518 research outputs found

    Spectrum splitting-based cognitive interference management in two-tier LTE networks

    Get PDF
    In this paper, we propose a spectrum splitting-based cognitive interference management method for LTE downlink two-tier networks (that provide closed-access mode). In the proposed method, the resource-blocks in the macrocell (in frequency and time domain) are allocated to the users with the received signal-to-interference-plus-noise-ratio greater than a threshold. The rest of resource-blocks are then allocated to the femtocells. To evaluate the effectiveness of this method, we develop a system level simulation and compare the proposed method with no interference management and also interfering resource blocking-based cognitive interference management method (IRB-CIM). It is shown that the proposed method significantly increases average throughput of femtocells' cell-edges. Furthermore, the simulation results indicate that by adjusting parameters, the proposed method results in higher average throughput for femtocells and for overall system compared to other methods. The proposed method senses control-channel of the macrocell to detect spectrum availability which is simpler and faster than IRB-CIM

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Fair resource allocation with interference mitigation and resource reuse for LTE/LTE-A femtocell networks

    Get PDF
    Joint consideration of interference, resource utilization, fairness, and complexity issues is generally lacking in existing resource allocation schemes for Long-Term Evolution (LTE)/LTE-Advanced femtocell networks. To tackle this, we employ a hybrid spectrum allocation approach whereby the spectrum is split between the macrocell and its nearby interfering femtocells based on their resource demands, whereas the distant femtocells share the entire spectrum. A multiobjective problem is formulated for resource allocation between femtocells and is decomposed using a lexicographic optimization approach into two subproblems. A greedy algorithm of reasonably low complexity is proposed to solve these subproblems sequentially. Simulation results show that the proposed scheme achieves substantial throughput and packet loss improvements in low-density femtocell deployment scenarios while performing satisfactorily in high-density femtocell deployment scenarios with substantial complexity and overhead reduction. The proposed scheme also performs nearly as well as the optimal solution obtained by exhaustive search

    Transmit Beamforming in Dense Networks-A Review

    Get PDF
    Communication technology has prospered in manifolds over the last decade. The scarcity of spectrum as well as the demand for higher data rates and increase in capacity has become a matter of concern. Newer technologies have evolved time and again, the latest of which is Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A) systems more commonly known as 4G technology. The striking feature of LTE/LTE-A is the deployment of smaller cells (femto cells) in the vicinity of a large macro cells resulting in a dense network. As a result the data rate as well as capacity has increased in manifolds but the detrimental factor is the issue of interference between the various cells. Beamforming provides a solution in removing the issues of interference in dense networks. This paper focuses on the interference scenario in LTE dense networks and gives an overview of different beamforming methods that can provide a solution to the interference problem. Further, a review of several such methods so far proposed in available literature has been presented in this paper.Keywords:LTE/LTE-A, Dense Network, Interference,Beamformin
    • …
    corecore