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ABSTRACT OF THESIS 
 
 
 
 

Comparison of CELP speech coder with a wavelet method 
 

This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal 
Standard 1016) speech coder with a new wavelet method to compress speech. The 
performances of both are compared by performing subjective listening tests. The test 
signals used are clean signals (i.e. with no background noise), speech signals with room 
noise and speech signals with artificial noise added. Results indicate that for clean signals 
and signals with predominantly voiced components the CELP standard performs better 
than the wavelet method but for signals with room noise the wavelet method performs 
much better than the CELP. For signals with artificial noise added, the results are mixed 
depending on the level of artificial noise added with CELP performing better for low 
level noise added signals and the wavelet method performing better for higher noise 
levels. 
 
KEY WORDS: Speech Compression, Formants, Pitch, Encoding, Decoding, CELP, 
FS1016, LPC, Wavelet Transform, DWPT 
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Chapter 1 

 
Introduction 

 
One of the principal means of human communication is speech. Modern communication 

systems rely extensively on processing and transmission of speech. Digital cellular, 

Internet telephony, video conferencing and voice messaging are just a few everyday 

applications. With such wide applications, the quest for high quality speech at lower 

transmission bandwidth will never cease.  

 

The general function of all modern speech coders is to digitize the analog speech signal 

through the process of sampling. An encoder, to produce the coded form of speech, then 

processes the digitized sequence. Depending on the application it is to be used for, the 

coded speech is either transmitted or stored. The function of any generic decoder is to 

reconstruct the original speech from the coded sequence. Speech coding is a lossy form 

of compression.  

 

Even though optical fibers provide more than the required bandwidth for speech at 

inexpensive rates, there is a growing need for bandwidth conservation as a great deal of 

emerging technology is focused on integrating various applications like both video and 

audio e.g. video conferencing, voice mail, streaming speech over the internet, internet 

telephone etc. Most of these applications require that the audio part use minimum amount 

of bandwidth as the video requires more bandwidth for good quality. These applications 
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require that the speech signal is in digital format (uncompressed speech requires large 

bandwidth), for efficient transmission and storage.   

 

Historical overview 

Coding of digital sound has a long history. Digital sound coding techniques have 

generally been focused on either speech or audio. Speech coding has a longer history than 

audio coding [26] dating back to the work of Homer Dudley. The basic idea behind 

Dudley’s VODER (Voice Operating Demonstrator) was to analyze speech in terms of its 

pitch and spectrum and synthesize it by exciting a bank of ten analog band-pass filters 

with a periodic or random excitation (to model the vocal tract).  

 

Most early vo-coders (voice coders) were based on analog speech representations. With 

the advent of digital computers, the digital representation of speech signals gained more 

acceptance and importance. Digital representations gained more recognition for their 

efficient transmission and storage. Pulse Code Modulation (PCM) was invented by the 

British engineer Alec Reeves in 1937 while working for the International Telephone and 

Telegraph in France. PCM is a digital representation of an analog signal where magnitude 

of the signal is sampled regularly at uniform intervals, then quantized to a series of 

symbols in binary code [21]. Quantization methods that exploit the signal correlation 

such as Differential PCM (DPCM), Delta Modulation and Adaptive DPCM (ADPCM) 

were proposed later and speech coding with PCM at 64 kbps and with ADPCM at 32 

kbps eventually became CCITT standards [25]. 

 

 2



The next major speech coding advance was the Linear prediction model [7], where the 

vocal tract filter is all pole and its parameters are obtained by a process where the present 

speech sample is predicted by the linear combination of previous samples. Atal first 

applied linear prediction techniques to speech coding [26]. Atal and Hannauer [42] later 

introduced an analysis by synthesis speech coding system based system on Linear 

Prediction. These speech coding systems were the basis on which Federal Standard 1015 

(LPC-10 algorithm) [26] was built.   

 

Research efforts in the 1990’s had been focused on developing a robust low rate speech 

coder capable of producing high-quality speech for cellular communication applications. 

Vector quantization techniques [20] introduced later was used to code the LP coefficients 

and the residual speech signal. This led to the invention of Code Excited Linear Predictor 

(CELP). Campbell et al [2] proposed an efficient version of this algorithm which was 

later adopted as the Federal Standard 1016. The emergence of VLSI technology 

facilitated the real time implementation of the CELP with complex codebook searches.  

 

The widespread popularity of cellular communication and the various features offered 

along with them have resulted in more efficient speech coders which have been improved 

versions of the CELP analysis by synthesis speech coders like MELP, ACELP etc or 

other speech coders like AMR, EFR etc.  
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Hypothesis 

The main purpose of this thesis was to carry out a detailed analysis of the performance 

and implementation differences between CELP and Wavelet speech compression 

technique. Synthetic output speech, which is the result of CELP (implemented in 

MATLAB) speech processing and the same speech signals processed by the wavelet 

method (implemented in MATLAB) are used as test signals. Comprehensive subjective 

listening tests were conducted to test quality of speech from both the CELP method and 

also from the wavelet method.  

 

Organization of this report 

The second chapter details the basics of speech and also lists out the various types of  

speech and their specific characteristics. It also points out to the easily compressible 

sections of speech and also sections, which are harder to compress. The third chapter 

describes the Federal Standard CELP (FS1016) algorithm. Specific bottlenecks 

encountered during its implementation in MATLAB are also described. The fourth 

chapter describes the Wavelet speech compression technique in detail. The fifth chapter 

discusses the experiments and results and the sixth chapter details the conclusion derived 

from those results.  
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Chapter 2 

 
Introduction 

One of the most effective means of human communication is through speech. Modern 

technology clearly illustrates this fact by using various techniques to transmit, store, 

manipulate, recognize and create speech. The generic term for this process is called 

speech coding. Speech coding or speech compression is the process through which, 

compact digital representations of voice signals are obtained for efficient transmission 

and storage [26]. There are several ways to transmit speech to form an efficient 

communication channel. To understand the nuances of coding and decoding speech, a 

thorough knowledge of speech production (properties of the vocal tract, role of the vocal 

cords, etc.) is absolutely essential. 

 

Speech Production 

Speech is produced as air pushed out from the lungs causes slight pressure changes in the 

air surrounding the vocal cords. The vocal cords vibrate causing pressure pulses to form 

near the glottis. These pulses are then propagated through the oral and nasal openings. 

This is propagated through the air as sound waves [15].  

 

Figure 2.1 shows a time domain representation of a speech signal. The x-axis usually 

represents time or frequency (depending on the domain in which the signal is 

represented). The y-axis usually represents various parameters (sound pressure, intensity, 

etc.). The generic name assigned is amplitude and is typically proportional to air pressure. 
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Figure 2.1 Example of Speech signal 

 

 

 

 

 

 

 

 

 

 

 

  

 

The sound waves produced are broadly classified into two types voiced and unvoiced 

sounds [26]. Sounds that depend only on the vibration of the vocal cord (like vowels) are 

called voiced sounds. Sounds that are produced by forcing air through a constriction in 

the vocal tract without the help of the vocal cords are referred to as unvoiced sounds 

(sounds of letters such as ‘sss’ or ‘h’ or whispered speech). The most important 

characteristic of voiced and unvoiced sounds, from speech coding point of view, would 

be that voiced sounds exhibit a periodic nature while unvoiced sounds are noise-like. 
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Both voiced and unvoiced sounds can be present at once in a mixed excitation i.e. both 

periodic and noisy components can be present in the same sound (sound of the letter ‘z’). 

According to the path taken by the sound waves or the origination of the sound they are 

also classified as nasals – occurring due to acoustical coupling of nasal and vocal tract 

and plosives – formed by abruptly releasing air pressure which was built up behind a 

closure in the tract [21]. In general the characteristic sounds of any language are called 

phonemes.  

 

Figure 2.2 shows an example of voiced sound. As can be clearly seen, the shape is 

repeated almost periodically in voiced speech. 
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The distance between two consecutive peaks or valleys is almost a constant. In this figure 

the distance appears to be 0.006 seconds. In terms of samples, for a sampling frequency 

of 8000 Hz distance between two consecutive peaks translates to be 50 samples 

(0.006*8000) approximately for all the cases.  

 

Figure 2.3 shows an example of an unvoiced section of speech. 
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Figure 2.2 Example of Voiced sound  
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Figure 2.3 Example of Unvoiced sound   

 

 

 

 

 

 

 

 

 

 

 

The difference between Figure 2.2 and Figure 2.3 is clearly the absence of periodic 

repetition of peaks or valleys in Figure 2.3.  

 

Some of the most useful characterizations of speech are derived from the spectral domain 

representation. General models of speech production also seem to correspond well with 

separate spectral models for the excitation and the vocal tract [26]. As speech signals are 

known to be non-stationary in nature, they are windowed into small sections where they 

can be assumed to be stationary (quasi stationary) for spectral analysis.   
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Most speech signals are a mixture of both the voiced and unvoiced segments. The 

frequency of periodic pulses in any given speech signal is referred to as the fundamental 

frequency or pitch. In Figure 2.2, the distance between two consecutive peaks or valleys 

is approximately 50 samples. Since the sampling frequency is 8000 Hz, the pitch is said 

to be 160 Hz (8000/50 = 160Hz) for that frame of speech. 

 

Any vocal tract will have various natural frequencies based on its natural shape [21]. 

They change when the vocal tract changes shape according to the speech produced. These 

are called resonant frequencies or formants. The presence of formants is attributed to the 

resonant cavities formed in the vocal tract. 

  

The energy distribution across a specific frequency range produced by the vocal tract 

depends on the resonances. The spectrum of a speech sound produced by the specific 

shape of a vocal tract will show a peak at a specific frequency produced by the 

resonances. These are produced when air passes through the vocal tract mostly 

unrestricted [26]. Spectral analysis of voiced sounds shows formants as the source of 

sound in the vibrating vocal cords and passing through the vocal tract. The spectral 

analysis of unvoiced sounds does not show formants as their sound sources are primarily 

from obstructions due to the tongue and teeth, which do not have a path through the vocal 

tract. 

 

Figure 2.4 shows the log magnitude spectrum of a voiced speech signal. 
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Figure 2.4 Example of Spectrum of Voiced speech with formants  

 

 

 

 

 

 

 

 

 

 

 

 

The peaks that are clearly marked out are the formants of this voiced speech signal. The 

log magnitude spectrum also shows that the voiced speech components are around -20db 

to -100db on the magnitude scale while the noise components are below approximately -

100db. Another important feature seen in this spectrum of voiced speech is the 

fundamental frequency. The peak in the spectrum occurring between 0 and 500Hz is the 

fundamental frequency of this speech signal. In this case, it is approximately 100 Hz.  

 

Figure 2.5 shows an example of the log magnitude spectrum of an unvoiced section of 

speech. 
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Even though there seems to be a spectral envelope, the formants (peaks) found in voiced 

speech are conspicuous by their absence. Another important absentee is the fundamental 

frequency. This shows pitch prediction or estimation will not be very effective for 

unvoiced sounds.  

 

Figure 2.6 shows an example of a log magnitude spectrum of Gaussian noise. 
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Figure 2.5 Example of Spectrum of Unvoiced speech  
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Figure 2.6 Example of Spectrum of Gaussian noise 

 

Figure 2.5 and Figure 2.6 are similar in the fact that both the spectrums lie are devoid of 

high peaks. In Figure 2.6 the energy seems to be distributed evenly through out the 

spectrum with no specific frequency getting the bulk of the energy. The difference 

between Figure 2.5 and 2.6 is that in 2.5 the energy is not as evenly distributed as in 2.6 

but still the absence of any formants in both the spectrums shows that they can be 

assumed to have similar characteristics. This proves to be beneficial and helps in 

compressing redundant data in any given speech signal as the unvoiced section can be 

dropped during encoding and noise with the same energy can be used for reconstruction. 

Hence in most cases the unvoiced speech segment can be assumed to be noise-like.  
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For a speech signal to be compressed efficiently these properties (viz. voiced-unvoiced 

sounds, formants, pitch etc.) of sounds are greatly exploited. Another technique used 

frequently in the compression of speech signals is Quantization [20]. The basic principles 

of quantization are described in the next section. 

 

Quantization 

The process of representing any given value (eg. A sample value, LSP parameter etc) 

with a value of lower precision is called as quantization. The goal of quantization is to 

encode data with as few bits as possible. The given quantity is divided into a discrete 

number of small parts, usually multiples of the common quantity [20]. Hence, more the 

available levels the better the approximation. The most common example of quantization 

is the process of rounding off. Any real number can be rounded off to the nearest integer 

with some error involved in the process. Even though quantization is lossy it preserves 

perceptual quality of speech. Depending on the type of input data to be quantized it is 

referred to as scalar quantization or vector quantization. If the input is a block of samples 

to be quantized simultaneously then the process is referred to as vector quantization [19]. 

 

Scalar Quantization 

In scalar quantization the quantizer is split into cells depending on the number of bits 

available for quantization. If n bits are available for quantization then, there are 2n 

quantization levels. The input values are approximated to the cells according to the 

quantization rule or quantization function. For a 16 bit quantizer there are 216 = 65536 
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levels. Figure 2.7 shows the quantized version of a sine wave. If S(t) is s speech sample 

then its quantized version is given by, 

)()()( tetStSq −=                                  (2.1) 

where Sq(t) is the quantized sample and e(t) is the error due to quantization. 
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 Figure 2.7 Quantized representation of a Sine wave 

 

As can be seen in Figure 2.7 the original values are approximated to values of lower 

precision. Another important quality shown is the distance between the quantization 

values is the same i.e. they are equally spaced. If the levels are equally spaced then it is 

called uniform quantization otherwise it is called non-uniform quantization. When 

uniform quantization is applied directly to the speech samples, it is called Pulse Code 
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Modulation (PCM). For telephone speech the number of bits used per sample is 8. When 

the sampling frequency is 8000 Hz, the total number of bits per second is 64 Kbps (8000 

* 8). Figure 2.8 shows an example of a non-uniform quantization technique. The type of 

non-uniform quantization technique used here is called mu-law companding. 
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 Figure 2.8 Non-uniform Quantization levels using mu-law 
companding 

 

The quantization levels are closer near zero and are more widely spaced as the values 

move away from zero thus giving a fine representation near zero and a coarse 

representation away from zero. The mu-law quantizer produces a logarithmic fixed point 

number. The spacing on the quantization levels is based on the distribution of sample 

values in the signal to be quantized. The distance between adjacent levels is set smaller 
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for regions that have a larger share of sample values and the distance is set farther apart 

for regions that have a smaller share of the sample values [15].   

 

Vector Quantization 

The main principle of vector quantization is to project a continuous input space on 

discrete output spaces while minimizing the loss of information [11]. 

The main components of the vector quantization technique are, 

1.) A codebook – a collection of vectors or codewords to which the input is 

approximated. 

2.) A quantization function – a function which determines the closeness of the input 

vector to the vectors in the codebook by some distance measure. Usually, some 

nearest neighbor algorithm is used. If q is the quantization function then, 

                                                                                  (2.2) iii yxqxq =→≡ )(

             where xi is the input vector and yi is the best matching codebook vector. 

 

Some of the distance measures used in the quantization function are, 

a. Least Squares error Method [19] 

b. r-norm error  

c. Weighted least squares error method. 

 

The input vector is compared to the codebook vectors using one of the nearest neighbor 

algorithms. The index of the codeword with the best match is usually transmitted. The 
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receiver’s side has the same codebook and the index is used to retrieve the codeword with 

the best match. Figure 2.9 shows a block diagram of vector quantization operation. 

 

 

Input vector 
(speech samples or 
other parameters) 

Comparison of input 
vector with codeword 
using nearest neighbor 
algorithm

Codebook with 
codewords  

Index of 
codeword with 
best match 

Figure 2.9 Operation of vector quantization 

 

The simultaneous treatment of blocks of samples in vector quantization gives a higher 

degree of freedom for choosing the reconstruction points compared to scalar quantization 

and thus achieves better performance in terms of incurred distortion. This advantage 

comes from the ability of exploiting statistical dependencies among samples in the treated 

vector and the geometrical fact that operation in a high dimension enables more efficient 

decision regions [20]. The cost for increased performance is an increase in complexity 

compared to scalar quantization. Detailed treatments of quantization and bit allocation 

with respect to speech processing are dealt with in [11], [19] and [20].  
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Speech Coders 

An efficient speech coder represents speech with the minimum number of bits possible 

and produces reconstructed speech which sounds identical to the original speech [21].  

The basic function of any speech coder would be to first convert the pressure waves 

(acoustic speech) to an analog electrical speech signal with the help of transducers such 

as microphones. This analog speech signal (for telephone conversations) is usually band 

limited to be between 300 – 3400 Hz. The analog signal is sampled at 8000 Hz according 

to Nyquist sampling rate. The actual coding of speech operates only on the digitized 

speech and not on the analog speech. Hence the analog speech is converted to digital 

speech using an A/D converter.  

 

Once speech is obtained in its digital form, the major concerns for any speech coder 

operating on it would be, 

a.) Preservation of the message content in the speech signal, 

b.) Representation of the speech signal in a form that is convenient for transmission 

or storage, or in a form that is flexible so that modifications may be made to 

speech signals without seriously degrading the message content, 

c.) Time constraint on the representation of the system (time it takes to represent a 

given speech signal in its compressed form). 

Various speech coders accomplish these in efficient ways but almost always if one these 

factors is accomplished efficiently it involves a trade off on one of the other factors. In a 

coder like CELP the speech quality and the number of bits (4.8kbps) are extremely 
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attractive but the computational complexity i.e. time taken to convert original signal into 

its compressed form, is very high. 

 

According to the way speech coders compress speech signals, they can be classified 

under various categories.  

 

General classifications of speech coders 

The ultimate aim of any speech coder is to represent speech with minimum number of 

bits and also maintain perceptual quality. Thus the quantization and binary representation 

required can be performed directly or parametrically [26]. In the direct method speech 

samples are subject to quantization and binary representation, while in the parametric 

method, quantization and binary representation involves a speech model or spectral 

parameters.   

 

According to the number of bits used to represent either the speech samples or the 

spectral parameters, speech coders are classified as medium rate, low rate and very low 

rate coders. Medium rate coders usually code speech within a range of 8 – 16 kbits/s, low 

rate coders between 8 and 2.4 kbits/s and very low rate coders operate below 2.4 kbits/s 

[22].  

 

According to the procedure followed for encoding and decoding, speech coders can be 

classified as speech specific or non-speech specific coders [26]. As the name suggests 

speech specific coders, also known as vocoders (voice coders), are based on speech 
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models and focus on producing perceptually intelligible speech without necessarily 

matching the waveform (some vocoders can be hybrid too). Non-speech specific coders 

or waveform coders, on the other hand, concentrate on a faithful reproduction of the time 

domain waveform. Vocoders are capable of producing speech at very low bit rates but the 

speech quality tends to be synthetic [22]. Even though waveform coders are generally 

said to be less complex than vocoders they generally operate at medium rates. There are 

some hybrid coders that combine the properties of both speech and non-speech specific 

coders. Modern hybrid coders can produce speech at very low bit rates. 

 

Various other classifications of speech coders are also possible but they would not lie in 

the scope of this report. A brief overview of transform coders and vocoders would 

suffice. For a more detailed classification of speech coders with respect to their mode of 

operation, compression ratio etc readers can refer to [22], [26] and [31]. 

 

Transform Coders 

Transforms are those that map a function or sequence onto another function or sequence. 

Some of the advantages of using transforms instead of the original functions are, 

transforms are usually easier to handle than the original functions, transforms may 

require less storage and hence provide data compression, and an operation may be easier 

to apply on a transformed function rather than the original function [27]. 

The different types of transforms are continuous, discrete and semi-discrete. The 

continuous transform maps a function to another function. The discrete transform maps a 

sequence to another sequence and a semi-discrete transform relates a function to a 
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sequence. Since speech signals are digitized sequences, discrete transforms are used for 

coding speech signals rather than the other two types of transforms. 

 

The main motive of any transform used is to represent a complex function (signal in this 

case) with simple functions [26]. A set of functions used to represent another function 

defined over some space is called the basis function. A function is broken down into its 

smallest segments and these segments are represented by a scaled version of the basis 

function. As the basic operation of transforms suggests, they can also be efficiently used 

for speech coding. 

 

 Transform coders are parametric coders that exploit the redundancy of the speech signal 

through more efficient representations in the transform domain. The efficiency of a 

transform coding system will depend on the linear type of transform and the bit allocation 

process. Orthonormal transforms do not reduce the variance of the speech signal being 

coded like predictive methods. Transform coding provides coding gain by concentrating 

the signal energy into a few coefficients [25]. As more energy is concentrated into few 

coefficients, the error due to quantization is lowered. A crucial part of the transform 

coding is a bit allocation algorithm that provides the possibility of quantizing some 

coefficients more finely than others. These also mostly work on a frame by frame basis. 

The basic working of any unitary transform coder would be to extract the transform 

components from the given speech frame, quantize and transmit them. At the receiver’s 

end, they are decoded and inverse transformed. The variances of these transform 

components often exhibit slowly time varying patterns which can be exploited for 
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redundancy removal mostly using adaptive bit allocation process. The basic block 

diagram of a transform based coder is shown in Figure 2.10. 

 

 

Transform Encoder 

Decoder Inverse 
Transform 

Speech 

Reconstructed  
Speech 

Transmitter

Receiver 

Figure 2.10 Basic block diagram of a Transform Coder 

 

 

There are various discrete transforms used for coding. Some of them are Discrete Cosine 

Transform (DCT), Discrete Fourier Transform (DFT), Walsh-Hadamard Transform 

(WHT), Discrete Wavelet Transform (DWT) etc.  

 

 

Mixed transform techniques are also being used to code speech. The basis functions of 

two or more transforms, usually not orthogonal, are used for mixed transforms [30]. They 

attempt to achieve an accurate match of the speech signal using a number of prototype 
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waveforms that match the local characteristics of the speech signal. Some examples of 

mixed transform techniques which have been tried are Fourier and Walsh transform 

[Mikhael and Spanias], DCT and Haar [Mikhael and Ramaswamy] etc.  

 

For more detailed information on different type of transform coders readers can refer to 

[27], [28], [29] and [30]. 

 

A transform coder using wavelets, which was used for comparison with CELP, is 

described in detail in Chapter 4. 

 

Vocoders 

Vocoders are speech specific coders which rely largely on the source-system model 

rather than reproducing the time domain speech waveform faithfully. The basic function 

of any vocoder would be to produce speech as product of vocal tract and excitation 

spectra [26].   

 

Various types of vocoders used are channel vocoders, formant vocoders, homomorphic 

vocoders, linear prediction vocoders etc. The most popular and widely used vocoder is 

the linear prediction vocoder.  

 

A vocal tract model is usually used to extract the envelope spectra of the vocal tract. 

These represent the short term prediction in the speech signal [7]. The signal that usually 

remains after filtering the speech signal with prediction filters is called the residual. The 
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remaining excitation is usually differentiated into voiced and unvoiced. The voiced 

section of the excitation is usually represented by pitch-periodic pulse like waves and the 

unvoiced speech sections are represented by random noise like excitation [23]. Thus, the 

encoded speech has prediction parameters and quantized residual. The decoder 

reconstructs the speech signal by passing the quantized residual through the prediction 

filters. In a broad classification, these types of vocoders would come under hybrid coders 

as the short term prediction models the speech process and the representation of the 

residual tries to match the waveform [26]. 

 

The most important factor that makes vocoders code at low and very low bit rates is the 

efficient representation of the residual [26]. Poorly quantized residual signals introduce 

quantization noise into the reconstructed speech. To reduce the distortions in 

reconstructed speech, the residual signal is quantized to minimize error between original 

and reconstructed speech. This process is called as analysis-by-synthesis procedure [22]. 

Thus, in analysis-by-synthesis procedures, the decoding process is a part of the encoding 

process. The quantized residual is used to reconstruct the speech signal and is compared 

with the original. The quantized residual which produces the best match is chosen. This 

procedure enables vocoders to achieve coding at low bit rates and also produce 

intelligible quality speech. 

 

For more detailed information on vocoders readers can refer to [7], [8], [22] and [31]. 
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A type of hybrid vocoder, FS1016 CELP, used for comparison with the wavelet 

transform coder, is described in detail in Chapter 3.  

 

Since these coders clearly exploit the properties of speech signals, while comparing two 

speech coders, speech signals with all these properties and corrupted by room noise, 

random noise or quantization noise will prove to be good test signals. The addition of 

noise will help determine the more efficient speech coder under adverse conditions [15]. 

Other than this speech coders can also be compared according to the one that compresses 

voiced sounds, unvoiced sounds etc better. The details of the test signals chosen are 

explained in chapter 5. 
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Chapter 3 

 
 
Introduction 

This chapter will focus on the implementation details of Federal Standard 1016 CELP 

algorithm, intended primarily for secure voice transmission. The chapter follows a frame 

of speech as it goes through the encoder and the decoder. Hence the processes performed 

on the frame of speech on both the transmitters as well as the receiver’s sides are listed 

chronologically. 

 

 Since CELP is an analysis by synthesis method, the receiver is a part of the transmitter. 

Due to this the transmitter will generate speech identical to that of the receiver, in the 

absence of channel errors [2]. The first stage of CELP processing is to split the input 

speech into frames. Once the input signal has been broken down into blocks of samples, 

CELP has three major processes,  

1. Short-term Linear Prediction,  

2. Adaptive Codebook Search 

3. Stochastic Codebook Search 

The receiver part has an additional stage of Post Filtering to help remove quantization 

noise. The basic block diagram of a CELP transmitter is given Figure 3.1, 
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Figure 3.1: Block diagram of CELP Transmitter 
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CELP Transmitter 

Frames 

The input speech, sampled at 8000Hz, is first split into frames of 240 samples or 30ms 

[1]. This block of speech samples will be referred to as a frame of speech in this chapter. 

After the first stage (short-term prediction) is completed only subframes of speech are 

required because speech signals are non-stationary by nature and hence, to match local 

characteristics of the given frame they have are assumed to be quasi stationary. A 

subframe is only 7.5ms or 60 samples, so the nature of a subframe can be assumed to be 

quasi stationary rather than that of a frame. Each frame is split into four subframes.  

 

The linear prediction process though is performed on the frame of speech to avoid more 

bits being transmitted [1]. If linear prediction is performed for every subframe it results in 

10 coefficients to be transmitted for every subframe, which makes it 40 coefficients 

instead of just 10. The same coefficients can be obtained through linear interpolation 

instead of transmitting the extra 30 coefficients. The pitch prediction and the stochastic 

codebook match predict more accurate results with the subframe [2]. Hence the given 

frame of speech is divided into frames and subframes according to the process performed 

on it. 

 

Figure 3.2 shows a frame of speech with 240 samples which corresponds to a 30ms 

window when the sampling rate is 8000 samples/second (240/8000 = 30ms). As stated 

initially all Figures in this chapter with time samples were sampled at 8000 Hz.  
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Figure 3.2: A frame (240 samples) of speech 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 shows a subframe of speech with 60 samples which corresponds to a window 

length of 7.5ms at sampling rate of 8000 samples/second (60/8000 = 7.5ms). 
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      Figure 3.3: A Subframe (60 samples) of speech 

 

 

 

 

Linear Prediction Analysis 

Linear Prediction (LP) is a widely used method that represents the frequency shaping 

attributes of the vocal tract [7]. In terms of speech coding, Linear Predictive Coding 

(LPC) predicts a time-domain speech sample based on a linearly weighted combination 

of previous samples. The coefficients obtained through the process of LPC represent the 

spectral shape of the given input frame of speech. The LPC coefficients are usually 

obtained by two methods, 

1. Autocorrelation Method [7]                                             

2. Covariance Method [15] 
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Calculation of LP coefficients 

In Federal Standard 1016 CELP to obtain LP coefficients the autocorrelation method is 

usually used [1]. This action is performed on the input speech frame. In this method the 

autocorrelation of the given input speech is calculated with a lag l, 

                                                                                    (3.1) ∑
−−

=

) + ( ∗=
1

0
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i
lisis    acr(l) 

where acr(l) is the autocorrelation value at a given lag l, s(i) is the input speech sample 

and N is the length of the input speech signal. A matrix is formed with autocorrelation 

values, the autocorrelation value of the new sample coming in added to the end of the 

next row. The matrix structure obtained via autocorrelation is called as Toeplitz structure 

(3.2) (Symmetric, diagonals contain same element).  
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where, 

    ACRk =                                               

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−
−

)0().....3()2()1(
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
)2(.).........1()0()1(
)1(.).........2()1()0(

acrkacrkacrkacr

kacracracracr
kacracracracr

 ak = [ a(1), a(2),……..a(k)]T , acrk = [acr(1), acr(2), ……acr(k)]T

and k is order of the LP analysis.  

Levinson-Durbin recursion is usually used to solve for the unknown ak [7].  

acrk . 1-ACRk - ak =  

 The Levinson-Durbin recursion is defined as, 

E(0) = acr(0) 
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The values of a(i) obtained through Levinson-Durbin recursion are the linear prediction 

coefficients. The short-term linear prediction analysis is performed once every frame 

using a 10th order autocorrelation technique [2]. The LPC coefficients are usually given 

by,       

                                          

                                                                                              (3.4) ∑
=

=
k

1  i

i-z ia - 1  A(z) )(
  

a(i) is the prediction coefficient and k is the order of the filter. The corresponding all-pole 

synthesis filter, which is usually used in the receiver’s side, is of the form 1/A(z). 

The coefficients are then bandwidth expanded using a bandwidth expansion factor γ [3].  

                                                                                                                     (3.5) i
ii aa γ=

If the coefficients are ai, they are replaced with aiγi. This shifts the poles toward the origin 

in the z-plane by the weighting factor γ. Usually γ is chosen to be 0.994, which 

corresponds to an expansion of 15 Hz [1]. This expansion not only improves speech 

quality but also proves beneficial when quantizing Line Spectral Pairs (LSP), which are 
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obtained from LPC’s [2]. The LP coefficients plotted on a unit circle is shown on Figure 

3.4. 
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Figure 3.4 LPC’s inside the unit circle. 

As seen in Figure 3.4 all the LPC’s are present within the unit circle which means the 

system is stable. 
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Conversion of LPC’s to LSP’s 

The LPC coefficients are not suitable for quantization as any error due to quantization 

might make them go out of the unit circle and hence make the system unstable. To avoid 

distortion a large number of bits are required to quantize LP coefficients [17]. The LPC’s 

have to be interpolated for the subframes also. This process again might make the system 

unstable. Due to these factors the LPC’s are converted to LSP’s.  

 

To form the LSP’s, a symmetric and an anti-symmetric polynomial are formed as shown 

in Equation (3.6) and (3.7). 
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where A(z) is the inverse LP filter and k is the order of the LP analysis. The polynomials 

P(z) and Q(z) have roots at z = 1 and z = -1. These roots are removed to form P’(z) and 

Q’(z). These polynomials are symmetrical and have the property that if the roots of A(z) 

lie inside the unit circle, then the roots of P’(z) and Q’(z) will lie on the unit circle [17]. 

This property of LSP’s is shown in Figure 3.5.  
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 Figure 3.5 Roots of the polynomial P’(z) lying on the unit circle when the LPC’s 
lie within the unit circle 

 

 

If the roots of the polynomials lie on the unit circle then the polynomials can be specified 

by the angular position of their roots. The roots of these polynomials occur in complex 

conjugate pairs. Hence only the angular positions of the roots located on the upper 

semicircle of the z-plane are necessary to completely define the polynomials [17]. The 

LSP’s are thus defined as the angular positions of the roots of the polynomials P’(z) and 

Q’(z) located on the upper semicircle of the z-plane. Hence they lie between 0<ωi<П. 

The LPC’s are converted to LSP’s because LSP’s are more stable when subject to 

quantization. Another advantage of LSP’s is that an error due to quantization in a given 

LSP produces a change in the LPC power spectrum only in the neighborhood of this LSP 
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frequency i.e. they are localized in nature [13]. The angular frequencies are converted to 

linear frequencies. The LSP’s which represent set of frequencies are given in the Table 

3.1 [1].   

 

After the LPC’s are converted to LSP’s, the LSP’s are quantized using 34-bit, 

independent, non-uniform scalar quantization. The 10 line spectral parameters are coded 

with the number of bits per parameter as specified in the federal standard [2]. Some of the 

parameters are coded with 3 bits and some with 4 bits. The frequencies that the human 

ear can resolve better are given more quantization bits while higher frequencies are given 

lesser number of bits. The quantization is performed using table 3.1. 

Table 3.1: Quantization bits and frequency levels represented by the LP 
coefficients 

LSP Bits Output Levels (Hz) 

1 3 100, 170, 225, 250, 280, 340, 420, 500 

2 4 210, 235, 265, 295, 325, 360, 400, 440, 480, 520, 
560, 610, 670, 740, 810, 880 

3 4 420, 460, 500, 540, 585, 640, 705, 775, 850, 950, 
1050, 1150, 1250, 1350, 1450, 1550 

4 4 620, 660, 720, 795, 880, 970, 1080, 1170, 1270, 
1370, 1470, 1570, 1670, 1770, 1870, 1970 

5 4 1000, 1050, 1130, 1210, 1285, 1350, 1430, 1510, 
1590, 1670, 1750, 1850, 1950, 2050, 2150, 2250 

6 3 1470, 1570, 1690, 1830, 2000, 2200, 2400, 2600 

7 3 1800, 1880, 1960, 2100, 2300, 2480, 2700, 2900 

8 3 2225, 2400, 2525, 2650, 2800, 2950, 3150, 3350 

9 3 2760, 2880, 3000, 3100, 3200, 3310, 3430, 3550 

10 3 3190, 3270, 3350, 3420, 3490, 3590, 3710, 3830 
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The LSP’s are transmitted only once per frame but they are needed for all the sub frames. 

So they are linearly interpolated to form an intermediate set for each of the four sub 

frames [3]. The type of linear interpolation performed to obtain the four subframes are 

listed as follows, 

 

LSP of Subframe1 = 7/8 * LSP of previous Frame + 1/8 * LSP of next Frame     (3.7) 

LSP of Subframe2 = 5/8 * LSP of previous Frame + 3/8 * LSP of next Frame     (3.8) 

LSP of Subframe3 = 3/8 * LSP of previous Frame + 5/8 * LSP of next Frame     (3.9) 

LSP of Subframe4 = 1/8 * LSP of previous Frame + 7/8 * LSP of next Frame     (3.10) 

 

The same interpolation is used in the receiver’s side also. In the transmitter’s side these 

interpolated LSP’s are immediately converted back to LPC’s to aid in weighting adaptive 

codewords or stochastic codewords.  

 

In the receiver’s side these LPC’s are used form the synthesis filter for the excitation 

signal and are also used in the post filtering stage to reduce the quantization noise in the 

reconstructed speech.   

 

Figure 3.6 shows the log magnitude spectrum of a frame of speech along with the log 

magnitude spectrum of the LP coefficients of that frame. The envelope of the speech 

spectrum obtained by the 10th order LP analysis is clearly seen. If the order is increased 

the prediction becomes more accurate but the number of coefficients to be transmitted 
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increases. For this application, a 10th order analysis proves adequate in characterizing the 

spectral envelope and also transmits minimum number of coefficients required.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 3.6: Log magnitude spectrum of a frame of speech and the log 

magnitude representation of the LPC’s of that frame 
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The Figures 3.7 and 3.8 shows segments of speech before and after the LPC analysis is 

performed respectively. 
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Figure 3.7 Frame of speech before LPC’s are removed 
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Figure 3.8 Frame of speech after LPC analysis has been performed 

In Figures 3.7 and 3.8, the difference is that in Figure 3.7 there seems to be more 

deterministic in nature than 3.8. Figure 3.8 clearly exhibits only the periodic patterns 

because the short-term correlation has been removed. In between the repeating valleys 

the signal seems to be totally random in nature whereas in Figure 3.7 the signal in 

between the valleys does not seem to be totally random. This clearly shows that ideally, 

only the periodic pitch information and the random signal are left behind after LPC 

analysis is performed on a frame of speech. 
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Adaptive Codebook Search 

The search procedure for the adaptive codebook is explained in Figure 3.9. 
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Figure 3.9: Adaptive Codebook Search Technique 
 

Formation of Adaptive Codeword 

The input frame (30ms) of the speech signal is divided into subframes of 7.5ms for all the 

remaining processes. The interpolated LSP’s are converted back to LPC’s. The LPC’s are 

required for the adaptive codebook search stage because the adaptive code words are 
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filtered by a weighted version of the LP synthesis filter to obtain code words, which are 

similar to the input subframe [4]. 

 

The main purpose of the adaptive search procedure is to remove the pitch information 

from the residual. It gets the name adaptive from the fact that the code words keep 

changing for every subframe. The adaptive codebook has 256 code words. The residual is 

compared to these code words and the best match is found, the index and gain of which 

are transmitted 4 times every frame [2].  

 

The 256 code words are updated for every subframe. This consists of 128 integer and 128 

non-integer delays ranging from 20 to 147 samples. The number of samples delayed in 

time is called the pitch delay. These delays are used for indexing the adaptive code 

words. The 20 and 147 are chosen to correspond to a pitch of 54 Hz to 400 Hz [1]. The 

adaptive codebook is a linear vector of overlapped code words. For the first subframe, the 

pitch search is not performed as the adaptive codebook vector is empty. The excitation 

vector of the first subframe (the selected stochastic codeword) is used to form the linear 

adaptive codebook vector. To form the first integer codeword (size of subframe, 60 

samples), the first 20 samples of the vector are repeated thrice (20 samples chosen to 

correspond to a delay of 20). Using the first 21 samples of the vector the next codeword 

is formed and the samples are repeated till the subframe size is reached. Example of code 

word formed when the delay size is less than subframe length is shown in Figure 3.10. 

This codeword would have an index of 20 as the same samples are repeated after every 

20 samples. This process is followed for all delays less than the subframe length. 
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Figure 3.10: Sample of an Adaptive Codeword with delay shorter than subframe 
length 

 
 

For delays greater than the size of the subframe the code words are formed as shown in 

Figure 3.11. 

 

                                                                   Adaptive 
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Previous Code word (1-60) 
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Figure 3.11: Sample of Adaptive codewords greater than subframe length 
 
For delays greater than the subframe length, the 60-sample frame is slid over the linear 

adaptive codebook to obtain the code words. Effectively the difference between the 

previous codeword and the next codeword would be 1 new sample. Since these 60 

sample code words are essentially past excitations, a match between a current subframe 

and a previous subframe is possible as mostly there is no drastic change in the nature of 

current and previous subframes. 
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A sample codeword for 20th delay is shown in figure 3.12.  
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 Figure 3.12: Adaptive Codeword with a delay of 20 
 

As can be seen, there is a peak at around the 20th sample, a similar peak repeated at 

around the 40th sample and the 60th sample. This clearly shows the pattern is repeated 

every 20 samples corresponding to a delay of 20. Even the valleys depict this with the 

first valley at approximately 10 and following valleys at approximately 30 and 50.  

 

This results in 128 integer codewords. The non-integer delays are formed by 

interpolation. The non-integer delays improve pitch prediction and help in reducing noise 
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by diminishing the use of the stochastic codebook. The non-integer delay coding 

specified in federal standard 1016 is non-uniform and is listed in Table 3.2. 

 

                 Table 3.2: Resolution of Adaptive codebook non-integer codewords 

                   Delay                                                    Resolution 

                   20 - 25 2/3                                                    1/3 sample 

                   26 - 33 3/4                                                     1/4  sample 

                   34 - 79 2/3                                            1/3 sample 

                   80 – 147                                               1 sample  

                 
 

This interpolation is executed by using the weights of a Hamming windowed sinc 

function. The same kind of interpolation is used both in the transmitter and the receiver. 

The linear adaptive codebook, acb is used along with the corresponding integer 

codeword. The corresponding integer codeword is added to the end of the linear adaptive 

codebook. 

acb’ = [acb(-147), acb(-146), ………, acb(-1), cw(0), cw(1), ……, cw(59)] 

acb’ = [acb’(-147), acb’(-146), ………, acb’(-1), acb’(0), acb’(1), ……,acb’(59)] 

where cw is the corresponding integer codeword. 

 

A 40-point interpolation of the hamming windowed sinc function is used [1]. A 

Hamming window function (3.11) is used to smooth the spectrum ripple.  

)/cos(*46.54.0)( Nkkh π+=                                                                               (3.11) 

where k = -N, -N+1, ….,N and h(k) is the hamming window. 

                                                                                                            
The formula used for sinc interpolation is, 
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where t = 0,1,…..59, acbM+d(t) is the adaptive codebook value for non-integer delays, N 

is the number of points used in interpolation (40 point interpolation in this case), d is the 

fractional delay and M is the integer delay (M = 20, 21, 22,……147). The various 

fractional delays used are listed in Table 3.2 [1].  

 

This process adds another 128 fractional delays to the existing 128 integer delay 

codewords. The high resolution provided by the non-integer delays reduces the distortion 

of high pitched speakers. Also the overall noise in the coder is reduced as the efficiency 

of the adaptive codebook increases in turn reducing the effect of the noisy stochastic 

component.  

 

Once the codebook searches (both adaptive and stochastic) for a subframe are completed, 

the adaptive codebook is updated with the excitation vector; the vector formed by adding 

the scaled adaptive codeword and scaled stochastic codeword (this vector is sent through 

the LPC filter on the receiver’s side to get the reconstructed speech signal). The update 

shifts the adaptive codebook vector by 60 samples. The oldest 60 samples are eliminated 

and the new ones are added to at the end of the vector.  

             
 

            
(3.14)                                                   147  to88 ifor                  88)-ev(i  acb(i)

(3.13)                                                      87  to1ifor                60)acb(i  acb(i)

==

=+=
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where ev is the excitation vector and ev(0) is the first sample used to excite the LPC filter. 

This updated adaptive codebook is used to form the codewords for the next input 

subframe.  

 

Adaptive Codebook Search Technique 

 
The adaptive search procedure involves comparing the filtered code words with the actual 

subframe [6]. The code words are filtered using weighted LP synthesis filter coefficients 

of the corresponding subframe. The filtered codeword is then correlated with the actual 

subframe, the energy of the filtered code word is also found (squaring individual sample 

values). The correlated value is then divided by the energy and this forms of the scale or 

gain of that particular codeword given as  

)()(/)()( ifcifcsfifcigp TT=                                                                                       (3.15)                         

where i is the index of the adaptive codeword, gp is the gain, fc is the filtered codeword, 

sf is the sub-frame. The gain is again multiplied with the correlated value to form the 

match score given by: 

)()(/))(()( 2 ifcifcsfifcims TT=                                                                                  (3.16) 

 The same procedure is repeated for all odd numbered (index odd number) codewords. 

The match score of all 256 codewords are stored. The codeword with the highest match 

score is chosen, the corresponding index is quantized using 8 bits and transmitted. The 

gain is quantized using absolute, non-uniform, scalar 5-bit quantization as specified in the 

federal standard [2].  
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For even subframes the entire codebook is not searched. The index of the previous odd 

codeword is used and delays 31 below the previous index and 32 delays above the index 

are searched for the best match [8]. 

      Min = index of previous selected codeword (odd subframe) – 31                    (3.17) 

      Max = index of previous selected codeword (odd subframe) – 32                   (3.18) 

The indices of the even subframes are coded using 6-bits. This procedure also greatly 

reduces the computational complexity of the adaptive search procedure, as the entire 

codebook doesn’t have to be searched for all subframes.  

 

The plot of a selected codeword scaled by the gain is shown in Figure 3.13.  
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Figure 3.13: A selected scaled Adaptive codeword 
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The distance between valleys is pointed out in Figure 3.13 to calculate the pitch. The first 

valley occurs at approximately the third sample, the corresponding valley occurs at 

around the 43rd sample giving it an approximate pitch of 40 samples. Ideally the pitch 

estimation removes all the deterministic information from the signal leaving behind a 

random residual. 

Figure 3.14 shows the residual left behind after the LP analysis and pitch estimation have 

been performed on a sub-frame of speech. As can be seen, the information seems to be 

totally random in nature. 

 

0 10 20 30 40 50 60
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time Samples

A
m

pl
itu

de

Figure 3.14: Residual after pitch information has been removed  
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Stochastic Codebook 

The diagrammatic representation of the stochastic codebook search is shown in Figure 

3.15. 
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Figure 3.15: Stochastic Codebook Search Technique 
 

 

 

 51



Formation of Stochastic Codeword 

The next stage of CELP is the stochastic codebook search. The stochastic codebook has 

512 codewords, each 60 samples in size. The residual from the pitch extraction stage 

(adaptive codebook search) is random in nature because ideally all the deterministic 

information from the original subframe of speech has been removed. The codebook 

specified in the federal standard 1016 contains samples of a zero mean, unit-variance and 

white gaussian sequence. This is a special form codebook as it contains sparse, 

overlapped and ternary valued samples [10]. Ternary valued samples mean that the 

samples in the codebook can only assume three different values –1, 0 or +1. This 

codebook contains 77% zeros. Even though in the federal standard it specifies a 

codebook with 77% zeros, several authors have tried stochastic codebooks with 95% zero 

samples. This does not result in audible degradation of synthetic speech.  

 

Figure 3.16 shows how a stochastic codeword is formed. 
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Figure 3.16: Sample of how stochastic codewords are formed 

This codebook also is stored as a linear array of samples. The first 60 samples of the 

linear stochastic codebook form the first codeword, to form the second codeword the first 
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two samples of the first codeword are left out and the next two samples from the linear 

codebook are added as shown in Figure 3.16. Thus the difference between the old 

codeword and new codeword is just two new samples. The 512 code words are formed by 

shifting the frame of 60 samples over the linear vector adding on two new samples for 

every codeword. 

 

The graph of a stochastic codeword is shown in Figure 3.17. Since it is a ternary 

codebook the values are only -1, 0 or 1. The nature of the codeword is also random. 
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Figure 3.17: Sample of stochastic codeword 
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Stochastic Codebook Search Method 

The search procedure [8] is very similar to that of the adaptive codebook search. The 

perceptually weighted LP synthesis filter weights the stochastic codewords. The pitch 

information from the adaptive codebook search stage is subtracted from the input 

subframe of speech to form the residual (3.19). The residual is then convolved with the 

filtered stochastic codeword. The energy of the filtered stochastic codeword is also found. 

The convolution divided by the energy gives the gain or scale parameter (3.20). The 

match score for the given particular codeword is calculated by multiplying the gain with 

the convolution of the residual and the filtered stochastic codeword (3.21). The match 

scores of all the 512 codewords are calculated along with their corresponding gains. The 

highest match score among the 512 is found and the corresponding codeword index along 

with the gain is transmitted to the receiver’s side.  

 

)*( cwgpsfr −=                                                                                                      (3.19) 

 

)()(/)()( ifscifscrifscigs TT=                                                                                (3.20) 

 

)()(/))(()( 2 ifscifscrifscims TT=                                                                           (3.21) 

Where r is the residual formed after the extraction of pitch information from the sub-

frame, sf is the sub-frame, gp is the gain of the pitch estimation stage, cw is selected 

adaptive codeword, i is the index of the stochastic codebook, gs is the gain of the 

stochastic codebook, fsc is the weighted stochastic codeword and ms is the match score. 
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The codebook index and gain are transmitted four times per frame (once per subframe). 

The index is coded using 9 bits and the gain is coded using 5-bit, absolute, non-uniform 

scalar quantization.  

 

The graph of a scaled stochastic code word is shown in Figure 3.18. The difference 

between the selected code word and the other code words is the scale. The amplitude of 

the scaled codeword is the difference between the selected codeword and the other code 

words. 

 

 

Figure 3.18: Sample of selected scaled stochastic codeword 
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The excitation vector (scaled adaptive codeword + scaled stochastic codeword) is shown  
 
in the Figure 3.19. On the receiver’s side this excitation vector is sent through the linear 

prediction synthesis filter to recover the speech frame. The excitation vector of this frame 

is also used to update the adaptive codebook for the next frame. In terms speech 

production in the human system, this excitation vector corresponds to the air blown out of 

the lungs which passes through the vocal tract (LP filter). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19: Sample Excitation vector formed adding stochastic and adaptive 
codebook vectors 

 
Modified Excitation 

The quality of the synthetic speech produced to a large degree depends on the efficiency 

of the adaptive codebook. If the chosen adaptive codeword is a very close match to the 
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input subframe then the role of the stochastic codebook is greatly reduced. The process of 

adaptively increasing and decreasing the role of the stochastic codebook according to the 

efficiency of the adaptive codeword is called modified excitation [1]. This helps in 

reproducing both the voiced and unvoiced sections of speech effectively as the adaptive 

codebook proves to be more efficient for voiced sections and stochastic codebook helps 

more with the unvoiced sections.  

 

The efficiency of the adaptive codeword is measured by the closeness, in the square-root 

cross-correlation sense of the target vectors before and after the pitch prediction. The 

normalized cross-correlation is given by, 

                                                                                          (3.22) 2T Ws /Wp) - (Ws*  Ws  CR =

where Ws is the weighted subframe of speech and Wp is the weighted scaled adaptive 

codeword filtered by the LP coefficients. Hence when Wp is subtracted from Ws, it 

ideally leaves behind a stochastic signal. Both Ws and Wp are vectors of the same size 

(60 samples). The matrix multiplication of one of these vectors with the transpose of the 

other yields the zero lag cross correlation value. The gain depends on the value of CR. 

The gain of the stochastic codebook varies as,  

                           0.2 * gs    when |CR| < 0.04        

Gms =                 1.4 * gs * √ |CR|   when |CR| >.81                                            (3.23) 

                            gs * √|CR|   otherwise    

 Where Gms is the modified gain of the stochastic codebook and gs is the current gain of 

the stochastic codebook. When gain is modified outside the search loop, it has minimal 

impact on the computational complexity of the CELP process. 
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Figure 3.20: Block diagram of CELP Receiver 

 

CELP Receiver 

The receiver decodes the CELP parameters as specified in FS 1016 [1]. The 

diagrammatic representation of the receiver is shown in Figure 3.20. The quantized LSP’s 

are interpolated using Equations (3.7), (3.8), (3.9) and (3.10). They are then converted 

back to LPC’s. The same version of the stochastic codebook is also present on the 

receiver’s side. The index number of the stochastic codebook is used to identify the 

selected stochastic codeword. This is scaled using the received gain factor. The same 
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process is followed for the adaptive codebook search. The scaled stochastic and adaptive 

code words are then filtered using the LP synthesis filter to recover the synthetic speech 

frame. To avoid noise due to quantization, an extra stage is added on the receiver’s side 

called the post filtering stage. 

 

Post-filtering 

Post filtering is a technique used in CELP to remove the noise in the reconstructed 

synthetic speech [12]. This is used only on the receiver’s side to enhance the 

reconstructed synthetic speech. The reconstructed synthetic speech has quantization 

noise, which can be usually suppressed by the post filter. The disadvantage with the 

postfilter is that, if the input speech is very noisy it might enhance the noise as the post 

filter depends on the LP coefficients, which characterize the spectrum of the input 

speech. The postfilter has to be used carefully while dealing with inherently noisy speech.  

 

The postfilter utilizes the same LP coefficients as in the current subframe. The 

coefficients are bandwidth expanded using factors alpha and beta. Usually alpha is 

chosen to be 0.8 and beta is chosen to be 0.5 [1]. A pole-zero filter is formed with these 

bandwidth expanded coefficients. The transfer function of the postfilter based on the LPC 

model is, 

                                  ) A(z/ / )  A(z/ = H(z) αβ                                                     (3.24) 
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The post filter accomplishes noise reduction by suppressing the noise around the spectral 

valleys and by sharpening the formant peaks. The formants correspond to the voiced part 

of the speech and by sharpening the formants it enhances the voiced section while the 

noise, which is usually associated with the valleys, is suppressed.  

 

As shown in Figure 3.21, it can be clearly seen that the formants in the post-filtered 

speech are clearly sharper than the formants in the original speech segment. Due to this 

property of post filters, the formants sound louder than the valleys leading to suppression 

of noise.  

 

Figure 3.21: Difference between post-filtered speech and actual speech 
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Usually only one stage of post filtering is recommended, so the postfiltering is done only 

after the entire speech frame has been reconstructed.  

 

Acoustic background noise and channel errors make it hard for efficient speech coders to 

maintain the quality of reconstructed speech. It is important for an efficient speech coder 

to reproduce good quality speech in these real world conditions. The CELP method of 

speech coding provides a robust method of coding digital speech in real world conditions. 

Even though the computational complexity is high, the quality of output speech at just 

4800 bps makes it a very desirable proposition [1]. A lot of the modern day speech coders 

are just enhanced versions of the actual Federal Standard 1016 CELP speech coder.  
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Chapter 4 

 
Introduction 

Mathematical transformations applied to signals to obtain information that is not directly 

available in the original signals are called as Transforms. There are various transforms 

used in signal processing like Fourier transform, Discrete Cosine transform, wavelet 

transform etc.  Wavelets are localized waves. They are a relatively new family of 

orthogonal basis functions for representing finite energy signals [24]. A waveform that is 

bounded by both frequency and duration (time) and used to represent the original signal 

is called as a wavelet transform. Some of their very desirable properties like high 

compactness in representation of signals, computational efficiency, good time-frequency 

resolution and uncorrelated transform coefficients have resulted in them being used to 

solve or analyze signal processing problems in various areas like image, speech, video 

etc.  

 

They provide an alternative to the more conventional Fourier transform. Fourier 

transform tries to represent a signal in terms of sine and cosine functions. In real world 

conditions signals are not made up of sines and cosines. Wavelet transform converts the 

signal into a series of wavelets. Wavelets can also be constructed with rough edges to 

represent real world signals better [24]. The special property of wavelets is that all 

functions represented by wavelets are constructed from a single mother wavelet. The 

mother wavelet is subjected to various dilations and translations to represent any given 

function.  This is the basic principle followed for both types of wavelet transforms, 
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Continuous wavelet transform (CWT) and the Discrete wavelet transform (DWT). The 

Continuous wavelet transform is used for analysis of signals while the Discrete wavelet 

transform is used for compression of data [24]. This thesis involves a speech compression 

technique using wavelet packets. Thus, the working of Discrete Wavelet Packet 

Transform (DWT) will be discussed in the next section.  

 

Discrete wavelet packet transform 

Wavelets are a family of basis functions for the space of square integrable functions or 

signals L2(R) [25]. The wavelet transform of any signal is the representation of that signal 

with respect to the wavelet basis. The wavelet basis is formed by dilations or contractions 

with translations of a single wavelet function called the mother wavelet.  

 

Sub-band coding 

The DWPT analyzes the signal at different frequency bands with different resolutions by 

decomposing the signal into a coarse approximation and detailed information [25]. It 

utilizes two sets of functions called scaling functions and wavelet functions associated 

with low pass and high pass filtering respectively. The decomposition of the input signal 

into various frequency bands is achieved by successive high and low pass filtering 

operations on the input signal. The two filters (high pass and low pass) are odd index 

alternated reverse versions of each other. The input signal is first filtered by both a low 

pass and high pass filter. If the filters used are half-band and the frequency of the input 

signal is F, after the first stage of filtering they are split into 0 – F/2 (low pass) and F/2 – 

F (high pass). Since the output of the low pass stage has a highest frequency of F/2, half 
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the number of samples from the signal can be eliminated as they are redundant according 

to Nyquist rule. The output of the low pass stage is down sampled by a factor of 2. The 

next stage of low and high filtering gets only half the number of samples from the first 

stage. When the output of the first stage low pass filter is further subjected to the same 

low pass - high pass combination, the frequency gets divided into 0 – F/4 (low pass) and 

F/4 – F/2 (high pass). The output of the second stage low pass filter is again down 

sampled by a factor of 2 and fed in as the input to the third stage. This process is repeated 

till only 2 samples are left behind. In every stage, the output of the high pass filter is 

stored as the wavelet coefficients of that stage. This process is clearly illustrated in Figure 

4.1.  
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This process leads to good time resolution at high frequencies and good frequency 

resolution at low frequencies because at high frequencies (like stage 1) the number of 

time samples used to represent the wavelet coefficients is much larger than the number of 

coefficients used in the third or fourth stage. The same way the frequency is narrowed 

down a lot in the third or fourth stage compared to the first stage thus leading to good 

time resolution in the high frequency regions and good frequency resolution in the low 

frequency regions. If the main information lies only at the low frequencies then time 

localization will not be very precise as very few samples are used to represent the low 

frequency regions.  

 

The coefficients at every stage are concatenated to form the wavelet representation for 

the given signal. The coefficients of the last stage are concatenated with the coefficients 

from the previous and so on. The coefficients of the first stage are added on last to the list 

for wavelet representation. The frequencies that are more prominent in the original signal 

will appear as high amplitudes in that region of the DWPT signal that includes those 

particular frequencies. Since the really low amplitudes in the DWPT representation do 

not feature prominently in the original signal they are usually dropped using a threshold, 

thus giving rise to efficient compression of the signal without actually losing any 

information.  

 

The procedure described for analysis is usually reversed for synthesis. The coefficients 

are zero padded to have the same number of coefficients at every stage. After a reverse 
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low pass operation is performed the resultant signal is up sampled by either introducing 

zeros between the actual coefficients or linearly interpolating them. Perfect 

reconstruction can be achieved with half band filters. The speech compression technique 

discussed in this thesis has been developed by exploiting some of these wavelet 

properties as stated in the next section. 

 
 
 
Speech Compression using wavelet packet transform 

 
Decomposition 

The wavelet transform method applies a transform approach that exploits the 

redundancies in the audio signal dynamics through a 12-coefficient Daubechies wavelet 

packet transform, which converts highly correlated time samples into uncorrelated 

wavelet coefficients. The coefficients in each WP subband are soft threshold based on the 

kurtosis values computed over time and frequency and an empirical set of absolute 

amplitudes for each subband.  The coefficients are then MU-Law quantized and encoded 

into a bit stream.  

 

The basic block diagram of the wavelet transform compression method is shown in figure 

4.2. 
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Splitting into frames: 

The audio is sampled at a rate of 8 KHz. The samples are filled into a vector with 8 bits 

per sample. For every frame 1000 new samples are collected and P = 24 + 32Q samples 

of the previous frame are used. So the size of a frame is 1024 + 32Q. The overlapping of 

the samples is done to prevent glitch artifacts in the reconstructed signal. The general Q 

value used for a level 5 decomposition is Q = 4. When Q = 0 is used, it results in better 

compression but leads to frame glitch artifacts.  

 

Tapering 

The frames formed are tapered with a sine squared taper over the first and last P points to 

reduce artifacts in signal reconstruction. For any tapering function, the overlap taper 

values should add to 1.  Let p be the P point tapering function vector, then elements of p 

must satisfy, 

 
PkkPpkp ≤≤=+−+ 1for       1)1()(                     (4.1) 

 
where p(k) is the kth element of p and P denotes the number of points of overlap between 

two frames. The tapered frame is given by, 
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where is the speech sample in a given frame. )(ˆ kyi
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Pre-filtering 

The frames are pre-filtered to attenuate low frequency instrumentation noise. A second 

order high-pass butter-worth filter with a cut-off of 200 Hz is used.  

 

The IIR filter computation is given by, 
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for an index of  less than one,  is assumed and for values greater than P+L  

 is assumed.  In the case of an index of

iŷ )(ˆ 1y

)(ˆ PLy + x′ less than 1 or greater than P+L a zero 

value is assumed. The sequence is then reversed: 
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and filtered again, 
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The order is restored and extra samples at the ends are dropped due to convolution at the 

edge, 
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Wavelet Packet Transform 

The input frame is then transformed into 32 wavelet packet subbands according to a level 

5 decomposition using a 12 coefficient Daubechies transform. The wavelet packets are 

reordered according to increasing frequency to improve zero run length occurrences. The 

wavelet packet transform at any given level is denoted by, 
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where p is the index of the subband, l is the level of decomposition, g(k) are the 

coefficients of the scaling function (low pass), and h(k) are the coefficients of the wavelet 

(high pass) coefficients.  

 
The wavelet packets are then expressed in terms of a matrix where each row represents a 

subband with increasing order as shown in (4.9), 
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To improve the zero runlength properties after thresholding, the rows are rearranged.  For 

l=5 (a level - 5 decomposition) the following order for row arrangement is used, 

 

[ ]17 18, 20, 19, 23, 24, 22, 21, 29, 30, 32, 31, 27, 28, 26, 25, 9, 10, 12, 11, 15, 16, 14, 13, 5, 6, 8, 7, 3, 4, 2, 1,=r  
 
The rearranged rows of B can be concatenated into row vector b, 
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where M is the number of subbands (M=2l). 
 
 
Scale Computation 

The maximum absolute value of b is scaled to match the largest quantization level.  This 

is done to make use of the available quantization levels. This is useful so that frames with 

low or high volume will effectively have the same signal to quantization noise ratio after 

the compressed quantization.  bw denotes the number of bits used for quantizing the 

wavelet coefficients (bw = 12 is used). The scale value required to achieve full 

quantization is given by, 
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where, 

)max( b=is  
 

 

Computing Kurtosis values 

The kurtosis values in the M subbands (32 for a 5 level decomposition) and the N 

translations (36 for a 1024 + 4*32 point frame) are computed for estimating noise power 

and to classify the type of sound dominating the frame.   The frame data is organized in a 

matrix (matrix B) where each row is the subband (fixed scale) output and each column is 

a time sample (fixed translation).  Therefore, the kurtosis computed using the forth 

moment over the variance squared for each row and each column of B results in the 
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desired translation and scale kurtosis values.  The kurtosis computation is given at each 

translation point (over all scales) by, 
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where w(n, m) is wavelet packet coefficient for the nth subband at the mth time sample, 

and μws is the mean value of w(n,m) given by, 
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 Analogously, the kurtosis computation in each subband (over all translations) is given 

by, 
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where μwt is the mean value of w(n,m) given by, 
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The mean value of the kurtosis quantities is also computed over all scales and 

translations.  This is given by the average over all values at each scale,  
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and the average of all values at each translation, 
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Estimating Noise Level in Current Frame   

To estimate the noise power, it is assumed that the noise tends to more dominating in the 

upper subbands. Hence, a limited range of subbands are selected to estimate the noise 

level. For the selected range, nb is the index of lowest subband (of the rearranged subband 

vectors) and ne be the highest. Subbands 8 through 32 (nb = 8 and ne = 32) are used for a 5 

level decomposition.  From this limited range all the subbands whose kurtosis value 

differs from the mean translation kurtosis by less than some threshold value are found. 

The threshold used in this case is 4.  Let Ns be set of all subbands (rows of B) that are 

greater than 7 and whose scale kurtosis deviates from the mean translation kurtosis by 

less than 4, 

 
{ }4  and       <−≥≥= ktsbes mkmmmmnwN μ)(),(                          (4.18) 

 
The nature of the kurtosis values make Ns the set of subbands most likely dominated by 

noise.  In order to make the noise estimate more conservative and robust (an overestimate 

could corrupt true voice signals) the mean of the absolute value of only the lower 100α% 

of the amplitudes in each subband is computed. So for each subband in Ns 100α% of the 

smallest absolute values in each subband is found and they are averaged to create a set of 
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censored mean values.  The median of this set is taken to be the noise level estimate.  

This estimate can be expressed in the equations (4.19), (4.20) and (4.21) 
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where ),( mnw are sorted absolute values of w(n, m) with respect to m from smallest to 

largest.  A vector from all pn values from the above equation is created, 
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Then the noise level estimate for the ith frame is given by, 
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Noise does not change rapidly from frame to frame. So a filter is applied to a sequence of 

noise estimates from previous frames to provide "memory" or smooth the estimate. The 

noise power estimate for the current frame is given by, 

 
)()()()( ipaipaip ftft −+−= 11                                                   (4.21) 

 
where af is called a forgetting factor with values between 0 and 1.  If af is close to 0 the 

current estimate will dominate the estimate if it is close to 1 past value will dominate the 

estimate. af with a value of 0.5 is used in this case. The noise level estimate pt(i) is 

initialized to 0.  This noise level estimate is then used to shift the absolute threshold to 

reduce the noise in each frame.  If this value is overestimated then a choppy or fading 

artifact will occur in the voiced segments.  If it is underestimated, then the algorithm will 

start compressing noise and efficiency will go down.   
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Classifying Frames 

The type of frame determines the scaling of pt to soft threshold wavelet coefficients and 

the number of bits per sample.  The statistics for classifying the frame is the difference 

between the mean kurtosis over all subbands (scales) and the kurtosis over all translations 

give by: 
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The classification is given by: 
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Thresholding   

There is a default set of threshold values that are applied to each subband based on the 48 

dB SNR from the 8 bit quantization noise, typical voice spectra distribution, masking 

properties of the ear, and the shape of the prefilter.  These values are given for a 5-level 

decomposition and the reordered subbands previously described.  These values can be 

adjusted to emphasize various parts of the voice spectra relative to another.  The values in 

dB are given by, 

 

]
[

27-  27,- 27,- 28,- 28,- 29,- 29,- 29,- 30,- 30,- 31,- 31,- 32,- 32,- 33,- 34,-                  
.... 35,- 36,- 37,- 37,- 38,- 38,- 38,- 38,- 38,- 38,- 38,- 37,- 37,- 36,- 35,- 0,=t  

 
Each dB value can be converted to an actual scale via, 
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where bw is the number of quantization bits used for the wavelet coefficients and tm is the 

mth element of t.   

 

The thresholds are applied to every subband and are adjusted based on the scaling, noise 

power, and frame type.  The actual threshold is given by, 
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where fs is given by, 
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    voiced FrameTypefor                3
unvoiced  FrameTypefor             53

      noise  FrameTypefor                5
 transient FrameTypefor                4

.sf  

 

iλ  is the scale value and ns is a user chose parameter between 0 and 4 to adjust the quality 

to compression ratio.  For ns = 0, the quality is at a maximum, however compression is at 

a minimum (about 4 to 1).  For ns = 4 the quality is at a minimum with compression at a 

maximum (about 18 to 1).  The parameters ns can be used in an adaptive algorithm to set 

a compression rate that is relatively insensitive to the quality of sound coming into the 

algorithm. 

 

The soft thresholding operation is described as, 
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Companding and Quantizing for Data Compression   

Before reducing the number of quantization bits from bw, a logarithmic compression of 

the amplitude values is performed to evenly distribute the quantization noise over all 

amplitudes.  Small amplitude signals would otherwise exhibit more quantization noise 

than higher amplitudes. 

 

If bc is the number of compression bits and bw the number of bits before compression.  

The mu-law companding with quantization is given by, 
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 where μ = 32 is used and the value of bc is a function of the frame type: 
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The header of the compressed frame must include the bc value.  
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Runlength Encoding   

The next step is to find long strings of 0 values resulting primarily from the soft 

thresholding operation.  This step helps to find 2 or more consecutive zeros and thus 

represent them with fewer bits.  If 2 consecutive zeros are found the zeros are repeated in 

the string with bc bits and then the number of zeros following are indicted with zl bits up 

to 2zl zeros.  The header for the compressed frame must include zl if it changes based on 

the data. It is more efficient to keep it a constant. While decoding, if 2 consecutive zeros 

are encountered it is taken to represent the runlength encode case and the number that 

follows the two zeros will be the number of zeros to be filled in with.  

 

Bit Encode and Header   

The runlength encoded frame can be compressed based on bc , zl , and si . The header 

consists of a sequence of 16 bit words with the following values: 

1. Frame Index (important if frame order is susceptible to shuffling) 

2. bc  (bits per sample – necessary if a function of frame type) 

3. si   ( the scaling required to restore the original amplitude) 

4. zl  (important if the runlength maximum is varied, which it is not done here) 

5. Byte Number of compressed frame (if there is no special code or parsing 

sequence to segment frames, this is needed to know how many bytes following 

the header must be read for the frame since the bytes vary based on how many 

runlength sequences were exploited) 

6. Byte Number of original frame (this corresponds to the original frame length, if 

this does not change, then it is not needed other than for error checking). 
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Reconstruction 

The audio vault decompression scheme essentially reverses the compression scheme by 

bypassing the thresholding step.  So the decompression process starts with the unpacking 

of the header information and ends with the joining of frames. An optional bandpass filter 

is applied to remove some hiss due to the quantization operation.  Additional noise can be 

added to the signal to provide a consistent hiss (in raw reconstructions the hiss will 

disappear in periods of silence or low volume).  Figure 4.3 shows a flowchart of the 

reconstruction process.  
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Figure 4.3 Flowchart of reconstruction process 

 80



Zero Runlength Decode 

For each consecutive zero pattern (2 zeros in a row) encountered, the following number is 

taken as the number of additional zeros to be consecutively inserted into the array.  This 

step restores the mu-law compressed wavelet coefficient values, which are elements of 

b~ . 

 
Undoing Mu-Law Quantization 

The uniform quantization levels can be restored to the bw quantization bits.  The mu value 

should be the same as that used in the compression.  bc is the number of compression bits 

(obtained from the header) and bw is the number of bits before compression.   The 

transformation equation is given by, 
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Rescaling Frame Amplitudes   

In this process the wavelet coefficients in are restored to their original amplitudes using 

s

b̂

i from the header and bw to give, 
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Reordering Wavelet Packet Sequences   

To perform the inverse wavelet packet transform, the wavelet packets in the b vector are 

identified and reordered according to the natural sequence of the wavelet decomposition. 

Given that the number of subbands is M (M=2l where l=5), and the length of the 

processed frame is L + P (the number of elements in b), the subband length is given by: 
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For l=5 (a 5-level decomposition) the following order for row arrangement was followed, 

 
[ ]17 18, 20, 19, 23, 24, 22, 21, 29, 30, 32, 31, 27, 28, 26, 25, 9, 10, 12, 11, 15, 16, 14, 13, 5, 6, 8, 7, 3, 4, 2, 1,=r

 
 
The natural ordering of subbands on level l from vector b are be described as, 
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Inverse Wavelet Packet Transform 

The signal is reconstructed from the 32 wavelet packet subbands using a 12 coefficient 

Daubechies transform. The inverse wavelet packet transform is given by, 
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where p is the index of the packet number (subband), l is the level of decomposition, g(k) 

is the coefficient of the scaling function (low pass) (reverse order from those used in 

decomposition), and h(k) are the coefficients of the wavelet (high pass) (reverse order 

from those used in decomposition)coefficients.  The scale on index n of .5 denotes an 

upsampling (inserting zeros between samples).  This operation is performed recursively 

until the 0 level, at which point, 

 
0
1wy =i  

 
 

Joining Frames   

The frames are concatenated by adding together the overlapped portions to reconstruct 

the original signal y. 

 

Adding Natural Noise (optional) 

In the reconstructed signal some variation in noise may be observed frame to frame.  This 

change in noise level can be more distracting than a continuous noise level, so a 

continuous noise level can be created (however it will not change the audibility of the 

actual words or quality of the speech, just to limit the distraction of the noise fading in 

and out).  A –30dB to –20dB Signal to noise ratio is used.  For example for -30dB, 
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where n is a vector (same size as y) of zero-mean Gaussian noise with unit variance. 

 

Post-filtering 

Post filtering the data segment is done to improve perceived quality.  A bandpass filter is 

applied to reduce low frequency noise and artifacts and high frequency hiss.  This will 

sometimes improve audibility of low frequencies that were dominant in the original or 

restored signal, but in general it will improve only the perceived quality by reducing the 

bandwidth of the signal around the spectrum where speech signal energy typically 

resides. A Butterworth filter with a low frequency cut off of 200 Hz and an upper 

frequency cutoff at 3200 Hz is used.  And just as in the pre-filter use time-forward order 

and time-reverse order to raise effective order of the filter to 4 and to eliminate all phase 

distortion.   

   

The IIR filter computation is given by, 
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for an index of  less than one, y′ )(1y′  is assumed and for values greater than the length 

of  ,  is assumed. In the case of an index ofN=′y )(Ny′ x′ less than 1 a zero value is 

assumed.  Then the sequence is reversed, 
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and filtered again 
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The order is restored and extra samples at ends due to convolution at edge are dropped, 

 
23for        52 +≤≤−+′′′=−′′ NkkNxky )()(                                    (4.33) 

 
 
Experimental results have shown that wavelets are a promising tool for high quality low 

bit rate coding of speech and audio signals [37]. If the perceived quality of speech 

compressed and decompressed by the wavelet method is comparable to the quality of 

speech produced by CELP, then this method of compression would be more desirable 

because CELP is computationally more complex than the wavelet method.  
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Chapter 5 

 
Subjective Quality testing of speech coders 

There are several ways to compare the performances of speech coders. They can be 

compared according to their, 

1.) Bit rate 

2.) Quality and  

3.) Coder complexity.  

 

The qualitative measurement can be done either objectively or subjectively. Objective 

measures include waveform matching, Signal to Noise ratio (SNR) and some spectral 

domain characteristics too. Subjective measures include intelligibility and perceptual 

quality. The third type of measurement is called hybrid measurement which involves 

objective methods that will measure intelligibility and perceptual quality. This is new 

area of research and has not been fully developed yet. Since the quality of speech is based 

more on perception, subjective measures are more reliable [15]. Hence to compare the 

quality of speech it is necessary to listen to it. 

 

 The perceived quality depends on various factors like speech content, background noise, 

listener etc. Various quality testing procedures are usually employed. Some of the 

important ones are Mean Opinion Score (MOS), Diagnostic Acceptability Measure 

(DAM) and Pair-Wise Comparison [15].  
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MOS - The MOS test assigns a number to the quality of the coded speech. The original 

speech is assigned a perfect 5. The subjects are asked to rate the coded speech out of a 

scale of 5 with 1 being the lowest and 5 the highest. The mean opinion score for every 

speech segment is noted by tabulating the score of every subject and calculating the 

mean. The biggest disadvantage of MOS tests is that they cannot produce consistent 

results. This pattern of testing is more popular because it is easier to carry out and 

produces satisfactory results. 

 

DAM - The DAM was developed at Dynastat as a method for measuring the subjective 

quality or acceptability of voice communications systems or links [15]. A listener makes 

a total of 21 ratings during the course of a speech sample. Ten ratings are concerned with 

perceptual qualities of the signal, eight ratings are concerned with the perceptual qualities 

of the background, and three items are concerned with perceived intelligibility, 

pleasantness, and overall acceptability. The DAM test is more comprehensive and uses 

highly trained subjects who rate qualities such as “rasping”, “muffled” etc. DAM tests are 

harder to carry out than MOS tests but are more reliable than MOS tests. 

 

Pair-Wise comparison - Pair-Wise comparison is the simplest testing procedure of the lot. 

It does not require highly trained listeners. It is mainly used for comparing two different 

speech coders. The original speech signal processed by both the speech coding 

algorithms is presented to the subject. The subject selects the one with the better 

perceived quality. These tests are easy to organize and reasonably reliable.  
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In this case both the speech coders are made to have similar compression ratios for all the 

signals used and for computational complexity; CELP is definitely computationally more 

complex than the wavelet method as CELP involves more exhaustive search procedures 

than the wavelet method. The two speech coders are compared qualitatively in this thesis. 

Subjective quality measures are adopted as they are ideally more reliable than objective 

measures. Since two different speech coders are being compared for perceived quality of 

speech in this thesis, pair-wise comparison would be adequate for this purpose.  

 

Speech coders should be compared in simulated real world conditions rather than just 

ideal conditions (speech with no background noise). Speech coders are usually designed 

for use in cellular telephone applications, military applications etc. The background noise 

and channel noise in these real world conditions might be very different from any speech 

sound the coder is designed for and might help to identify the characteristics of the coder 

in real world conditions, like some coders might highlight the noise more as it does not fit 

into any speech model that the coder uses. Thus, the speech coders need to be tested in 

noisy environments.  

 

Experimental setup 

The experimental setup to compare the two different speech coding algorithms consisted 

of 20 different sets of speech signals. All the signals were encoded and decoded by both 

CELP and the Wavelet transform method with comparable compression ratios. The 

resulting signals were stored. The original signals were not presented to the subjects 

during the tests as pair-wise comparison involves differentiating between the two 
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reconstructed signals and not the original with the reconstructed. The selected speech 

signals were of different lengths, the maximum one being 10 seconds, a test algorithm 

was written in MATLAB to play the signals at random. In the test procedure, the 

algorithm would play a speech signal processed by either of the two methods first and 

play the same speech signal processed by the other speech coding algorithm after a gap of 

12 seconds (including time taken to play the speech signal, so the subjects have minimum 

gap of 2 seconds between 2 consecutive speech signals). For shorter signals the gap 

between the first signal played and second signal would be longer than 2 seconds i.e. if 

the signal is 8 seconds in length, the gap between the 2 signals would be 4 seconds. The 

subject would then be asked to choose which of the two signals was better, the first or the 

second. After the choice was made the other sets of signals would be played one after the 

other in the same random manner. The preference of the subject would be noted 

according to what the subject chooses. The test concluded after 20 pairs of uncompressed 

signals were presented to the subject, and the results were recorded in terms of the 

number of wavelet transform coded speech signals the subject preferred and CELP coded 

speech signals the subject preferred.   

 

The subjects were chosen through personal contacts. A total of thirteen subjects were 

used, 9 males and 4 females with 12 of them between the ages of 22 and 28 and one 

subject was 50. They were provided with Labtec LVA6502REGW headphones, with a 

frequency range of 20Hz to 20000Hz, to listen to the test signals in a laboratory 

environment. The selection of the test signals is explained below. 
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Selection of test signals 

A total of 20 test signals were used. They were divided into three major groups,  

1. Clean signals, 

2. Clean signals with simulated noise 

3. Signals with room noise. 

They were selected to fulfill various criteria. The selection of each test signal is explained 

as follows. 

 

1.) Clean Signals (no background noise or artificial noise): 

A set of four clean signals were used. The first clean speech signal chosen had a 

mixture of voiced and unvoiced sounds in a female voice. The second and third 

signals chosen had voiced speech to test the compressing capabilities of both 

speech coders with reference to voiced speech. The fourth signal was a mixed 

short signal i.e. a mixture of voiced and unvoiced section of speech in a male 

voice. All the speech signals were recorded in a laboratory environment with the 

microphone placed less than one foot away from the speaker. The signals were 

recorded in a computer with GoldWave audio software. Both male and female 

voices were used to test the quality of the coders for both high as well as low 

pitched speech signals. Figure 5.1 shows one of the clean speech signals used. 
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Table 5.1 details various characteristics of all the clean signals used for this 

experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Example of a clean speech signal 
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Table 5.1: Table with characteristics of clean speech signals used in the 
experiment 

Speech 
Signal 

Place of 
Recording 

Sampling 
Rate 
(Hz) 

Distance 
from 
Mic 
(Feet) 

Duration 
of speech 
(seconds)

Speaker 
(Male/Female) 

SNR 
(dB) 

Mixed 
long 
signal 

Laboratory 8000 < 1 10.05 Female 36.5321

Voiced 
short 
signal 

Laboratory 8000 < 1 0.5 Male 35.9850

Voiced 
long 
signal 

Laboratory 8000 < 1 5 Male 37.5621

Mixed 
short 
signal 

Laboratory 8000 < 1 0.6 Male 28.9394

 
 
 
 

2.) Artificial Noise added signals:  

In these test signals, three signals were used, the fourth clean signal wasn’t used 

as it was short segment of mixed speech which resulted in the signal loosing 

message content when white noise was added. Gaussian noise at various levels 

was added to these signals, to gradually change them from clean signals to noisy 

signals. The level of noise added was 0.1%, 1%, 10% and 15% of the actual white 

noise generated. Anything higher than 15% resulted in the signal loosing its 

message content. The SNR’s of the speech signals after the noise was added is 

indicated in Table 5.2. The percentage noise added to the speech signals is 

calculated by, 

 

 

 92



S’(x) = S(x) + ng * scale                                                             (5.1) 

where, S’ is the noise added speech signal, 

            x is the time sample,  

            S is the original speech signal, 

            ng is the noise generated, 

            scale is the percentage of noise added, i.e. 0.001, 0.1 etc. 

 

The SNR in dB for the speech signal is calculated by, 

)./.(log10 10 NoisePowerAverSignalPoweAveSNR =                             (5.2) 

For the clean signals the average noise power is calculated from the silence 

regions of the speech segment.  

 

The three test signals to which noise was added was the clean mixed signal in 

female voice, the clean voiced short speech and the clean voiced long speech. The 

signals were again chosen to be in both male and female voices to test the quality 

of the speech coder in noisy environment for both high and low pitched voices. 

The signals chosen were also clearly voiced or mixed to test the capability of the 

coders. Figure 5.2 shows one of the speech signals with artificially added noise. 
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Table 5.2 details various characteristics of all the signals with the Gaussian noise 

added used for this experiment. The amount of white noise added is also 

indicated. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 Example of an artificial noise added 
speech signal 
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Table 5.2: Table with characteristics of speech signals with different 
levels of white noise added used in the experiment 

Speech Signal Gaussian noise 
added 
(% of noise 
generated) 

SNR 
(dB) 

Mixed long 
signal  

0.1 36.0947 

Voiced short 
signal 

0.1 34.8068 

Voiced long 
signal 

0.1 37.1659 

Mixed long 
signal  

1 25.5174 

Voiced short 
signal 

1 27.6431 

Voiced long 
signal 

1 27.8475 

Mixed long 
signal  

10 6.7711 

Voiced short 
signal 

10 11.1136 

Voiced long 
signal 

10 8.9919 

Mixed long 
signal  

15 4.2354 

Voiced short 
signal 

15 8.12 

Voiced long 
signal 

15 6.1249 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.) Speech signals with room noise: 

Four signals were chosen to test the performance of the codecs in real world noisy 

environments. They were all mixed excitation signals. The room noise was varied 

in each case. The first test signal was of a female speaker with the microphone  
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placed two feet away from her in a noisy room. The second was a male speaker in 

a noisy room with a microphone placed two feet away from him. The third was a 

male speaker in a noisy room with the microphone placed four feet away from 

him. The last signal was poorly recorded (sensitivity of microphone, quality of 

recording device etc). It was a signal with voiced speech in a male voice. Figure 

5.3 shows one of the speech signals recorded in a noisy environment. 
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Table 5.3 details various characteristics of all the signals with room noise used for 

this experiment. The place of recording the speech segment is also indicated. 

Figure 5.3 Example of a room noise filled speech signal 
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 Table 5.3: Table with characteristics of speech signals recorded in 
different noisy environments 

 

Speech 
Signal 

Place of 
Recording 

Sampling 
Rate 
(Hz) 

Distance 
from 
Mic 
(Feet) 

Duration 
of speech 
(seconds)

Speaker 
(Male/Female) 

(SNR) 
(dB) 

Mixed 
poorly 
recorded 
signal 

Laboratory 8000 < 1 5 Male 34.2248

Mixed 
long 
signal 

Cafeteria 8000 4 10.05 Male 8.2726 

Mixed 
long 
signal 

Restaurant 8000 2 10.05 Male 9.0249 

Mixed Restaurant 8000 2 10.05 Female 7.7923 

 

The results of the subjective tests conducted are presented in Tables 5.4, 5.5 and 5.6. The 

first column is the test speech signal used, the second column is the number subjects who 

liked the CELP coded speech with the percentage in brackets, the third column is the 

number of subjects who liked the wavelet transform coded speech with the percentage in 

brackets. The fourth column is compression ratio when the wavelet method is used. The 

compression ratio for CELP is constant at 13.333 because CELP uses constant number of 

bits to compress the given speech signal. The wavelet method uses run length encoding 

which results in varying compression ratios. 
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Results: 

 
        

Test Signal CELP 
(%) 

Wavelet 
Transform 
(%) 

Compression
Ratios for 
wavelet 
method 

Mixed signal in Female 
voice 

11 (84.62%) 2(15.38%) 14.4784 

Voiced clean short signal 7(53.85%) 6(46.15%) 17.2536 

Voiced speech long signal 7(53.85%) 6(46.15%) 15.8496 

Clean Mixed speech in 
Male voice 

7(53.85%) 6(46.15%) 15.1304 

Table 5.4: Table with choice of subjects for all the clean 
speech signals used 

Table 5.5: Table with choice of subjects for all the room 
noise filled speech signals used 

    
 
        
 
 
 
        

Test Signal CELP 
(%) 

Wavelet 
Transform 
(%) 

Compression
Ratios for 
wavelet 
method 

Mixed signal in male 
voice 

1(7.69%) 12(92.31%) 
 

20.4800 
 

Room noise filled male 
voice 4 feet from the 
microphone 

2(15.38%) 11(84.62%) 14.6208 

2 feet from the 
microphone with room 
noise (male voice) 

4(30.77%) 9(69.23%) 12.7040 

Room noise filled female 
voice 2 feet from the 
microphone 

2(15.38%) 11(84.62%) 12.8368 
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Table 5.6: Table with choice of subjects for all the 

artificial noise added speech signals used 
 
       

Test Signal CELP 
(%) 

Wavelet 
Transform 
(%) 

Compression
Ratios for 
wavelet 
method 

Mixed signal in Female 
voice w/ 0.1% Gaussian 
noise 

10(76.92%) 3(23.08%) 14.5048 

w/ 1% Gaussian noise 8(61.54%) 5(38.46%) 14.7384 
w/ 10%  2(15.38%) 11(84.62%) 14.6312 

w/ 15% 6(46.15%) 7(53.85%) 15.1152 

Voiced clean short signal 
w/ 0.1% 

8(61.54%) 5(38.46%) 17.3664 

w/ 1% 8(61.54%) 5(38.46%) 15.1232 

w/ 10% 7(53.85%) 6(46.15%) 13.1944 

w/ 15% 8(61.54%) 5(38.46%) 12.8480 

Voiced long signal, w/ 
0.1% 

5(38.46%) 8(61.54%) 19.9504 

w/ 1% 7(53.85%) 6(46.15%) 16.5648 

w/ 10% 4(30.77%) 9(69.23%) 13.1848 

w/ 15% 8(61.54%) 5(38.46%) 13.9834 

 
 
         
 

Analysis of obtained results 

Clean Speech Signals 

Table 5.4 and Figure 5.4 show that for the clean speech signal in female voice CELP 

outperforms the wavelet transform method considerably. While for all the other clean 

signals in male voice the performance of both are comparable with CELP having a very 

slight edge. From this performance it can be inferred that for female voiced clean signals 

CELP outperforms the Wavelet based method. The reason for this could be the fact that 
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the pitch search process in CELP is more comprehensive than the wavelet based method 

as it involves using fractional delays to match the pitch with a good degree of accuracy. 

Thus for speech signals with a high pitch the CELP method definitely outperforms the 

wavelet method. Figure 5.5 shows bar graph representation of clean signals.  
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 Figure 5.4 Bar graph representation of clean speech signal 
result  

 
 

In Figure 5.4 the first bin is the clean speech in a female voice and the rest are   clean 

speeches in male voice. It can be seen that the CELP outperforms the wavelet method for 

female voice by a large margin while for all the other male voices their perceptual quality 

is comparable. This might be because of the better pitch prediction in CELP. To analyze 

this claim closely, Figure 5.5 shows the log magnitude spectrum of the original speech, 

CELP processed speech and the wavelet method processed speech. 

 

 100



 

 

 

 

 

 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Frequency (Hz)

M

W T
CELP
Original signal

)

 

Figure 5.5 shows that the CELP method reproduces formants better than the wavelet 

method. For the fundamental frequency (highest peak) the CELP reproduction is 

definitely closer than the wavelet reproduction. 

 

Speech signal with room noise 

For signals filled with room noise (both male and female voice), the wavelet transform 

method outperforms CELP by a large margin. In all the four cases compared, the wavelet 

transform coded speech was perceived to be better. One of the main reasons for this result 

could be the fact that CELP does not have a separate noise reduction process for 

inherently noisy signals. It only utilizes post-filtering to get rid of noise due to 

ag
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(

Figure 5.5 Log magnitude spectrum of Original, CELP processed and wavelet 
processed speech 
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quantization or noise due to transmission errors. This could also be due to the fact that for 

noisy input signals CELP post filtering might prove harmful as the LP coefficients may 

model noise instead of the actual signal.  

 

The wavelet based method has a process for eliminating the noise from an inherently 

noisy signal. The soft thresholding process drops the coefficients below the threshold. 

The room noise is spread throughout the spectrum but does not have very high energy to 

mask the signal but unlike white noise is not flat. So in the wavelet domain it doesn’t 

have high amplitude at any particular frequency. The thresholding process in the wavelet 

method uses a default set of threshold values which are applied to each subband. One of 

the parameters that is used to calculate the actual threshold value is the frame type, which 

can be transient, noise, voiced and unvoiced. These default threshold values were 

designed for room noise spectrum. If the noise value does not exceed the threshold it is 

eliminated in the process, leading to a cleaner reconstruction. Thus, the wavelet method 

performs better in noisy environments. Figure 5.6 shows the bar graph representation of 

the results for signals with room noise.  
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 Figure 5.6 Bar graph representation of results for speech signals with 

room noise 
 

As can be seen from Figure 5.6, the wavelet method outperforms the CELP method for 

speech signals with room noise. To analyze this result some detailed visualizations are 

made use of.  

 

Figure 5.7 shows a small segment of speech with room noise reconstructed using CELP 

and Figure 5.8 shows the same small segment of speech reconstructed using wavelet 

method. 
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Figure 5.7 Small segment of speech with room noise reconstructed 

using CELP 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Small segment of speech with room noise reconstructed 

using wavelet method 
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Figures 5.7 and 5.8 represent the same sections of the speech signal. While Figure 5.8 

shows the smoother curves 5.7 shows curves with a lot of serrated peaks and valleys, 

which is an indication of the noise present in the signal. This shows that the wavelet 

method performs much better than the CELP method in noisy regions and poorly 

recorded speech signals.  

 

Speech signals with added Gaussian noise 

For signals with Gaussian noise added, CELP marginally outperforms the wavelet 

method for low levels of noise (0.1% and 1%), and again for the clean female voice with 

low level of noise, CELP outperforms the wavelet transformed speech. At the 10% noise 

level, wavelet method and CELP are either comparable or wavelet performs better than 

CELP. At the 15% level though, the perceived quality of both is almost the same with a 

very marginal tilt towards CELP.  

 

In this case, for the low level noise added signals, the results are similar to that of the 

clean signals because the noise does not play a major part in corrupting the signal. In the 

higher levels of noise added signals, the CELP method reproduces the noisy signals as 

they are while the wavelet based method in the process of removing the noise from the 

signals also removes the signal as the high noise level masks the signal in certain places. 

The thresholding process in the wavelet method uses a default set of threshold values 

which are applied to each subband. Due to the high noise level, in some of the 10% or 

15% signals, voiced or unvoiced frames could be classified as noise frames and the 

resulting threshold might drop the signal content along with the noise. Thus the Wavelet 
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processed signal sounds less intelligible than the CELP processed signal as the CELP still 

has the original signal along with the noise. Also CELP is designed based on a speech 

model, so it will distort speech signals less than a non-model based approach like 

wavelets. Figure 5.9 shows the bar graph representation of results for signals with added 

Gaussian noise at the 0.1% range.  
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 Figure 5.9 Bar graph representation of results for 0.1% Gaussian noise 
added signals  

 
 
 
 

Figure 5.9 illustrates the results for 0.1% Gaussian noise added signals. The results are 

almost the same as for the clean signals. The first bin is the female voiced clean speech 

for which the CELP again outperforms the wavelet method. The second bin is the male 

voiced clean speech signal, in which again the CELP performs slightly better than the 

wavelet method. The third bin is the mixed voice long speech signal, for which again the 
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wavelet outperforms the CELP. Thus, the 0.1% noise did not cause much difference to 

the perceived speech. This is also evident from the SNR’s of these signals listed in Table 

5.1 and 5.2 In two of the cases the 0.1% added noise causes less than 0.5dB difference in 

the SNR. For one signal even though the difference is slightly more than 1dB, since the 

signal is short, too much degradation is not noticed. The slight change in statistics could 

be attributed to the better performance of the wavelet method due to the noise added. The 

results clearly follow the same trend as clean speech signals even though there are slight 

differences. Figure 5.10 shows the bar graph representation of results for the 1% 

Gaussian noise added signals. 
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 Figure 5.10 Bar graph representation of results for 1% Gaussian noise 
added speech signals 

 
 
 
 

The 1% shows a slight deviation from the trend. The first bin which is the female voice 

with 1% Gaussian noise shows that CELP performs better than the wavelet method but 

 107



not by the same margin as for the clean signal and the signal with 0.1% noise. For the 

clean signal CELP was preferred 84.62% of the time while for the 0.1% level it was 

preferred 76.92% of the time but at the 1% noise level it is only preferred 61.54% of the 

time. For the other male voice (voiced long) also the CELP is preferred 61.54% and 

53.85% of the time. The major difference from the previous trends has been voiced long 

speech. The CELP was preferred while for no noise and 0.1% noise levels the wavelet 

was preferred though not by a huge margin. The CELP directly reproduces the distortions 

due to the noise along with the original speech content while the wavelet method might 

have dropped some of the signal content which was masked by the noise and hence was 

comparable to CELP’s performance.  

 

Even though there has been a change in the trend from the previous two stages, it has not 

been a drastic change. The SNR’s for the signals in Table 5.1 and Table 5.2 show that the 

SNR has come down by about 8-10dB for the 1% noise added signal. The signals with 

room noise have SNR’s of 7-9dB. This shows that the quality of the signal is definitely 

being affected by the noise but the noise has not degraded the signal content. This can be 

clearly inferred from Figures 5.11 and 5.12. They are the same speech signals with and 

without the 1% noise added.  
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Figure 5.11 Speech signal with 1% noise added 

Figure 5.12 Speech signal without the 1% noise 
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Figures 5.11 and 5.12 show that the 1% noise added signal shows changes only in silence 

periods or unvoiced sections of speech, while it doesn’t affect voiced or higher amplitude 

part of the signal. This indicates that the 1% noise added does cause distortions in the 

perceptual quality of the speech signal but the distortions do not totally degrade the 

speech quality making it unintelligible. 

 

Figure 5.13 shows the bar graph representation of results for 10% Gaussian noise added 

signals. 
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Figure 5.13 Bar graph representation of results for 10% Gaussian 

noise added signals  
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The 10% level shows some drastic changes in the trend. The wavelet method is preferred 

84.62% of the time for the female voiced signal. For the voiced long signal too the 

wavelet is preferred 69.23% of the time. For voiced short speech though the two are 

comparable with the CELP being preferred 53.85% of the time. This could be due to the 

fact that the noise level does cause degradation to the actual content of the signal. The 

CELP reproduces the speech along with the noise while the wavelet models the noise and 

suppresses it. Even though the wavelet sounds slightly distorted it sounds less noisy than 

the CELP processed signals. 
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Figure 5.14 Bar graph representation of results for 15% Gaussian 

noise added signals  

Figure 5.14 shows the bar graph representation of results for 15% Gaussian noise added 

speech signals. 
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The results for the 15% level are comparable. The CELP is preferred 61.54% of the time 

in two speech signals and the wavelet is preferred 53.85% for one signal. In the 15% 

level the noise causes a lot of degradation to the speech content in the signals. When this 

signal is processed by the wavelet method, a lot of the speech content is dropped as noise. 

This causes a lot of distortion in the reproduced signal because the signal content at 

particular locations is lost. When this signal is processed by CELP, the noise is retained 

which, does not offer any improvement in terms of intelligibility. The CELP was 

probably preferred for the 2 male voices because the wavelet reproduction is distorted for 

low pitched signals. For the female voiced signal the wavelet performs better because the 

noise is not able to mask the high pitched areas of the signal. Thus portions of the signal 

are retained which makes it slightly better than CELP.  

 

Figure 5.15 shows a bar graph representation of results for voiced sounds in male voice. 
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Figure 5.15 Bar graph representation of results for voiced speech signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As seen in Figure 5.15 for voiced signals the CELP method outperforms the wavelet 

method even though not by a huge margin. The highest margin has only been 61.54% for 

CELP and 38.46% for wavelet. For the other speech signals it is even closer at 53.85% 

for CELP and 46.15% for wavelet method. This shows that both the methods process 

voiced sounds at a comparable level with the CELP having a slight edge over the wavelet 

method. The slight edge to CELP method could be due to the soft thresholding process in 

the wavelet method and the pitch prediction as illustrated in Figure 5.5. The soft 

thresholding might be dropping the unvoiced portions of the signal which closely 

resemble noise as illustrated in Chapter 2. CELP coder uses the stochastic codebook to 
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encode the residual signal (after the LPC and pitch have been removed from the original 

speech signal) efficiently. 

 

The dropping of unvoiced sections might not cause any loss of intelligibility in the 

reproduced speech signal but when compared with CELP, which tries to reproduce the 

speech signal faithfully with the unvoiced segments, the quality of the speech signal 

produced by the CELP method might be perceived to be better than that of the wavelet 

method.  
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Chapter 6 

 
Conclusions 

The test signals used for the experiments were of three different types,  

1. Clean, 

2. with simulated noise 

3. with room noise. 

The conclusions from the results obtained are discussed below. 

 

Conclusion for Clean signals 

The test signals used for this experiment consisted of voiced signals in a male voice and 

mixed excitation signals in both male and female voice. The result for clean signals 

indicates that CELP performs better (69%) than the wavelet method for female speech. 

This suggests that the pitch resolution search for higher pitches is more effect in CELP. 

While for lower pitches they are comparable with the CELP processed speech being 

preferred slightly (7%) over the wavelet method. 

 

Conclusion for room noise filled signals 

The test signals used for this experiment consisted for mixed excitation signals recorded 

in a noisy environment. The distance of the microphone from the speaker was increased 

progressively to increase the noise level compared to the actual signal level. The results 
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for these tests suggest that the wavelet processed signals are preferred (38% to 84%) over 

the CELP processed signals. This is could be due to the wavelet methods ability to model 

noise and eliminate it in the soft thresholding process as opposed to the CELP which tries 

to reproduce the signal faithfully, reproducing the noise too in the process. The post-

filtering in the CELP might prove harmful for these kinds of inherently noisy signals as 

this process might enhance the noise.  

 

Conclusion for artificial noise added signals 

The result for these signals was mixed. The 0.1% level and 1% level favored (7% to 

53%) the CELP processed signal as the noise added was not affecting the quality of the 

actual speech signal. Hence the effect of the de-noising by the wavelet method was not 

obvious. The 10% level indicates that the wavelet method is preferred (39% to 69%) 

more as the noise added at this level tends to degrade the quality of the signal. Thus the 

wavelet method seems more efficient as it sounds less noisy. The 15% level takes a 

deviation from the pattern of the previous noise added stages. For the previous noise 

added stages as the noise level was increased the wavelet method displayed an improved 

performance (60%) against the CELP. This could be due to the fact that when the wavelet 

method drops the noisy sections it also drops the actual signal as it is masked by the 

noise. The CELP on the other hand reproduces this noise added signal, thus sounding 

better than the wavelet processed signals. These results could vary depending on the 

subject’s choice at the time of conducting the test. For these results the CELP performs 

slightly better (21%) than the wavelet method. 
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Future Work 

This thesis has brought out some interesting characteristics of the wavelet method when 

compared to a Federal Standard like CELP. One of the most interesting characteristics is 

the performance of the wavelet method in noisy environments. This property suggests 

that the wavelet method of eliminating noise is much better than CELP post-filtering 

method. The process that facilitates the efficient removal of noise is the soft thresholding 

process. This process can be substituted for the post-filtering process and results 

compared to the post-filtering process. Another area of future work could be adding a 

more efficient pitch prediction process to the wavelet method to make it comparable to 

the CELP method for voiced and clean speech signals. 
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