7 research outputs found

    Specular Reflection Image Enhancement Based on a Dark Channel Prior

    Get PDF

    Depth Estimation for Glossy Surfaces with Light-Field Cameras

    Full text link
    Abstract. Light-field cameras have now become available in both consumer and industrial applications, and recent papers have demonstrated practical algorithms for depth recovery from a passive single-shot capture. However, current light-field depth estimation methods are designed for Lambertian objects and fail or degrade for glossy or specular surfaces. Because light-field cameras have an array of micro-lenses, the captured data allows modification of both focus and perspec-tive viewpoints. In this paper, we develop an iterative approach to use the benefits of light-field data to estimate and remove the specular component, improving the depth estimation. The approach enables light-field data depth estimation to sup-port both specular and diffuse scenes. We present a physically-based method that estimates one or multiple light source colors. We show our method outperforms current state-of-the-art diffuse and specular separation and depth estimation al-gorithms in multiple real world scenarios.

    Photometric Stereo-Based Depth Map Reconstruction for Monocular Capsule Endoscopy

    Get PDF
    The capsule endoscopy robot can only use monocular vision due to the dimensional limit. To improve the depth perception of the monocular capsule endoscopy robot, this paper proposes a photometric stereo-based depth map reconstruction method. First, based on the characteristics of the capsule endoscopy robot system, a photometric stereo framework is established. Then, by combining the specular property and Lambertian property of the object surface, the depth of the specular highlight point is estimated, and the depth map of the whole object surface is reconstructed by a forward upwind scheme. To evaluate the precision of the depth estimation of the specular highlight region and the depth map reconstruction of the object surface, simulations and experiments are implemented with synthetic images and pig colon tissue, respectively. The results of the simulations and experiments show that the proposed method provides good precision for depth map reconstruction in monocular capsule endoscopy

    Highlights Analysis System (HAnS) for low dynamic range to high dynamic range conversion of cinematic low dynamic range content

    Get PDF
    We propose a novel and efficient algorithm for detection of specular reflections and light sources (highlights) in cinematic content. The detection of highlights is important for reconstructing them properly in the conversion of the low dynamic range (LDR) to high dynamic range (HDR) content. Highlights are often difficult to be distinguished from bright diffuse surfaces, due to their brightness being reduced in the conventional LDR content production. Moreover, the cinematic LDR content is subject to the artistic use of effects that change the apparent brightness of certain image regions (e.g. limiting depth of field, grading, complex multi-lighting setup, etc.). To ensure the robustness of highlights detection to these effects, the proposed algorithm goes beyond considering only absolute brightness and considers five different features. These features are: the size of the highlight relative to the size of the surrounding image structures, the relative contrast in the surrounding of the highlight, its absolute brightness expressed through the luminance (luma feature), through the saturation in the color space (maxRGB feature) and through the saturation in white (minRGB feature). We evaluate the algorithm on two different image data-sets. The first one is a publicly available LDR image data-set without cinematic content, which allows comparison to the broader State of the art. Additionally, for the evaluation on cinematic content, we create an image data-set consisted of manually annotated cinematic frames and real-world images. For the purpose of demonstrating the proposed highlights detection algorithm in a complete LDR-to-HDR conversion pipeline, we additionally propose a simple inverse-tone-mapping algorithm. The experimental analysis shows that the proposed approach outperforms conventional highlights detection algorithms on both image data-sets, achieves high quality reconstruction of the HDR content and is suited for use in LDR-to-HDR conversion
    corecore