57 research outputs found

    Stochastic geometry approach towards interference management and control in cognitive radio network : a survey

    Get PDF
    Interference management and control in the cognitive radio network (CRN) is a necessity if the activities of primary users must be protected from excessive interference resulting from the activities of neighboring users. Hence, interference experienced in wireless communication networks has earlier been characterized using the traditional grid model. Such models, however, lead to non-tractable analyses, which often require unrealistic assumptions, leading to inaccurate results. These limitations of the traditional grid models mean that the adoption of stochastic geometry (SG) continues to receive a lot of attention owing to its ability to capture the distribution of users properly, while producing scalable and tractable analyses for various performance metrics of interest. Despite the importance of CRN to next-generation networks, no survey of the existing literature has been done when it comes to SG-based interference management and control in the domain of CRN. Such a survey is, however, necessary to provide the current state of the art as well as future directions. This paper hence presents a comprehensive survey related to the use of SG to effect interference management and control in CRN. We show that most of the existing approaches in CRN failed to capture the relationship between the spatial location of users and temporal traffic dynamics and are only restricted to interference modeling among non-mobile users with full buffers. This survey hence encourages further research in this area. Finally, this paper provides open problems and future directions to aid in finding more solutions to achieve efficient and effective usage of the scarce spectral resources for wireless communications.The SENTECH Chair in Broadband Wireless Multimedia Communications (BWMC), Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa.http://www.elsevier.com/locate/comcomhj2022Electrical, Electronic and Computer Engineerin

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore