147 research outputs found

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most mkm-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every ϵ>0\epsilon>0, removes at most mkm-k demands and has cost no more than O(1/ϵ2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1ϵ)(mk)(1-\epsilon)(m-k) demands

    Incremental Medians via Online Bidding

    Full text link
    In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance, and the algorithm produces a nested sequence of facility sets where the kth set has size k. The algorithm is c-cost-competitive if the cost of each set is at most c times the cost of the optimum set of size k. We give improved incremental algorithms for the metric version: an 8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized algorithm. The algorithm is s-size-competitive if the cost of the kth set is at most the minimum cost of any set of size k, and has size at most s k. The optimal size-competitive ratios for this problem are 4 (deterministic) and e (randomized). We present the first poly-time O(log m)-size-approximation algorithm for the offline problem and first poly-time O(log m)-size-competitive algorithm for the incremental problem. Our proofs reduce incremental medians to the following online bidding problem: faced with an unknown threshold T, an algorithm submits "bids" until it submits a bid that is at least the threshold. It pays the sum of all its bids. We prove that folklore algorithms for online bidding are optimally competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via Online Bidding

    Minimizing Flow Time in the Wireless Gathering Problem

    Get PDF
    We address the problem of efficient data gathering in a wireless network through multi-hop communication. We focus on the objective of minimizing the maximum flow time of a data packet. We prove that no polynomial time algorithm for this problem can have approximation ratio less than \Omega(m^{1/3) when mm packets have to be transmitted, unless P=NPP = NP. We then use resource augmentation to assess the performance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its cost remains within the optimal cost if we allow the algorithm to transmit data at a speed 5 times higher than that of the optimal solution we compare to

    Online Scheduling on Identical Machines using SRPT

    Full text link
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (\srpt) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that \srpt achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, \srpt is known to achieve total flow time at most that of the optimal solution when given machines of speed 21m2- \frac{1}{m}. Further, it is known that \srpt's competitive ratio improves as the speed increases; \srpt is ss-speed 1s\frac{1}{s}-competitive when s21ms \geq 2- \frac{1}{m}. However, a gap has persisted in our understanding of \srpt. Before this work, the performance of \srpt was not known when \srpt is given (1+\eps)-speed when 0 < \eps < 1-\frac{1}{m}, even though it has been thought that \srpt is (1+\eps)-speed O(1)O(1)-competitive for over a decade. Resolving this question was suggested in Open Problem 2.9 from the survey "Online Scheduling" by Pruhs, Sgall, and Torng \cite{PruhsST}, and we answer the question in this paper. We show that \srpt is \emph{scalable} on mm identical machines. That is, we show \srpt is (1+\eps)-speed O(\frac{1}{\eps})-competitive for \eps >0. We complement this by showing that \srpt is (1+\eps)-speed O(\frac{1}{\eps^2})-competitive for the objective of minimizing the k\ell_k-norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of \srpt. Our results, combined with previous work, show that \srpt is the best possible online algorithm in essentially every aspect when migration is permissible.Comment: Accepted for publication at SODA. This version fixes an error in a preliminary versio

    A Bicriteria Approximation for the Reordering Buffer Problem

    Full text link
    In the reordering buffer problem (RBP), a server is asked to process a sequence of requests lying in a metric space. To process a request the server must move to the corresponding point in the metric. The requests can be processed slightly out of order; in particular, the server has a buffer of capacity k which can store up to k requests as it reads in the sequence. The goal is to reorder the requests in such a manner that the buffer constraint is satisfied and the total travel cost of the server is minimized. The RBP arises in many applications that require scheduling with a limited buffer capacity, such as scheduling a disk arm in storage systems, switching colors in paint shops of a car manufacturing plant, and rendering 3D images in computer graphics. We study the offline version of RBP and develop bicriteria approximations. When the underlying metric is a tree, we obtain a solution of cost no more than 9OPT using a buffer of capacity 4k + 1 where OPT is the cost of an optimal solution with buffer capacity k. Constant factor approximations were known previously only for the uniform metric (Avigdor-Elgrabli et al., 2012). Via randomized tree embeddings, this implies an O(log n) approximation to cost and O(1) approximation to buffer size for general metrics. Previously the best known algorithm for arbitrary metrics by Englert et al. (2007) provided an O(log^2 k log n) approximation without violating the buffer constraint.Comment: 13 page

    Online Scheduling on Identical Machines Using SRPT

    Get PDF
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (SRPT) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that SRPT achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, SRPT is known to achieve total flow time at most that of the optimal solution when given machines of speed 21/m2- 1/m. Further, it is known that SRPT's competitive ratio improves as the speed increases; SRPT is ss-speed 1/s1/s-competitive when s21/ms \geq 2 - 1/m. However, a gap has persisted in our understanding of SRPT. Before this work, we did not know the performance of SRPT when given machines of speed 1+\eps for any 0 < \eps < 1 - 1/m. We answer the question in this thesis. We show that SRPT is scalable on mm identical machines. That is, we show SRPT is (1+\eps)-speed O(1/\eps)-competitive for any \eps > 0. We also show that SRPT is (1+\eps)-speed O(1/\eps^2)-competitive for the objective of minimizing the lkl_k norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of SRPT. Our results, combined with previous work, show that SRPT is the best possible online algorithm in essentially every aspect when migration is permissible

    Topology Matters: Smoothed Competitiveness of Metrical Task Systems

    Get PDF
    We consider online problems that can be modeled as metrical task systems: An online algorithm resides in a graph of n nodes and may move in this graph at a cost equal to the distance. The algorithm has to service a sequence of tasks that arrive over time; each task specifies for each node a request cost that is incurred if the algorithm services the task in this particular node. The objective is to minimize the total request plus travel cost. Borodin, Linial and Saks gave a deterministic work function algorithm (WFA) for metrical task systems having a tight competitive ratio of 2n-1. We present a smoothed competitive analysis of WFA. Given an adversarial task sequence, we add some random noise to the request costs and analyze the competitive ratio of WFA on the perturbed sequence. We prove upper and matching lower bounds. Our analysis reveals that the smoothed competitive ratio of WFA is much better than its (worst case) competitive ratio and that it depends on several topological parameters of the graph underlying the metric, such as maximum degree, diameter, etc. For example, already for moderate perturbations, the smoothed competitive ratio of WFA is O(log(n)) on a clique and O(sqrt{n}) on a line. We also provide the first average case analysis of WFA. For a large class of probability distributions, we prove that WFA has O(log(D)) expected competitive ratio, where D is the maximum degree of the underlying graph
    corecore