10,988 research outputs found

    Spectroscopy transmittance by LED calibration

    Get PDF
    Local administrations demand real-time and continuous pollution monitoring in sewer networks. Spectroscopy is a non-destructive technique that can be used to continuously monitor quality in sewers. Covering a wide range of wavelengths can be useful for improving pollution characterization in wastewater. Cost-effective and in-sewer spectrophotometers would contribute to accomplishing discharge requirements. Nevertheless, most available spectrometers are based on incandescent lamps, which makes it unfeasible to place them in a sewerage network for real-time monitoring. This research work shows an innovative calibration procedure that allows (Light-Emitting Diode) LED technology to be used as a replacement for traditional incandescent lamps in the development of spectrophotometry equipment. This involves firstly obtaining transmittance values similar to those provided by incandescent lamps, without using any optical components. Secondly, this calibration process enables an increase in the range of wavelengths available (working range) through a better use of the LED's spectral width, resulting in a significant reduction in the number of LEDs required. Thirdly, this method allows important reductions in costs, dimensions and consumptions to be achieved, making its implementation in a wide variety of environments possible.This research was funded by Seneca Foundation of the Región de Murcia (Spain) and “Hidrogea, Gestión Integral de Aguas de Murcia S.A”. Authors wish to thank the financial support received from the Seneca Foundation of the Región de Murcia (Spain) through the program devoted for training of novel researchers in areas of specific interest for the industry and with a high capacity to transfer the results of the research generate entitled: “Subprograma Regional de Contratos de Formación de Personal Investigador en Universidades y OPIs” (Mod. B, Ref. 20320/FPI/17).Authors wish to thank the financial support received from the Seneca Foundation of the Región de Murcia (Spain) through the program devoted for training of novel researchers in areas of specific interest for the industry and with a high capacity to transfer the results of the research generate entitled: “Subprograma Regional de Contratos de Formación de Personal Investigador en Universidades y OPIs” (Mod. B, Ref. 20320/FPI/17)

    Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects : application to a model multicomponent system

    Get PDF
    The effectiveness of a scatter correction approach based on decoupling absorption and scattering effects through the use of the radiative transfer theory to invert a suitable set of measurements is studied by considering a model multicomponent suspension. The method was used in conjunction with partial least-squares regression to build calibration models for estimating the concentration of two types of analytes: an absorbing (nonscattering) species and a particulate (absorbing and scattering) species. The performances of the models built by this approach were compared with those obtained by applying empirical scatter correction approaches to diffuse reflectance, diffuse transmittance, and collimated transmittance measurements. It was found that the method provided appreciable improvement in model performance for the prediction of both types of analytes. The study indicates that, as long as the bulk absorption spectra are accurately extracted, no further empirical preprocessing to remove light scattering effects is required

    Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects : application to a model two-component system

    Get PDF
    An approach for removing multiple light scattering effects using the radiative transfer theory (RTE) in order to improve the performance of multivariate calibration models is proposed. This approach is then applied to the problem of building calibration models for predicting the concentration of a scattering (particulate) component. Application of this approach to a simulated four component system showed that it will lead to calibration models which perform appreciably better than when empirically scatter corrected measurements of diffuse transmittance (Td) or reflectance (Rd) are used. The validity of the method was also tested experimentally using a two-component (Polystyrene-water) system. While the proposed method led to a model that performed better than that built using Rd, its performance was worse compared to when Td measurements were used. Analysis indicates that this is because the model built using Td benefits from the strong secondary correlation between particle concentration and pathlength travelled by the photons which occurs due to the system containing only two components. On the other hand, the model arising from the proposed methodology uses essentially only the chemical (polystyrene) signal. Thus this approach can be expected to work better in multi-component systems where the pathlength correlation would not exist

    Optical based noninvasive glucose monitoring sensor prototype

    Get PDF
    Diabetes mellitus claims millions of lives every year. It affects the body in various ways by leading to many serious illnesses and premature mortality. Heart and kidney diseases, which are caused by diabetes, are increasing at an alarming rate. In this paper, we report a study of a noninvasive measurement technique to determine the glucose levels in the human body. Current existing methods to quantify the glucose level in the blood are predominantly invasive that involve taking the blood samples using finger pricking. In this paper, we report a spectroscopy-based noninvasive glucose monitoring system to measure glucose concentration. Near-infrared transmission spectroscopy is used and in vitro experiments are conducted, as well as in vivo. Our experimental study confirms a correlation between the sensor output voltage and glucose concentration levels. We report a low-cost prototype of spectroscopy-based noninvasive glucose monitoring system that demonstrates promising results in vitro and establishes a relationship between the optical signals and the changing levels of blood–glucose concentration

    UV LED System for PL Measurements on GaN Samples

    Get PDF
    Gallium Nitride materials are direct bandgap semiconductors with important applications, such as in the production of light-emitting diodes and transistors. The process of photoluminescence, in which excited electron and holes emit electro-magnetic radiation when they recombine, can be used to study the structure and quality of Gallium Nitride materials. Due to the size of the bandgap in these materials (3.4eV), ultraviolet light is required to create electron-hole pairs in GaN. We designed and built a system, which uses ultraviolet light, to take measurements on GaN samples provided by a local company, Lightwave Photonics, who were interested in the quality of the materials they develop and produce. Our system uses a ultraviolet LED as a light source instead of an expensive UV laser. It uses two short-pass filters and a long-pass filter to isolate the luminescence from the sample from excitation source. A spectrometer measures intensity of the luminescence versus wavelength. A camera is also used to observe the samples during set-up. The system was calibrated using radiation from a black-body source. We were able to take measurements on several samples. Our results agree with the expected emission spectra of GaN materials

    Near-infrared spectroscopy study of tourniquet-induced forearm ischaemia in patients with coronary artery disease

    Get PDF
    Near-Infrared Spectroscopy (NIRS) can be employed to monitor local changes in haemodynamics and oxygenation of human tissues. A preliminary study has been performed in order to evaluate the NIRS transmittance response to induced forearm ischaemia in patients with coronary artery disease (CAD). The population consists in 40 patients with cardiovascular risk factors and angiographically documented CAD, compared to a group of 13 normal subjects. By inflating and subsequently deflating a cuff placed around the patient arm, an ischaemia has been induced and released, and the patients have been observed until recovery of the basal conditions. A custom NIRS spectrometer (IRIS) has been used to collect the backscattered light intensities from the patient forearm throughout the ischaemic and the recovery phase. The time dependence of the near-infrared transmittance on the control group is consistent with the available literature. On the contrary, the magnitude and dynamics of the NIRS signal on the CAD patients show deviations from the documented normal behavior, which can be tentatively attributed to abnormal vessel stiffness. These preliminary results, while validating the performance of the IRIS spectrometer, are strongly conducive towards the applicability of the NIRS technique to ischaemia analysis and to endothelial dysfunction characterization in CAD patients with cardiovascular risk factors

    Near-infrared spectroscopy study of tourniquet-induced forearm ischaemia in patients with coronary artery disease

    Get PDF
    Near-Infrared Spectroscopy (NIR) can be employed to monitor local changes in haemodynamics and oxygenation of human tissues. A preliminary study has been performed in order to evaluate the NIRS transmittance response to induced forearm ischaemia in patients with coronary artery disease (CAD). The population consists in 40 patients with cardiovascular risk factors and angiographically documented CAD, compared to a group of 13 normal subjects. By inflating and subsequently deflating a cuff placed around the patient arm, an ischaemia has been induced and released, and the patients have been observed until recovery of the basal conditions. A custom LAIRS spectrometer (IRIS) has been used to collect the backscattered light intensities from the patient forearm throughout the ischaemic and the recovery phase. The time dependence of the near-infrared transmittance on the control group is consistent with the available literature. On the contrary, the magnitude and dynamics of the NIRS signal on the CAD patients show deviations from the documented normal behavior, which can be tentatively attributed to abnormal vessel stiffness. These preliminary results, while validating the performance of the IRIS spectrometer, are strongly conducive towards the applicability of the NIRS technique to ischaemia analysis and to endothelial dysfunction characterization in CAD patients with cardiovascular risk factors.Publisher PD
    corecore