94 research outputs found

    Recognizing Voice Over IP: A Robust Front-End for Speech Recognition on the World Wide Web

    Get PDF
    The Internet Protocol (IP) environment poses two relevant sources of distortion to the speech recognition problem: lossy speech coding and packet loss. In this paper, we propose a new front-end for speech recognition over IP networks. Specifically, we suggest extracting the recognition feature vectors directly from the encoded speech (i.e., the bit stream) instead of decoding it and subsequently extracting the feature vectors. This approach offers two significant benefits. First, the recognition system is only affected by the quantization distortion of the spectral envelope. Thus, we are avoiding the influence of other sources of distortion due to the encoding-decoding process. Second, when packet loss occurs, our front-end becomes more effective since it is not constrained to the error handling mechanism of the codec. We have considered the ITU G.723.1 standard codec, which is one of the most preponderant coding algorithms in voice over IP (VoIP) and compared the proposed front-end with the conventional approach in two automatic speech recognition (ASR) tasks, namely, speaker-independent isolated digit recognition and speaker-independent continuous speech recognition. In general, our approach outperforms the conventional procedure, for a variety of simulated packet loss rates. Furthermore, the improvement is higher as network conditions worsen.Publicad

    Recognizing GSM Digital Speech

    Get PDF
    The Global System for Mobile (GSM) environment encompasses three main problems for automatic speech recognition (ASR) systems: noisy scenarios, source coding distortion, and transmission errors. The first one has already received much attention; however, source coding distortion and transmission errors must be explicitly addressed. In this paper, we propose an alternative front-end for speech recognition over GSM networks. This front-end is specially conceived to be effective against source coding distortion and transmission errors. Specifically, we suggest extracting the recognition feature vectors directly from the encoded speech (i.e., the bitstream) instead of decoding it and subsequently extracting the feature vectors. This approach offers two significant advantages. First, the recognition system is only affected by the quantization distortion of the spectral envelope. Thus, we are avoiding the influence of other sources of distortion as a result of the encoding-decoding process. Second, when transmission errors occur, our front-end becomes more effective since it is not affected by errors in bits allocated to the excitation signal. We have considered the half and the full-rate standard codecs and compared the proposed front-end with the conventional approach in two ASR tasks, namely, speaker-independent isolated digit recognition and speaker-independent continuous speech recognition. In general, our approach outperforms the conventional procedure, for a variety of simulated channel conditions. Furthermore, the disparity increases as the network conditions worsen

    Energy Based Split Vector Quantizer Employing Signal Representation in Multiple Transform Domains.

    Get PDF
    This invention relates to representation of one and multidimensional signal vectors in nonorgothonal domains and design of Vector Quantizers that can be chosen among these representations. There is presented a Vector Quantization technique in multiple nonorthogonal domains for both waveform and model based signal characterization. An iterative codebook accuracy enhancement algorithm, applicable to both waveform and model based Vector Quantization in multiple nonorthogonal domains, which yields further improvement in signal coding performance, is disclosed. Further, Vector Quantization in in nonorthogonal domains is applied to speech and exhibits clear performance improvements of reconstruction quality for the same bit rate compared to existing single domain Vector Quantization techniques. The technique disclosed herein can be easily extended to several other one and multidimensional signal classes

    Comparison of CELP speech coder with a wavelet method

    Get PDF
    This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal Standard 1016) speech coder with a new wavelet method to compress speech. The performances of both are compared by performing subjective listening tests. The test signals used are clean signals (i.e. with no background noise), speech signals with room noise and speech signals with artificial noise added. Results indicate that for clean signals and signals with predominantly voiced components the CELP standard performs better than the wavelet method but for signals with room noise the wavelet method performs much better than the CELP. For signals with artificial noise added, the results are mixed depending on the level of artificial noise added with CELP performing better for low level noise added signals and the wavelet method performing better for higher noise levels

    Real time speaker recognition using MFCC and VQ

    Get PDF
    Speaker Recognition is a process of automatically recognizing who is speaking on the basis of the individual information included in speech waves. Speaker Recognition is one of the most useful biometric recognition techniques in this world where insecurity is a major threat. Many organizations like banks, institutions, industries etc are currently using this technology for providing greater security to their vast databases.Speaker Recognition mainly involves two modules namely feature extraction and feature matching. Feature extraction is the process that extracts a small amount of data from the speaker’s voice signal that can later be used to represent that speaker. Feature matching involves the actual procedure to identify the unknown speaker by comparing the extracted features from his/her voice input with the ones that are already stored in our speech database.In feature extraction we find the Mel Frequency Cepstrum Coefficients, which are based on the known variation of the human ear’s critical bandwidths with frequency and these, are vector quantized using LBG algorithm resulting in the speaker specific codebook. In feature matching we find the VQ distortion between the input utterance of an unknown speaker and the codebooks stored in our database. Based on this VQ distortion we decide whether to accept/reject the unknown speaker’s identity. The system I implemented in my work is 80% accurate in recognizing the correct speaker.In second phase we implement on the acoustic of Real Time speaker ecognition using mfcc and vq on a TMS320C6713 DSP board. We analyze the workload and identify the most timeconsuming operations

    CELP and speech enhancement

    Get PDF
    This thesis addresses the intelligibility enhancement of speech that is heard within an acoustically noisy environment. In particular, a realistic target situation of a police vehicle interior, with speech generated from a CELP (codebook-excited linear prediction) speech compression-based communication system, is adopted. The research has centred on the role of the CELP speech compression algorithm, and its transmission parameters. In particular, novel methods of LSP-based (line spectral pair) speech analysis and speech modification are developed and described. CELP parameters have been utilised in the analysis and processing stages of a speech intelligibility enhancement system to minimise additional computational complexity over existing CELP coder requirements. Details are given of the CELP analysis process and its effects on speech, the development of speech analysis and alteration algorithms coexisting with a CELP system, their effects and performance. Both objective and subjective tests have been used to characterize the effectiveness of the analysis and processing methods. Subjective testing of a complete simulation enhancement system indicates its effectiveness under the tested conditions, and is extrapolated to predict real-life performance. The developed system presents a novel integrated solution to the intelligibility enhancement of speech, and can provide a doubling, on average, of intelligibility under the tested conditions of very low intelligibility

    Wavelet-Neural Network Based Image Compression System for Colour Images

    Get PDF
    There are many images used by human being, such as medical, satellite, telescope, painting, and graphic or animation generated by computer images. In order to use these images practically, image compression method has an essential role for transmission and storage purposes. In this research, a wavelet based image compression technique is used. There are various wavelet filters available. The selection of filters has considerable impact on the compression performance. The filter which is suitable for one image may not be the best for another. The image characteristics are expected to be parameters that can be used to select the available wavelet filter. The main objective of this research is to develop an automatic wavelet-based colour image compression system using neural network. The system should select the appropriate wavelet for the image compression based on the image features. In order to reach the main goal, this study observes the cause-effect relation of image features on the wavelet codec (compression-decompression) performance. The images are compressed by applying different families of wavelets. Statistical hypothesis testing by non parametric test is used to establish the cause-effect relation between image features and the wavelet codec performance measurements. The image features used are image gradient, namely image activity measurement (IAM) and spatial frequency (SF) values of each colour component. This research is also carried out to select the most appropriate wavelet for colour image compression, based on certain image features using artificial neural network (ANN) as a tool. The IAM and SF values are used as the input; therefore, the wavelet filters are used as the output or target in the network training. This research has asserted that there are the cause-effect relations between image features and the wavelet codec performance measurements. Furthermore, the study reveals that the parameters in this investigation can be used for the selection of appropriate wavelet filters. An automatic wavelet-based colour image compression system using neural network is developed. The system can give considerably good results

    Real-time digital speech transmission over the Internet

    Full text link
    This thesis describes a complete system for real-time digital speech communication over the Internet. A digital speech compressor is described, and a new real-time Internet protocol is designed. We focus on the mathematical representation of the system as well as its implementation providing pseudo-code routines for all components and algorithms. Our contribution stands in a combined solution to the problem that removes undesired properties, such as speech clipping and delay, that appeared in Internet real-time communication systems implemented in the past

    Development of Some Efficient Lossless and Lossy Hybrid Image Compression Schemes

    Get PDF
    Digital imaging generates a large amount of data which needs to be compressed, without loss of relevant information, to economize storage space and allow speedy data transfer. Though both storage and transmission medium capacities have been continuously increasing over the last two decades, they dont match the present requirement. Many lossless and lossy image compression schemes exist for compression of images in space domain and transform domain. Employing more than one traditional image compression algorithms results in hybrid image compression techniques. Based on the existing schemes, novel hybrid image compression schemes are developed in this doctoral research work, to compress the images effectually maintaining the quality

    A configurable vector processor for accelerating speech coding algorithms

    Get PDF
    The growing demand for voice-over-packer (VoIP) services and multimedia-rich applications has made increasingly important the efficient, real-time implementation of low-bit rates speech coders on embedded VLSI platforms. Such speech coders are designed to substantially reduce the bandwidth requirements thus enabling dense multichannel gateways in small form factor. This however comes at a high computational cost which mandates the use of very high performance embedded processors. This thesis investigates the potential acceleration of two major ITU-T speech coding algorithms, namely G.729A and G.723.1, through their efficient implementation on a configurable extensible vector embedded CPU architecture. New scalar and vector ISAs were introduced which resulted in up to 80% reduction in the dynamic instruction count of both workloads. These instructions were subsequently encapsulated into a parametric, hybrid SISD (scalar processor)–SIMD (vector) processor. This work presents the research and implementation of the vector datapath of this vector coprocessor which is tightly-coupled to a Sparc-V8 compliant CPU, the optimization and simulation methodologies employed and the use of Electronic System Level (ESL) techniques to rapidly design SIMD datapaths
    corecore