7 research outputs found

    Speed Invariant Time Surface for Learning to Detect Corner Points with Event-Based Cameras

    Full text link
    We propose a learning approach to corner detection for event-based cameras that is stable even under fast and abrupt motions. Event-based cameras offer high temporal resolution, power efficiency, and high dynamic range. However, the properties of event-based data are very different compared to standard intensity images, and simple extensions of corner detection methods designed for these images do not perform well on event-based data. We first introduce an efficient way to compute a time surface that is invariant to the speed of the objects. We then show that we can train a Random Forest to recognize events generated by a moving corner from our time surface. Random Forests are also extremely efficient, and therefore a good choice to deal with the high capture frequency of event-based cameras ---our implementation processes up to 1.6Mev/s on a single CPU. Thanks to our time surface formulation and this learning approach, our method is significantly more robust to abrupt changes of direction of the corners compared to previous ones. Our method also naturally assigns a confidence score for the corners, which can be useful for postprocessing. Moreover, we introduce a high-resolution dataset suitable for quantitative evaluation and comparison of corner detection methods for event-based cameras. We call our approach SILC, for Speed Invariant Learned Corners, and compare it to the state-of-the-art with extensive experiments, showing better performance.Comment: 8 pages, 7 figures, accepted at CVPR 201

    Ego-motion Estimation Based on Fusion of Images and Events

    Full text link
    Event camera is a novel bio-inspired vision sensor that outputs event stream. In this paper, we propose a novel data fusion algorithm called EAS to fuse conventional intensity images with the event stream. The fusion result is applied to some ego-motion estimation frameworks, and is evaluated on a public dataset acquired in dim scenes. In our 3-DoF rotation estimation framework, EAS achieves the highest estimation accuracy among intensity images and representations of events including event slice, TS and SITS. Compared with original images, EAS reduces the average APE by 69%, benefiting from the inclusion of more features for tracking. The result shows that our algorithm effectively leverages the high dynamic range of event cameras to improve the performance of the ego-motion estimation framework based on optical flow tracking in difficult illumination conditions

    Quantifying Temporal Entropy in Neuromorphic Memory Forgetting: Exploring Advanced Forgetting Models for Robust Long-term Information Storage

    Get PDF
    This paper presents a progression of a popular neuromorphic memory structure by exploring advanced forgetting models for robust long-term information storage. Inspired by biological neuronal systems, neuromorphic sensors efficiently capture and transmit sensory information using event-based communication. Managing the decay of information over time is a critical aspect, and forgetting models play a vital role in this process. Building upon the foundation of an existing popular neuromorphic memory structure, this study introduces and evaluates four advanced forgetting models: ROT, adaptive, emotional memory enhancement, and context-dependent memory forgetting models. Each model incorporates different factors to modulate the rate of decay or forgetting. Through rigorous experimentation and analysis, these models are compared with the original ROT forgetting model to assess their effectiveness in retaining relevant information while discarding irrelevant or outdated data. The results provide insights into the strengths, limitations, and potential applications of these advanced forgetting models in the context of neuromorphic memory systems, thereby contributing to the progression of this popular neuromorphic memory structure

    Low-power dynamic object detection and classification with freely moving event cameras

    Get PDF
    We present the first purely event-based, energy-efficient approach for dynamic object detection and categorization with a freely moving event camera. Compared to traditional cameras, event-based object recognition systems are considerably behind in terms of accuracy and algorithmic maturity. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional object representation when hardware resources are limited to implement PCA. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance compared to state-of-the-art algorithms. Additionally, we verified the real-time FPGA performance of the proposed object detection method, trained with limited data as opposed to deep learning methods, under a closed-loop aerial vehicle flight mode. We also compare the proposed object categorization framework to pre-trained convolutional neural networks using transfer learning and highlight the drawbacks of using frame-based sensors under dynamic camera motion. Finally, we provide critical insights about the feature extraction method and the classification parameters on the system performance, which aids in understanding the framework to suit various low-power (less than a few watts) application scenarios

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    corecore