4 research outputs found

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems

    15th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

    Get PDF

    Speed scaling in the non-clairvoyant model

    No full text
    In recent years, there has been a growing interest in speed scaling algorithms, where a set of jobs need to be scheduled on a machine with variable speed so as to optimize the flow-times of the jobs and the energy consumed by the machine. A series of results have culminated in constant-competitive algorithms for this problem in the clairvoyant model, i.e., when job parameters are revealed on releasing a job (Bansal, Pruhs, and Stein, SODA 2007; Bansal, Chan, and Pruhs, SODA 2009). Our main contribution in this paper is the first constant-competitive speed scaling algorithm in the nonclairvoyant model, which is typically used in the scheduling literature to model practical settings where job volume is revealed only after the job has been completely processed. Unlike in the clairvoyant model, the speed scaling problem in the non-clairvoyant model is non-trivial even for a single job. Our non-clairvoyant algorithm is defined by using the existing clairvoyant algorithm in a novel inductive way, which then leads to an inductive analytical tool that may be of independent interest for other online optimization problems. We also give additional algorithmic results and lower bounds for speed scaling on multiple identical parallel machines.link_to_OA_fulltex
    corecore