCHA systems is that it’s sole limitation is the latency caused by time-of-

flight. On the other hand, in electronic interconnects, communications distances

are limited by latency, power, bandwidth, and real estate (space on die/board).

In this dissertation, local hardware accelerators are the ones with the shortest

optical path.

The OIN described here enables the latency and bandwidth performance of

the OCHA system to meet the demands of heavily loaded heterogeneous utility

computing systems with hundreds to thousands of processors and accelerators.

Moreover, high-speed transceivers operate at high per-channel data rates, demon-

strated by 10 Gb/s, 25 Gb/s and the recently amended 40 and 100 Gb/s Ethernet

standards [61], and recently announced 400 Gb/s Ethernet [62]. Using multiple

of these high-speed transceivers with WDM creates the bandwidth density nec-

essary for OCHA nodes with bandwidth in the 100’s or 1000’s of gigabits per

seconds, on a single fiber. Many OCHA nodes could then be combined further

using an optical interconnection network with petabit system bandwidths.
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2.2 Implications for Heterogeneous Computing Systems

The efficiency of optical interconnects supports diverse applications and ef-

fects both compute and power efficiencies. The reconfigurability of the proposed

OCHA network supports many workloads and computational situations. Take for

example an application of cloud gaming, in which a user begins playing a game on

a small mobile platform with low connectivity on her way home, the application

could allocate her game stream to a GPU accelerator for graphics and physics

processing.

If sometime later the same cloud game is restarted on a Fibre-to-the-home

connected 4K display medium, the game could be reconfigured to 8 GPU acceler-

ators for processing. The system can be configured to allocate accelerators based

on availability and application specifics, including but not limited to connectivity,

calculation size, etc. Additionally, a web search application with less predictable

communications could offload processing to the cloud when a connection is strong,

but do more localize processing when the user jumps to a less strong connection.

The application specific functionality and location can also be address with

reconfiguration in OCHAs. An ASIC like a FPP could be configured in the optical

network to appear in different parts of a pipeline chain by reorganizing the optical

network. With a combination of FPGAs and optical networks, one could imagine

a system wherein the location and function of an accelerator was a runtime, or

close to runtime, allocation. The flexibility and computational possibilities of

this platform are enormous, opening heterogeneous computing systems a new

applications that were previously unattainable.

The network nodes would be configured to exploit the data parallelism in many

heterogeneous utility computing processes. In many applications, where a mul-

ticast of the same data is needed, as mentioned in Section 1.2.2, a processor can

simultaneously multicast data to multiple accelerators to perform different calcu-

lations on with a single accelerator access. Alternatively, the multicast-capable

OCHA system could be configures for resilience to tolerate a hardware failure of

an entire accelerator, or even accelerator node, while maintaining efficiency, the

use of multicasting can also be used to transmit along serval redundant paths to

the same destination node to ensure coherence.
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2.3 Discussion

2.3 Discussion

Optical interconnection networks are critical components of future optically-

connect heterogeneous systems that allow high-performance, energy-efficient inte-

grated optical links to leverage low-latency, transparent routing through the large

scale networks in next-generation heterogeneous utility computing systems. This

in turn, enables the deployment of OCHA systems with the necessary computing

capacity and bandwidth to mitigate the increasing network latency issues.

The optical network test bed components described in this chapter can pro-

vided low-latency optical network between processors and hardware accelerators.

For the remainder of this dissertation, the above optical network is used. Addi-

tional comments that were utilized are described in subsequent sections.
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Chapter 3

Dynamic Data on Optical

Interconnection Networks

This chapter details initial work done in dynamic optical interconnection net-

works, and preliminary work involving the wavelength-striped header packet for-

mat. Next-generation mobile computing cloud applications will need to be user

aware and be able to dynamically route data and allocate resources as a func-

tion of location and network conditions of the mobile client. In this chapter, a

Wimax/Optical network testbed is presented, utilizing the a Optical Intercon-

nection Network Interface in conjunction with a WiMax antenna and a VLAN

connection to a transparent WDM optical network.

This test bed dynamically changed the destination IP address of the packets

by looking at the received signal strength of the mobile user. In this work a

system was demonstrated that dynamically streams video data from a wireless

client through the WiMAX base station. The packets are processed in real time

by a netserv module, sent through a transparent WDM optical network, and

received by an end node that receives the pack and decodes the data into a video.

3.1 Background

Current mobile computing applications are demanding compute intensive capa-

bilities like natural language processing, computer vision, augmented reality, and
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3.1 Background

speech recognition [19]. These demands and computations are not being per-

formed in the mobile devices themselves, but rather in the cloud. According

to research from IBM, 85 percent of new software today is being built for the

cloud. One-quarter of the world’s applications will be available on the cloud by

2016, and almost three-quarters of developers say that they are using the cloud

in applications they are developing now [18].

Recently, several cases of cloud computing being used to solve mobile comput-

ing issues have been seen. Amazon’s Silk browser is an example of a mobile appli-

cation that leverages the cloud. Silk is a ”cloud accelerated” Web browser, where

the software resides both on the Kindle (wireless device) as well as Amazon’s

EC2 cloud. Silk divides the labor of a page request between the mobile hardware

and the Amazon E2 cloud computer, looking at factors like network conditions

and location of content to make decision on how to divide the workload. As

a whole these applications are known as mobile cloud computing applications

(mCloud)[19].

As these trends in mCloud continue, the cloud network will need to become

application and user aware. One way in which this can be achieved would be to

route data as a function of the end user’s signal strength. A simple way to measure

the location of a user is to look at the Received Signal Strength Indication (RSSI)

of a the received mobile radio signal. The higher the RSSI number, the stronger

the user’s signal, the lower the RSSI number, the weaker, and thus further away.

In this dynamic network, with applications in mobile gaming and augmented

reality, the RSSI value would be a factor in hardware accelerator allocation. As

illustrated in Figure 3.1, take for example, a system of GaaS, where a mobile

gamer with a weak RSSI (and thus poor video quality) was allocated a single

GPU for physics engine computations in their game, while another gamer, with

a must stronger RSSI (and thus better video quality) was allocated two or three

GPUs for physics engine computations. This would maximize resource allocation

in the cloud gaming system.
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3.2 Optical Interconnection Network Interface

Figure 3.1: Vision - (A) With an RSSI below the threshold value, the gamer is

allocated one GPU for a GaaS application, but as she nears the base station and

the RSSI increase (B) her game is dynamically streamed to two GPUs now that

she has a RSSI above a certain threshold

3.2 Optical Interconnection Network Interface

In order for heterogeneous systems to truly capitalize on the benefits of an optical

network, an efficient interface needs to support transparent interconnects between

electronic processors and the OIN. This interface must be high-bandwidth and

low-latency as well as represent itself as a switch that is compatible with standard

network protocols[63].

The Optical Interconnection Network Interface serves as a bridge between the

electronic protocols and the optical network protocols. The Network Interface

Card (NIC) is a specialized hardware component that connects to a CPU and

a OIN and provides transparent optical network communications, in that the

optical network is unseen to the electronic end nodes.

Ethernet (IEEE 802.3) [64], (abbreviated as 10GE for 10 Gigabit Ethernet)

originally a class of Local Area Network (LAN), has evolved into a large scale

computing networking standard. Given it’s prevalence in large scale computing,
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3.2 Optical Interconnection Network Interface

as well as it’s compatibility with TCP/IP, the Optical Interconnection Network

Interface contains a 10 GE NIC in an end host, a FPGA-based development board,

connect through a Quad Small Form-factor Pluggable (QSFP) cables that set up

a 4x3.125 Gb/s transparent connection. The Network interface takes Transport

Control Protocol data from a CPU running Linux. The data packet is re-encoded

into the wavelength-stripped packet outlined in section 2.1.

Myricom 10 GE 
Processor Chip

PCIe

QSFP Altera Transceiver
XAUI Mode TX/RX

Self-Defining 
Module

Virtual Network 
Function

Optical Interface Network

A)

B)

Figure 3.2: Optical Interconnection Network Interface - (A) Schematic

of the Optical Interconnection Network Interface showing the Myricom 10 GE

card, QSFP, top level logic of on the Stratix II FPGA and (B) photographs of the

components used to build the set up, including the Stratix II Development board

The Ethernet link originates in the Network Interconnection Card of a 64-bit

host computer, through a 10 Gb/s Myri-NIC interface. The Optical Network

Interface Card (ONIC) is implemented on an Altera Stratix II GX FPGA [65]

development board. Using a 10 Gigabit Media Independent Interface (between

the MAC and PHY layers of 10 GbE -XAUI Mode) transceiver where data is

de-serialized, aligned, 8b/10b decoded, and passed to self-defining modules.

The self-defining modules parse the Ethernet header information, transfer

clock domains and buffer the data packets. The parsed information is delivered
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to a virtual network function module and control of the optical switch is generated

through optical headers. Align/Sync/Idle sequences (K28.0, K28.3, and K28.5 in

8b/10b encoding control signals), are sent during channel idle time.

3.3 Experimental Set Up

In this experimental demonstration, Worldwide Interoperability for Microwave

Access (WiMax) wireless video packets were generated on a mobile device. As

the mobile user maneuvered around, the User Datagram Protocol (UDP) packets

were sent to the WiMax base station from the Client using the VideoLAN Client

(VLC)[66], a open source software multimedia player product developed by the

VideoLAN Project. The packets reached the base station and were processed by

a NetServ [67] application module. This module polled for the downstream RSSI

value (or the distance of the client from the base station) periodically. Based

on this value, the module would then modify the destination IP address of the

packet and send the packet on a VLAN through an Optical Network Interface

Card to a transparent WDM optical network.

3.3.1 WiMax Data Generation

WiMax refers to interoperable implementations of the IEEE 802.16 [68] family

of wireless-network standards. A WiMax-card enabled laptop computer, using

the VLC video client was used to live stream video data. The mobile node was

allowed to wonder within the range of WiMax antenna and base station, thus

varying the RSSI value of the video packets. Video captured by the camera of

the mobile node was encoded and immediately streamed though a WiMax card.

Video packets that were wirelessly streamed to a WiMax base station.

As seen in Figure 3.4 the software stack consisted of a Netserv module run-

ning on top of a Linux Kernal. The Netserv networking module [67]is a node

architecture for deploying in-network services in the next generation Internet.

Netserv allows for network nodes to implement network services as modules. In

this scheme, UDP packets are streamed from the client using VLC. The packets

reach the base station and are processed by the NetServ application module. The
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Figure 3.3: Block Diagram of Optical-WiMax Test Bed - The architecture

setup. Video from the client is dynamically streamed through the WiMAX bases-

tation, transmitted over a VLAN and through an O-NIC and WDM encoded on

the optical network, and then decoded at the end node. This process is transparent

to the end users.

module polls for the downstream RSSI value (distance of client from the base sta-

tion) periodically and modifies the packet changing the destination IP based on

the RSSI value, actively changing the IP destination as the RSSI value changes.

From the base station, the packets were sent of a Virual Local Area Network

(VLAN) to a computer host.

3.3.2 VLAN and ONIC

A VLAN is set up by technology services between the base station and host

computer. The host computer acts as a node in a cloud and relays the incoming

packets to the transparent optical network. Attached to this host computer is

a Myricom 10 GE card connected to the ONIC through a Quad Small Form-

factor Pluggable (QSFP). In the ONIC, the electronic signal was repackaged

into a optical network protocol package (as detailed in Section 2.1.1. With the

IP address being interpreted as an address signal and the valid packet being

identified by a framing wavelength. In this scheme, when the RSSI value is above
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3.3 Experimental Set Up

Figure 3.4: Software Stack - UDP packets are streamed from the Client us-

ing VLC. The packets reach the base station and are processed by the NetServ

application module. The module polls for the downstream RSSI value (distance

of client from the base station) periodically and modifies the packet changing the

destination IP based on the RSSI value.

a predefined threshold, and the packet is being sent, the framing wavelength is

on, and the IP address is changed to that of node A, which is interpreted by the

optical network as a 1.

On the contrary, if the RSSI value is below a predefined threshold, the IP ad-

dress is changed to node B, and interpreted by the optical network as a 0. Table

3.1 illustrates the logic of this scheme. In this architecture, the number of wave-

lengths needed would be N+1, wherein N is the number of nodes, a nominal cost

to the system. The wavelengths are modulated by Lithium Niobate modulators

(LiNbO3) to be translated into the optical domain. These routing wavelengths
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are combined with the WDM data/payload wavelengths produced by the ONIC

through a passive optical multiplexer. The WDM packets use Ch36-Ch39 ITU

[69] spacing with the Frame and Address using Ch27 and Ch53. Figure 3.5 illus-

trates the test bed set up.

Figure 3.5: Optical-WiMax Test Bed - The physical network setup. A Vertex

IV FPGA is used as the Optical-Network Interface Card (ONIC) and modulators

are used to encode the WDM striped data.

A Frame Output

0 0 No Packet

0 1 Packet Valid and switch to B

1 0 No Packet

1 1 Packet Valid and Switch to A

Table 3.1: Logic for wavelength-striped control - Whenever the Frame ad-

dress bit is on, indicating a valid packet, the address bit controls the destination

address, indicating a switch to node A or node B (1 or 0, respectively)

3.3.3 Results

VLC generated video was streamed wirelessly to a WiMax basestation. The

Netserve module actively modified the packet destination based on the RSSI
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value of the incoming packets. This can be seen in Figure 3.7, which shows a

screenshot of the two ports that the receive node is listening on. The video could

been seen switching from one port to another as the mobile client’s RSSI changed

to above the determined switching threshold. Figure 3.6 shows the output eyes

for all ITU [69] spaced channels, 36-39. The WDM optical packets had header

wavelengths that changed depending on the destination IP of the packet.

Timescale: 500 ps/div

Channel 36 Channel 37

Channel 38 Channel 39

Figure 3.6: Optical-WiMax Results- Eyes - the output eye diagrams for

CH36-CH39 of the WiMAX generated video.

The end node client actively listened on the two IP ports for incoming data

streams. As the mobile client’s RSSI value changed, the video stream could be

seen switching from one IP port to the other and back. This experiment was a first

step toward dynamic transparent optically connected resources for heterogeneous

systems. With applications in mCloud technologies and next-generation cloud

computing services, this work is a first step in mobile-wireless and optical network

integration and cross-domain awareness.

Switching of data similar to the data presented here was shown in later work,

please see Section 4.2.1 for more details on those lessons and how they were

addressed in subsequent experimental work.
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Figure 3.7: Optical-WiMax Results - At the end node, the CPU is listening on

the two IP ports. The VLC video packets can been seen switching from the lower

RSSI value IP destination to the stronger RSSI valute IP destination after being

streamed through the WiMax base station, a VLAN and a transparent optical

network.

3.4 Discussion

The goal of the work presented in this chapter is to move beyond the current

mobile cloud computing models that are user-unaware, by demonstrating a user-

signal-strength-aware dynamic transparent optical system. The user-aware Net-

Serv application module and Optical Interconnection Network Interface presented

here abstracts away the optical network, which allows the commercial ethernet

card to leverage the advantages of optical interconnects and the WDM data sys-

tems without changing the underlying architectures that have been developed

over the last several decades.

In this experiment, video from the client is dynamically streamed through

the WiMAX base station, transmitted over a VLAN and through an O-NIC and

WDM encoded on the optical network, and then decoded at the end node. This
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process is transparent to the end users. In this work, we explore a photonic

network for dynamic switching of WiMax generated video packets transparently

through an optical network.

A Wimax/Optical network test bed is presented, utilizing the ONIC in con-

junction with a WiMax antenna and a VLAN connection to a transparent WDM

optical network. This test bed dynamically changed the destination address of

the packets why looking at the RSSI value of the mobile user. In this work a sys-

tem was demonstrated that dynamically streams video data from a wireless client

through the WiMAX base station. The packets are processed in real time by a

netserv module, sent through a transparent WDM optical network, and received

by the endnode.

This work demonstrates the ability of optical interconnects to be user-aware,

and for the physical and software stack layers to work together to provide trans-

parent, high-bandwidth, dynamic optical systems for next-generation mobile cloud

computing applications. These systems must be high performance, with high

bandwidth, improved latency, and improved energy and computing efficiency.
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Chapter 4

A Photonic Network for

Hardware Accelerator Enabled

Utility Computing

By leveraging the inherent data parallelism optical interconnection can provide,

hardware acceleration efficiencies can be improved. In this chapter, the issue of

dynamic provisioning of resources is explored. The challenge of network func-

tionality in Optically Connected Hardware Accelerators (OCHA) are addressed

by expanding on existing protocols and developing hardware accelerator access

protocols that leverage the optical network architecture described in Chapter 2.

In order for this architecture to succeed, the data patterns found in heterogeneous

computing systems must be understood and properly addressed.

Here, a high bandwidth, reconfigurable OCHA is presented and experimen-

tally characterized that can dynamically allocated hardware accelerators, and

allows for the delocalization of hardware acceleration in heterogeneous utility

computing. In this experiment we validate our proposed architecture with a

FPGA-based emulation test bed. The optical packets generated by the FPGA

are sent through a semiconductor optical amplifier (SOA)-based, wave-length

stripped, optical network, and utilizes a XOR phase-encoded header for routing.

The two characteristics addressed in this work are the multicasting abilities

of optical networks and the lack of reconfigurability in current heterogeneous

systems. Large amounts of data are often offloaded to the accelerator, and the
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location of accelerator, as they appear to the processor is often Current networks

for heterogeneous systems do not leverage the data parallelism inherent in many

hardware accelerated applications, nor can the electronics do much to mitigate

the high bandwidth demands.

4.1 Background

Multicasting data is an integral part of many hardware accelerator architectures.

An ideal architecture for hardware accelerators would be massively data parallel.

An optical network is capable of this data parallelism and has previously been

shown to interface well with memory [56]. In order for this architecture to suc-

ceed, the network must be able to actively switch and multicast. In this work, we

experimentally demonstrate a dynamic, optically switched and multicasted net-

work that uniquely exploits the parallelism of wavelength-division multiplexing

(WDM) in order to serve as an initial validation for our proposed architecture.

4.2 Lessons from Previous Work

OCHA and the Optically Connected Resources Module 4.3, build on prelimi-

nary work on optical interconnection network interfaces, as well as preliminary

work in the realm of optically connected memory, seeking to optimize technolo-

gies found in these systems for hardware accelerator systems. Throughout these

earlier experiments, the overall performance of the systems were limited by a

number factors associated with using off-the-self FPGA development boards and

commercial optical components.

4.2.1 Bandwidth Mismatches

In the initial work into dynamic optical interconnects, the aim was to achieve fast

switching times of FPGA generated packets that well-emulated the data patterns

found in typical heterogeneous utility computing systems. At the same time, an

all optical solution was pursued, and thus devised the switching protocol outlined

in Chapter 2.
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The initial switching implementation was to have the header wave lengths

function as a packet switch, where in the signal stayed high (logic 1) or low

(logic 0) for the duration of the packet. However, upon incorporating this switch-

ing/multicasting technology into our test bed, we discovered an AC coupling issue

in the PIN-TIA receivers on the optical switching boards.

In order to achieve the desired switching times, we needed to use specific PIN-

TIA receivers, which unfortunately needed to see a positive edge within a specific

frequency range. This maximum time between positive edges of the receivers was

less than the minimum length of the phase-lock loops (PLLs) on the FPGA to

lock onto a data signal.

Thus, in this work, a Phase-Encoded Header was designed and implemented

to achieve the fast switch of all-optical data while also allowing the architecture

to send and receive large packet as they do in heterogeneous utility systems.

4.2.2 Burst Mode Receivers

Early optical memory work, as well as the Optical Network Interface work suf-

fered from clock and data recovery overhead. Clock recovery is the process in

which high speed serial links that operate without a shared clock [70], require

a phase-lock-loop to align based on a series of incoming zeros and ones. This

process is known as clock recovery and adds latency to the system. In traditional

electronic links, once the link is established during a reset or system power-on, it

is maintained indefinitely using idle data, as it did in Section 3.2. Consequently,

there has been little focus on fast clock recovery methods.

However, as recent needs in energy efficiency in computing have lead many sys-

tems to turn towards standards in which idle links are turned off to increase energy

efficiency. And, while this may be effective in lowering energy rates, the process

of repeatedly turning off links makes clock recovery a more pressing matter then

a simple start up overhead. Additionally, the move to optical interconnects with

switching will likely prevent the transmission of idle data [20, 58, 71, 72], further

increasing recover overhead. Due to the large size of the data packets in many

heterogeneous systems (monte carlo simulations, market data, and graphics data)

a certain amount of latency is tolerable.
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However, in order to leverage and maximize the performance and efficiency

benefits of optical interconnection networks as a whole without suffering the fre-

quent recovery overhead, each of which could be serval microseconds, focus has

recently shifted to high-speed burst-mode receivers [73, 74]. Burst-mode receivers

are designed to operate with unpredictable traffic patterns in the absence of ”idle

data”, reducing the recovery overhead significantly. In [74], a locking time of 31

ns was achieved on 25 Gb/s data, and in [75] a locking time of less than 10 ns

was achieved on 10 Gb/s data.

FPGAs, processors, accelerators and commercial FPGA development boards

do not contain fast burst-mode receivers, and therefore integrating any exist-

ing processors and/or FPGAs with optical switching will suffer from high clock

recovery overhead. To address this issue, the OCRM was designed with high-

bandwidth expansion slots to enable future integration of burst-mode receivers

like the ones in [74, 75]. In this scheme, a separate daughter card could be

created that implements burst-mode receiving and serializer-deseializer (SerDes)

functionality. This card would process the serial data and deliver equivalent par-

allel data and clock to the FPGA. This process would complete bypass the serical

links of the FPGA used in this dissertation and would avoid the high recover over-

head inherent in the FPGA’s serial transceivers. Using a daughter card in the

expansion port allows for various bust-mode receiver implementations, which is

a necessity due to the nature of ongoing burst-mode receiver research, and the

resulting lack of commercial options at current.

4.3 Optically Connected Resources Module

The Optically Connected Resources Module (OCRM) is a custom FPGA-based

design and test board fabricated for and used in this dissertation in experiments

detailed in Chapters 4 and 5. The OCRM is a custom FPGA-based board that

enables the implementation and characterization of diver OCHA architectures.

The main advantage of using the OCHA is the fast prototyping abilities, recon-

figurability and the close integration with high-speed serial transceivers by way

of a high-performance FPGA. The FPGA provide inexpensive and flexible pro-

totyping functionalities that are no possible using application-specific integrated
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4.3 Optically Connected Resources Module

circuits, or off-the-shelf processors. This in turn creates a low-latency interface

between the electrical domain within the hardware and the optical domain within

the network

The OCRM may be located physically distant from the associated processor,

and thus leverage the distance-immunity of single mod optical fibers. Relocating

the accelerator devices to be physically distant, but logically near, the proces-

sor frees up board space near the processor without significant impact on the

system. This in turn will give system and architecture designers flexibility. Ad-

ditionally, more accelerators than accessible electronically can be accessed by all

the processors in the system.

The OCRM consists of an Altera Stratix IV FPGA [76] with twelve bi-

directional transceivers, each of which is capable of 11.3 Gb/s operation, replace-

able DDR3 Dual Line Memory Module (DIMM) , a 10/100-MB/s ethernet port,

expansion ports capable of supporting peripherals with over 135 Gb/s aggregate

bandwidth, and banks of general purpose input/output (GPIO) pins, one of which

is a Matched Impedance Connector (MICTOR). Figure 4.1 shows a photograph

of the OCRM while Figure 4.2 shows the physical mapping of each component

over the OCRM photograph.

The OCRM is configured such that the FPGA can function as a processor

emulator and a hardware accelerator emulator, that can communicates with a

local photonic transceiver chip, which serves as the interface between the OIN

and the compute elements. The photonic transceiver chip is a combination of the

SerDes logic and high-speed transceivers on the FPGA, and discrete optical com-

ponents. The FPGA was chosen for its relative inexpensiveness when compared

to building custom ASICs, it’s flexibility, and the ability to do fast prototyping

of different compute functionalities.

4.3.1 FPGA Hardware Design

The hardware structures implemented on the FPGA on the OCRM are created

using the Verilog Hardware Description Language (HDL) [77]. The top-level

entities are the Logic (CPU Emulator or Accelerator Emulator), and the SerDes

(Figure 4.1). Also of note is the use of the MICTOR GPIO port for header
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4.3 Optically Connected Resources Module

Figure 4.1: Picture of OCRM - A picture of the OCRM module featur-

ing a Altera Stratix IV FPGA, DDR3, 10/100 Mb/s ethernet port, bi-directional

transceivers, expansion ports for daughter cards, and MICTOR GPIO

wavelength control (please see ??). The SerDes module receives serial data to be

de-serialized and relayed to the logic module (in these experiments 40 bit words),

or serialized logic module data to relay to the photonic transceivers, with minimal

latency.
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Figure 4.2: Diagram Overlaying Picture of OCRM - A diagram of the

OCRM overlaying a photograph of the module identifying the locations of the

Altera Stratix IV FPGA, the DDR3, 10/100 Mb/s ethernet port, bi-directional

transceivers, expansion ports and the MICTOR GPIO

4.4 Experimental Set Up

This experiment demonstrates the feasibility of the system as well as the efficiency

of optically connected networks for utility computing. The system uses two Altera

Stratix IV FPGA boards to emulate the CPU and hardware accelerator nodes.

A third node is attached to a Bit Error Rate Tester (BERT) to confirm error

free operation. The network control signals utilize low-speed general purpose

input/output (GPIO) pins on the board to drive four SOAs to modulate the

control bits for the network.
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Figure 4.3: Experimental Set-up - FPGA A modulates four payload channels

and four network control wavelengths over a 2x2 actively switched network test-

bed. FPGA B and the BERT receive these payloads from the optical network using

four PIN-TIA receivers.

4.4.1 XOR Phase-Encoded Header

The header wavelengths are driven by GPIO pins on the OCRM, and internally

on the logic array by an instantiation of the AltPLL I/O MegaFuntion wizard.

For the purposes of this experiment, the following parameters were set. Though,

it should be noted that for even faster switching times, a faster phase encoded

header can be used. the input clock was 10.089 MHz signal, in which the PLL was

selected automatically. The PLL used the feedback path inside the PLL in normal

mode, with no additional inputs or outputs with autobandwidth settings. The

clock frequency parameters were a multiplication factor of 1, a division factor

of 2017 to create the 800 ns pulsed signal, with a clock duty cycle of 50 %.

These signals then drove low-speed optical amplifiers on control wavelength in

the ITU [69] grid dedicated as Frame, A and B (1555.73, 1535.04, and 1533.47

nm, respectively) in table 4.1.

At the input to the switch, the packet goes through a 70/30 splitter. The 70

side of the split, containing both the header wavelengths and payload wavelengths

continues on as the data packet. Meanwhile the 30 side is decoded for the header

wavelengths. The header wavelengths then go through an Optical-Electronic

conversion at the photodiode Trans Impedance Amplifier / Limiting Amplifier

(PIN-TIA/LA) input port of the wavelength-stripped switch, while the rest of
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Time



Figure 4.4: Message Format of XOR Phase-encoded Header - Low-speed

header wavelengths are phase-encoded and sampled on the positive edge of a phase-

offset sample clock. These header wavelengths are combined with high-speed pay-

load wavelengths using WDM.

B A Frame Output

0 0 0 Switch to Node A and B

0 0 1 Both off

0 1 0 Switch to Node B

0 1 1 Switch to Node A

1 0 0 Switch to Node A

1 0 1 Switch to Node B

1 1 0 Both off

1 1 1 Switch to Node A and B

Table 4.1: XOR Phase-encoded Header logic table - On the positive edge

of the sample clock, which is time delayed, the output SOAs are controlled by an

XOR of their control bit with the frame bit. In the above table, these bits are

labeled A and B. The logic explains what Nodes would be switched to in each

scenario. This state is held until the next positive edge of the sample clock.

the packet is kept on a FDL.

By eliminating the typical OEO conversions that you would see in a switching

node, we save both time and energy, while speeding up performance (Please see
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2.1 for an schematic and picture of this switching hardware). These elements are

timed such that the delay through the fiber is the same as the electronic delay

through the switching node (approx 10 ns).

FPGA A

Switching Hardware

Laser Sources

Modulators

PIN TIA /LA

BERT

FPGA B

Figure 4.5: Photograph of Experimental Set-up - FPGA A modulates four

payload channels and four network control wavelengths from the laser source trays

over a 2x2 actively switched network test-bed. FPGA B and the BERT receive

these payloads from the optical network using four PIN-TIA/LA receivers.

In the switching node, the electronic header controls enter a Complex Pro-

grammable Logic Device (CPLD)[78] where logic is in place to control a series of

SOAs that either allow the data packet to pass, or suppress it. As seen in Table

4.1, the output of each port is individually controlled by a specific control signal.

The output of each port is individually controlled using a bitwise XNOR of that

ports control signal and a framing or reference signal, as seen in the logic table

4.1. This logic adds an additional wavelength to the network control, a minimal

cost to the system. To avoid issues of clock skew, this output control is calcu-

lated on the positive edge of a phase-shifted, pulsed sample clock, as illustrated

in Figure 5.4.
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4.5 Results

Error free propagation was verified on one receive path with a Bit Error Rate

Tester (BERT) with bit-error rates (BERs) less than 10e12 for all 4 payload

wavelengths using 11.3 Gb/s data rates. The other receive node (FPGA B)

received 100us packets that were actively multicasted and switched through the

network. Figure 4.6 shows the optical XOR Phase-encoded header scheme headers

as detected on the CSA. A few of the 8 possible states are shown in this figure.

Figure 4.7 shows the dynamic switching of 100 us packets.

We validate a proposed architecture with an experiment that leverages opti-

cal interconnects to demonstrate error free active switching and multicasting of

FPGA generated and received packets.

Smp Clk

Frame

Port A

Port B

Smp Clk

Frame

Port A

Port B

Switch to A Multicast

Switch to B Both offTimescale – 500 ms/div

Figure 4.6: XOR Phase Encoded Header - XOR-Phase-encoded header net-

work control- for (a) switch to output A (b) multicast (c) switch to output B and

(d) both off
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Figure 4.7: Packet Routing - input and output Packets when (a) switch to

output A (b) multicast (c) switch to output

4.6 Discussion

This chapter demonstrates how OCHA enable novel system configurations, and

therefore more efficient and resilient architectures. Heterogeneous systems, and

accelerator use is continuing to grow in scale and complexity, and will likely

incorporate multiple thousands of processors and accelerators, leading to many

potential idle components and inefficiencies, as well as possible failure points.

As these utilities are following a CAPEX model of business, these failures and

inefficiencies cut into cost and computing power. As a result, next-generation

heterogeneous utility computing systems will be required to surpass today’s level

of resilience and efficiency. The limitations of electronic interconnects prohibit

modern accelerator technologies from implementing the architectures and accel-

eration need in future heterogeneous utility systems. To address these challenges,

OCHA replace the electronic accelerator bus with an optical interconnection net-

work, thereby enabling these novel accelerator architectures and distribution tech-

niques.

The OCRM used here is a first-of-its-kind prototyping module that enable

efficient, high performance all-optical communication between a processor and

delocalized hardware accelerators. As an FPGA-based platform, it allows for

reconfigurable test-bed implementations for explorations into the architectural
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and network design of optically connected acceleration (both ASIC and FPGA

based) in heterogeneous computing.

By drawing on the lessons learned using off-the-shelf FPGA-based develop-

ment boards, the custom OCRM was created to address the challenges facing

OCHA development. These hindrances would otherwise have remained unknown-

including the importance of burst-mode receivers, and the AC coupling-bandwidth

mismatch of the switching elements and the OCRM. This in turn allows novel

accelerator architectures to be developed, prototyped and experimentally charac-

terized in a lab environment.

In this work, we propose and validate a photonic network for delocalized hard-

ware acceleration in utility computing. This technology leverages the bandwidth

distance product gained by WDM optical transmission to create a system where

delocalized hardware accelerators can be dynamically allotted to different ap-

plications at run-time. High-bandwidth connectivity provided by WDM optical

interconnects is an important enabler for delocalized hardware accelerators in

utility computing.

A high throughput, dynamically reconfigurable optical network is demon-

strated on an FPGA-controlled platform, with a CPU emulator, Bit Error Tester

and hardware accelerator emulators. This work represents a significant step to-

ward integration of optical links into hardware accelerator enabled data center

architectures.The sum of the work in Chapter 2 and this chapter illustrate the

need and feasibility of optically connected resources, and their flexibility.

This work demonstrates the need for low-latency, high-performance optical in-

terconnects within future large-scale heterogeneous utility systems. These OCHA

systems must also be flexible, us optical switching, and optical multicasting, and

be bidirectional to enable innovative systems architecture for future heteroge-

neous utility systems whith improved bandwidth, latency, and efficiency.
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Chapter 5

FPGA Implemented

Bidirectional OCHA

In this chapter, a dynamic, high bandwidth, bidirectional OCHA is presented

and experimentally characterized that can dynamically allocated hardware ac-

celerators, can also address network incast bottle issues plaguing these systems

today, and allows for the delocalization of hardware acceleration in heterogeneous

utility computing. In this experiment we validate our proposed architecture with

a FPGA-based bidirectional emulation test bed. The optical packets generated

by the FPGA are sent through a semiconductor optical amplifier (SOA)-based,

wave-length stripped, optical network, and utilizes a phase-encoded header for

routing.

5.1 Background

In this chapter, the issue of dynamic provisioning of resources is explored. By

combining heterogeneous systems with economies of scale, comparatively lower

capital expenditures, and most importantly, dynamic provisioning, the benefits

of heterogeneous clouds and utility systems can be further realized [23]. The

challenges of network functionality and bidirectionality in Optically Connected

Hardware Accelerators (OCHA) are addressed by expanding on existing protocols

and developing hardware accelerator access protocols that leverage the optical

network architecture described in Chapter 2.
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In order for this architecture to succeed, the data patterns found in hetero-

geneous computing systems must be understood and properly addressed. The

advantages of optical interconnects must also be leveraged.The FPGA was cho-

sen due to its unique ability to offer fast prototyping at low cost. The photonic

interconnection network employs a bidirectional switching design to maximize

the dynamic re-configurability capabilities. By exploiting the bidirectional trans-

parency of the SOA [79], the underlying optical medium, and by utilizing optical

circulators, we are able to build a network that uniquely addresses many issues

facing heterogeneous utility computer architectures today.

The two characteristics addressed in this work are the data movement proto-

cols and the incast bottleneck described in Chapter 1 [2, 4]. Large amounts of

data are often offloaded to the accelerator, and, after some processing, a smaller

amount of data is sent back to the CPU. Current networks for heterogeneous

systems do not leverage the data parallelism inherent in many hardware acceler-

ated applications, nor can the electronics do much to mitigate the network incase

bottleneck. This experiment emulates this scheme and explores the feasibility of

the architecture to provide bidiectional, reconfigurable, dynamic hardware accel-

erator allocation.

5.2 Overview of OCHA

In contrast with current models in which accelerators are hardwired to a spe-

cific location and function, in the proposed scheme, hardware accelerators are

dynamically allocated at runtime, and thus become an application-specific con-

figuration. The remote hardware accelerator architecture presented here utilizes

the bandwidth and latency gains of optical networks to allow for a bank of hard-

ware accelerators to be located remotely, yet still appear to be physically near

the CPU [5.1]. The bank of hardware accelerators can be dynamically allocated

to CPUs, and not restricted to the single local CPU.

This design scheme makes it possible for multiple hardware accelerators to be

dynamically utilized by different CPUs. By integrating this architecture into a

utility computing system, powerful, application-specific hardware will be available
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Figure 5.1: Architectural Design - (A) CPU nodes with separate optically-

connected hardware accelerator nodes that can be dynamically configured. The

hardware modules could either be configured as a scheme where (B) the hardware

accelerators are organized as a central bank or (C) each CPU has a dedicated

hardware accelerator that it rents out to the system when not in use.

for applications to use. Leveraging the speedups provided by hardware accelera-

tors, as well as the latency gains of optics, this system would speed up compute

times without sacrificing energy efficiency, data center footprint, or cost.

The photonic interconnection network design makes it possible for multiple

hardware accelerators to be dynamically utilized by different CPUs. By inte-

grating this architecture into a utility computing system, powerful, application-

specific hardware will be available for applications to use. By leveraging the
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speedups provided by hardware accelerators, as well as the latency gains of op-

tics, this system can minimize latency without sacrificing energy efficiency, data

center footprint, or cost.

The WDM parallelism further enables several accelerator chips or the entire

bank of accelerators to be accessed in parallel over a single fiber, thus increas-

ing the accelerator-CPU bandwidth [22]. These hardware modules could either

be a central bank that is allocated by a controller [5.1B], or rented out from

other CPUs [5.1C]. Overall, delocalizing the hardware accelerators and replac-

ing electronic buses with optical interconnection networks will not only increase

bandwidth, reduce system wiring complexity, and lower energy consumption; de-

localized accelerators will also allow the current trends for increased hardware

acceleration in utility computing to continue scaling.

5.3 Experimental Set Up and Results

The test bed uses four custom Altera Statix IV FPGA boards to emulate the

CPU and hardware accelerators. Error-free propagation is verified on the receive

boards themselves, with each board utilizing the bidirectionality to send back an

error count on a unique wavelength. As seen in Figure 5.2 , the send node (FPGA

0), the CPU emulator, generates the four lanes of PRBS data in 100 us packets

and control wavelengths. In order to maximize efficiency and minimize switching

time, we implement a wavelength-stripped, phase-encoded header network control

protocol.

5.3.1 PRBS Generation

The FPGA 0 acts as our CPU emulator. In this experiment, it generates a 40 bit

PRBS. The PRBS was choose due to the fact that although it is deterministic,

it seems to be random. The PRBS is generated using a series of linear feedback

shift registers (LFSR), using an exclusive-nor (XNOR) of the bits 40, 38, 21, and

19 (as per [78] ) to generate the PRBS. This logic is illustrated in Figure 5.3 .

This PRBS data is sent on a 4x11.3 Gb/s network using WDM of ITU chan-

nels 36, 37, 38, and 39 (1548.51, 1547.72, 1546.92, and 1546.12 nm) [69], using
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Figure 5.2: Experimental Setup - FPGA 0 acts as the CPU emulator and

modulates four payloads and four network control wavelengths over a 4x4 actively

switched network testbed. The packets traverse a bidirectional optical network

that utilizes a wavelength-stripped Phase-encoded header (see Fig. 2.). FPGAs

A, B. and C act as the hardware accelerator nodes. They receive these payloads

from the optical network and send an error count on a unique wavelength. FPGA

0 reads these wavelengths and confirms error-free propagation.

the high-speed transceivers on the OCRM, and combined with passive optical

elements with the header wavelengths generated through the GPIO MICTOR.

5.3.2 Wavelength-stripped Phase-encoded Header

The Phase-encoded header presented here builds on the initial work into phase

encoded headers (see Section4.4.1. By making the switching algorithm slightly

more complicated with the addition of a state machine, the same number of header
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Figure 5.3: PRBS generated using Linear Feedback Shift Registers - A

40-bit PRBS generator. The XNOR gate provides feedback to the registers are it

shifts from right to left. The maximal sequence consists of every possible state.

wavelengths could be used to switch to three end nodes instead of two. Each end

node can be individually switched to, and thus this phase-encoded header would

require a N+1 header wavelengths for N destination nodes.

At the input to the switch, the packet goes through a 70/30 splitter. The 70

side of the split, containing both the header wavelengths and payload wavlengths

continues on as the data packet. Meanwhile the 30 side is decoded for the header

wavelengths. The header wavelengths then go through an Optical-Electronic

conversion at the photodiode Trans Impedance Amplifier / Limiting Amplifier

(PIN-TIA/LA) input port of the wavelength-stripped switch, while the rest of

the packet is kept on a FDL.

By eliminating the typical OEO conversions normally seen in a switching

node, we save both time and energy, while speeding up performance (Please see

2.1) for an schematic and picture of this switching hardware). These elements are

timed such that the delay through the fiber is the same as the electronic delay

through the switching node (approx 10 ns).

In the switching node, the electronic header controls enter a Complex Pro-

grammable Logic Device (CPLD) where logic is in place to control a series of

SOAs that either allow the data packet to pass, or suppress it. As seen in Table

5.1, the output of each port is individually controlled by a specific control signal.

To avoid issues of clock skew, this output control is calculated on the positive

edge of a phase-shifted, pulsed sample clock, as illustrated in Figure 5.4.
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A2 A1 A0 Output

0 0 0 All off

0 0 1 Switch to Node 0

0 1 0 Switch to Node 1

0 1 1 Switch to Node 0 and 1

1 0 0 Switch to Node 2

1 0 1 Switch to Node 0 and 2

1 1 0 Switch to Node 1 and 2

1 1 1 Switch to Node 0, 1, and 2

Table 5.1: Phase-encoded Header logic table - On the positive edge of the

sample clock, which is time delayed, the output SOAs are controlled by the state

of their control bit. In the above table, these bits are labeled A2, A1, and A0. The

logic explains what Nodes would be switched to in each scenario. This state is held

until the next positive edge of the sample clock

5.3.3 Error Checker and Results

Each transceiver bank interfaces with optical components to generate (FPGA 0)

and receive (FPGAs A, B, and C) 4x11.3 Gb/s WDM data transactions. At the

hardware accelerator emulator nodes, FPGAs A, B, and C, the data is decoded

and goes through an error checker. Once the transceiver phase lock loop locks

onto the incoming data stream, verifying that valid data is on the transceiver,

the PRBS data is deserialized and sent to be checked on an error checker.

The error checker takes the predictable PRBS pattern generator and compares

the received PRBS sequence with the expected one. With each new packet, the

error checker generates the next, predictable number in the pattern with its own

LFSR XNOR of the bits 40, 38, 21, and 19. This number is cached and on the

next packet, the cached prediction is compared with the new packet. If there is

a discrepancy, the error count is incremented, if the numbers match, the error

count remains the same.

In generating the PRBS on the emulator nodes, we emulate the behavior of a

hardware accelerator. The error count is then sent back on the nodes return path,
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through an optical circulator, to the original CPU-emulator node. Each node has

a dedicated wavelength for its error count. This node then reads each error count,

ensuring that the packets were sent error-free. In this work we verified error-free

propagation of 4x11.3 Gbps 40-bit PRBS [80] data over a bidirectional network.

The results of a few of these iterations can be seen in Figure 5.5.

Figure 5.4: Phase-encoded header design scheme - On the positive edge

of the sample clock, which is time delayed, the output SOAs are controlled by

the state of their control bit. This allows the system to individually control each

output port and allows for a logical multicast. In these scenarios, this system would

multicast, switch to A and B, and turn all the ports off, respectively.

Fig. 5.4 illustrates a few examples of this phase-encoded header control logic

for a multicast, a switch to Nodes A and B, and all outputs off, using screen

captures from the Continuous Spectrum Analyzer (CSA).

The use of circulators for the bidirectional, optical return path also addresses

the incast bottleneck facing many heterogeneous systems. Optical circulators

are passive devices that do not contribute to power consumption in the system.

The optical return paths are multiplexed together onto one return fiber. In an

electronic system, this incast would require dedicated links from each node, where

in the optical system, this is not the case.
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Figure 5.5: Data Packet Switching - Switching of a 100 us packet through the

network in a multicast, a switch to A and B, and all off. The input packet can be

seen in the top box, while the optical outputs can be seen in each scenario in the

lower boxes.

Additionally, in some system designs, the accelerators could leverage a tunable

laser (TL) instead of the fixed lasers used in this experiment. In this scheme, the

accelerator could share and optical return path. By further leveraging modulation

formats, this paradigm could be optimized further.

The use of wavelength-striped optical multicasting reduces overall access la-

tency while also increasing bandwidth. Optical multicasting allows any set of

OCHA node to be accessed in parallel, and thus combines the bandwidth of each

OCHA node to provide the processor with greater aggregate accelerator band-

width.

Latency is reduced, as detailed in Section 4.2.2, due to the the tens of nanosec-

onds of latency each independent accelerator access incurs. Constraints from en-

ergy dissipation, pin count, wiring complexity, and available space would require

an electronically-connected memory system containing the accelerator devices

proposed here to perform many accelerator accesses serially rather than simulta-

neously.
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Here, the total accelerator access latency is reduced to that of a single accel-

erator access, regardless of the number of OCM nodes access by simultaneously

access any set or subset of OCHA nodes with the use of the optical multicast

approach. This experimental demonstration of accelerator data across one, two,

or three nodes all incur the same access latency (time of flight + clock recovery

time). Similarity, the latency incurred for accessing a entire OCHA node (be it

36 or 72 or more) would also be the time of flight + clock recovery time.

5.4 Discussion

This chapter demonstrates how OCHA enables novel architectures and accel-

erator access protocols and therefore more resilient and flexible heterogeneous

systems. Large-scale computing systems continue to scale and incorporate ac-

celeration and will soon likely include diverse many thousands of nodes systems

with GPUs, FPGAs, FFP, and CPUs working in tandem on computational tasks.

Consequently, next-generation heterogeneous utility systems will need to surpass

today’s level of reconfigurability and resilience.

The limitations of electronic interconnects limits and at times prohibits the

ability of modern systems to in implementing the architectures and delocaliza-

tion protocols necessary in future heterogeneous utility computing systems. To

address these challenges and opportunities, the OCHA replaces the electrical

connection bus to accelerators with and optical interconnection network, thereby

enabling novel architectures that leverage the data parallelism in accelerator data,

reduce latency, and offered reconfigurability.

The data behavior in this test bed is an emulation of the data patterns found

in many heterogeneous utility computing systems, in that a large amount of data

is multicasts or switched to a number of accelerator units, whom respond with

a smaller data set after some computation. In this work, we further propose

and validate a photonic network for delocalized hardware acceleration in utility

computing.

In generating the PRBS on the emulator nodes, we emulate the behavior of

a hardware accelerator. In calculating the PRBS and creating an error checker

on the receive FPGAs, a hardware accelerator node is emulated. The error count
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is then sent back on the nodes return path, through an optical circulator, to the

original CPU-emulator node.

This technology leverages the bandwidth distance product gained by WDM

optical transmission to create a system where delocalized hardware accelerators

can be dynamically allotted to different applications at run-time. A bi-direction,

dynamically reconfigurable optical network is demonstrated on an FPGA-controlled

platform, with a CPU emulator and hardware accelerator emulators. This work

represents a significant step toward integration of optical links into hardware

accelerator enabled data center architectures.
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Chapter 6

Summary and Conclusion

The work presented in this dissertation has focused on the design and imple-

mentation of optically-connected hardware accelerators for heterogeneous utility

computing. This final chapter discusses the accomplishments present here and

summarizes ongoing and future work that could lead to the commercialization of

the work presented in this dissertation. In closing, a summary of this body of

work is presented.

6.1 Overview

This work is primarily motivated by the growing trend in utility computing to-

wards heterogeneity, the resulting issues with placement and networking to hard-

ware accelerators and the need for a fundamental redesign of processor-accelerator

communications. The use of specialized hardware either in the form of an ASIC

like a GPU or FPP, or reconfigurable, like a FPGA.

However, the use of hardware acceleration creates a bottleneck and localiza-

tion constraints due to its reliance on electrical interconnects that limit perfor-

mance, efficiency, and scalability. The resulting restrictions placed the system

become a limiting factor in the overall performance of heterogeneous utility com-

puting systems.

Optically-connect hardware accelerators have been presented here as a so-

lution to the bottleneck, localization limitations, and network latency found in

current heterogeneous utility computing systems, owing to its ability to eliminate
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the electronic bus to hardware accelerators. The need for a switch to optics in

utility systems and the increasing heterogeneity of these systems has become ap-

parent to the optical research community and industry, and the work presented

in this dissertation take the first steps in achieving this endeavour.

By replacing the wide electronic bus (eg, PCIe) to hardware accelerators with

an optical interconnection network, future utility computing systems will be about

to dynamically access vast quantities of specialized and reprogrammable acceler-

ation, and maintain continued scaling of these systems. Throughout this disser-

tation, three key metrics for next-generation systems are addressed:

• Bandwidth - The low bandwidth-density of electrical interconnects limits

hardware accelerators to localization. This work overcomes these challenges

through the high bandwidth-density of optics, which allows terabits-per-

second of data to traverse a single fiber using WDM. Furthermore, optical

interconnection networks enable greatly increased bandwidth through si-

multaneous access to multiple OCHA devices with optical multicasting.

• Latency - The network latency in heterogeneous systems is a large part

of the overall system latency. Future heterogeneous utility computing sys-

tems will need to implement networks to hardware accelerators that provide

ultra-low latencies, in addition to high bandwidths. The optical network

architectures presented here can address this issue through transparent op-

tical routing, in which high-bandwidth WDM messages traverse an optical

network with time-of-flight latency. The use of the wavelength-striped phase

encoded header optical routing enables a custom network-aware arbiter to

execute accelerator allocation with optimal latency.

• Efficiency - Two major metrics of performance in utility systems are energy

efficiency (green computing) and computing efficiency (computations per

unit time) With the growing number of hardware accelerators in cloud and

high performance computing systems, the electronic bus linking accelerators

to processors is becoming a significant source of power dissipation. Each

hardware accelerator added to the system will increase computing efficiency,
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if properly utilized, but will also increase the pin count, adding more power-

hungry data buffers.

Larger and more accelerator devices speed up computing times but increase

the total physical wiring distancing, wiring complexity and those power dis-

sipation. The speedups provided for optical interconnected heterogeneous

systems improve on the efficiency of electronic systems. This work demon-

strated how integration of optical networks with dynamic allocation will

leverage the benefits of heterogeneous utility computing while simultane-

ously leveraging the energy efficiencies provided by optical networking.

6.2 Future Work

With the accomplishments from these first, critical steps in creating optically-

connect accelerator systems, it is important to learn from previous work and

address the next steps and remaining challenges. Our next steps in the work will

be to continue exploring the feasibility and advantages of this system by explor-

ing a number of characteristics and applications as they apply to this network

architecture.

6.2.1 Architectural Design

Due to the varying applications, and accelerators in heterogeneous systems, OCHAs

will not be a one-size-fits-all solution. Architectures will have to be designed to

determine the optimal bandwidth, placement, and allocations to allow for mini-

mized latency, and maximized bandwidth, energy, and compute efficiencies.

In order to enable next generation systems to perform to their full potential,

more work will need to be done to build on the work in this dissertation. Of

interest are to explore the architectural configurations for reconfigurable hardware

like FPGAs, as opposed to ASICs. Other work ongoing work on GPU integration

and popular hardware accelerators like Floating Point Processors (FPP) will also

need to be investigated.

Advanced schedule and non-blocking arbitration would also need to be added

to the work presented in this dissertation to further investigate the advantages of
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this architecture. In order to leverage the advantages of optics without disrup-

tion to the ongoing engineering and innovations in utility computing systems, it

would be advantageous to explore possibilities in which there is a certain level

of abstraction and transparency in the optical network. By levering the work

presented in this dissertation, a path towards innovation is possible.

Differing communication and parallelism in applications that run on hetero-

geneous systems will also need to be investigated. In many financial service ap-

plications, were market data is streamed uncompressed, more bandwidth would

need to be allocated. While, in applications like Gaming as a service, designs

with varying GPU configurations for different games (ie graphics intensive, vs

physics intensive) would need to be investigated.

6.2.2 Optically Connected Memory

Demands on the memory systems in utility systems have driven the develop-

ment of processing-memory interconnects that require greater performance and

flexibility. As computation systems increase in complexity and heterogeneity,

the latency caused by this ”memory wall” will be exacerbated, and in order for

OCHA to succeed, the memory interface will also need to be addressed.

A great deal of work into optically connected memory shows promise, levering

many of the same advantages outlined in this dissertation, but uniquely exploiting

the optics for problems facing memory systems.

The OCRM presented in this dissertation allows for the easy expansion into

incorporating optically connected memory systems under investigation into the

heterogeneous systems investigated here. Integrating the use of optically con-

nected memory alongside optically connect hardware acceleration will enable

future-generation heterogeneous utility systems to continue maximizing efficiency,

minimizing latency, and exploiting optical bandwidth.

6.2.3 Silicon Photonic Integration

Nanophotonic devices like microring resonators and ring-based WDM modula-

tors must be integrated as closely as possible with the electronic driver circuitry
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in order to eliminate power-hungry, bandwidth-limited electrical wires. CMOS-

compatible silicon photonic devices are especially promising to achieve this goal.

The microring resonator shows promise in being a building block for WDM mod-

ulators, switches, filters, and photo detectors, all of which are elements needed

for the architecture outlined in this dissertation. The work presented here did

not progress to include the use of silicon photonics, but future systems will need

this integration.

Microring-based optical switches, with a large free spectral range, are partic-

ularly attractive for accelerator applications due to their ability to switch many

wavelengths. This is a perfect application to the WDM packets demonstrated

in this work. In contrast to electronic switches, where higher bandwidth equates

to higher power consumed by the switch, in ring resonator based switches, the

more data in a packet, the more energy efficient it becomes. However, there are

still work to be done in thermal stabilization of microring resonators. Ongoing

research in this arena show promise, and would need to be integrated into this

system as an architecture entity.

Fabrication technological challenges facing integration of optics into processors

must also be addressed. And, until optical devices are integrated in a 3D stack

or monolithically, the bandwidth of going off-chip will still impose electronic

wiring bottlenecks on utility computing systems. Silicon photonics will also be

an integral part of future-generation 3D stacked heterogeneous computing chips,

functioning as an additional transport layer.

6.2.4 Burst-Mode Receivers

The need for burst-mode receivers is made ever more clearer throughout the work

in this thesis. When processors and accelerators (and even memory) communicate

over an optical network, each and every message could become subject to a costly

clock and data recovery overhead that would reduce the throughput of the already

latency-clogged heterogeneous utility system. Moreover, there is the possibility

that optical network architectures may cause messages to arrive at each receiver

with different phases and/or power levels, further motivating the need for robust

burst-mode receiver circuitry.
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The lack of fast burst-mode receivers availability limited the abilities of the

work in this dissertation. The OCRM presented here on which a majority of this

work has been implemented holds the potential and capacity to support suitable

burst-mode receivers through the high-bandwidth expansion port, and further

and future work must develop such a receiver and characterize the impact it will

have on OCHA systems.

6.2.5 Runtime Allocation Integration

The first commercial OCHA systems will likely be deployed as server or rack

sized cluster-scale systems. This system will require a solution that incorporates

runtime allocation and software integration into the systems. In this setup, cur-

rent research into compilation and runtime scheduling of accelerator nodes by a

network aware arbiter will be imperative to the success.

By integrating a compiler like Liquid Metal or LegUP the OCHA system would

abstract away the complex programming and allocation difficulties holding back

current heterogeneous utility computing systems. In this paradigm, software

programmers would be unaware of the physical placements and networking of

accelerators and thusly the server systems would face less barriers to adoption, as

existing software applications would not have to be rewritten for the new OCHA

systems.

6.2.6 Commercialization

By leveraging the work presented in this dissertation, as well as ongoing work in

photonic integration, heterogeneous architectural design and compiliers and run-

times for heterogeneous systems, commercially-viable optically-connected hard-

ware accelerators in heterogeneous systems could be realized on a 5-to-10 year

timescale. High-performance optical transceivers already exist that could be

packaged with processors and accelerators to improve network latency and of

large-scale utility computing systems.

The integration of compilers and runtimes with heterogeneous systems would

alleviate allocation and programming challenges in heterogeneous systems and

abstract away many of the programming challenges, thus lowering the barriers to
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entry and adoption. The integration of photonic transceivers would enable the

use of optical switching and optical networks detailed in this dissertation and pro-

vide architectural benefits and overall system performance and efficiency. These

benefits would then in turn provide the motivation to further investigate and inte-

grate optical components into heterogeneous computing systems to achieve even

greater computational and energy performance improvements when compared to

existing electrically-connected, localized hardware accelerator systems.

6.3 Summary

The latency caused by the network is quickly becoming a major cause of bottle-

necks in heterogeneous utility computing systems. In addition, the location and

function of hardware accelerators is increasingly becoming an application-specific

computation problem. In general, the response to this issue has been to either

deploy as many hard accelerators as electronic wiring permits and let accelerators

sit idle when not need by their master CPU, or to optimize processing nodes to

cope with a large network latency time.

The inability to break free of this paradigm stems for the reliance on electronic

connection networks at the board and rack level of the computing system, and the

resultant penalties in energy dissipation and overall scalability. The reluctance

to adopt new physical layer technology and the architectures enabled by them is

primarily due to the relatively mature state of electronic interconnect technology,

its established protocols and therefore pervasiveness, and the resulting high cost

and unknowns of migrating to a new technology.

Nonetheless, at present, the growing demands of HPCs and Cloud Comput-

ing technologies are exceeding the limits of electrical interconnects. However,

computer-directed photonic technologies are reaching the point of maturity, and

thus rack-to-rack interconnects are increasingly becoming optical due to the low

barrier of entry. Concurrently, revolutions in both software programming and

runtime scheduling as well as optical interconnect networks

This dissertation takes the initial steps in integrating optical interconnects into

hardware accelerated heterogeneous utility computing systems. By developing

architectures, protocols, and physical-layer systems , this work demonstrates the
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many advantages of optically connected hardware acceleration, while identifying

previously unknown integration challenges.

Some of these challenges have been address, such as a control method for

wavelength-striped phase-encoded headers, while other challenges, such as opti-

mal architecture designs, burst-mode receiver integration, and runtime allocation

integration are to be addressed in future work.
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