
Chemosphere 293 (2022) 133610

Available online 17 January 2022
0045-6535/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implementing Early Warning Systems in WWTP. An investigation with 
cost-effective LED-VIS spectroscopy-based genetic algorithms 

Daniel Carreres-Prieto a,**, Juan T. García a,*, Fernando Cerdán-Cartagena b, 
Juan Suardiaz-Muro c, Carlos Lardín d 

a Department of Mining and Civil Engineering, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Spectroscopy in the VIS range 380–700 
nm shows accuracy for estimating 
physico-chemical parameters in a field 
campaign in total of 43 WWTPs. 

• Genetic Algorithms techniques have 
proven to be a tool to establish the cor-
relation between transmittance and 
absorbance with water quality. 

• First steps towards continuous and real- 
time monitoring of pollutants in WWTPs 
by means of a cost-effective LED-VIS 
device.  
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A B S T R A C T   

Measuring how the pollution load evolves in real time along sewer networks is key for proper management of 
water resources and protecting the environment. The technique of molecular spectroscopy for water charac-
terization has increasingly widespread use, as it is a non-invasive technique that leads to the correlation of the 
physical-chemical conditions of wastewater with spectroscopic surrogates by a series of mathematical estimation 
models. In the present research work, different symbolic regression models obtained with evolutive genetic al-
gorithms are evaluated for the estimation of chemical oxygen demand (COD); five-day biochemical oxygen 
demand (BOD5); total suspended solids (TSS); total phosphorus (TP); and total nitrogen (TN), from the spectral 
response of samples measured between 380 and 700 nm and without the use of chemicals or pre-treatment. 
Around 650 wastewater samples were used in the campaign, from 43 different wastewater treatment plants 
(WWTP) in which both, raw/influent and treated/effluent, were examined through 18 models composed of 
Classical Genetic Algorithm (CGA), the Age-Layered Population Structure (ALPS), and Offspring Selection (OS) 
by mean of HeuristicLab software, to make a comparison among them and to determine which models and 
wavelengths are most suitable for the correlation. Models are proposed considering both raw and treated samples 
together (15) and only with tertiary treated wastewater reclaimed for agriculture irrigation effluent (3). The 
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Pearson correlation coefficients were in the range of 67–91% for the test data in the case of the combined models. 
The results conform the first steps for a real-time monitoring of WWTP.   

1. Introduction 

Real-Time monitoring and Control (RTC) and Early Warning Systems 
(EWS) in Wastewater Treatment Plants (WWTP) provide valuable in-
formation on the evolution of pollutants transported by the influent 
during dry as well as extreme weather events, thereby enabling rapid 
adjustments in the plant’s operating parameters. Moreover, the infor-
mation serves to improve effluent quality, promote water reuse, and to 
prevent failures in biological processes caused by possible toxicity 
(Korshin et al., 2018; Jurga et al., 2017). 

Spectroscopic surrogates, such as absorbance and transmittance, 
have a proven ability to monitor water quality in the influent and 
effluent of WWTP. Molecular absorption spectroscopy in the ultraviolet 
and visible (UV/VIS) spectral regions (Skoog et al., 2017; Thomas and 
Burgess, 2017) and light scattering in the visible and short wave near 
infrared (VIS/SW-NIR –(Near Infrared, 800–2500 nm)) (Bogomolov 
et al., 2012; Bogomolov and Melenteva, 2013) are techniques that allow 
the quantitative correlation of inorganic, organic, and biological species 
such as biochemical oxygen demand in five days (BOD5); chemical ox-
ygen demand (COD); total suspended solids (TSS); total nitrogen (TN); 
nitrate-nitrogen (NO3–N); and total phosphorus (TP), among others 
(Melendez-Pastor et al., 2013). Molecular absorption of photons in 
organic compounds is mainly observed in the UV/VIS range by Beer’s 
law, which describes the absorption behaviour of media in terms of 
absorbance. Despite this, it is also usual that the complexity of the 
wastewater matrix, where the solute-solute interactions can alter the 
ability of the analytic species to absorb a given wavelength of radiation, 
is a limitation in the UV range of the spectrum. On the other hand, the 
scatter in the visible (VIS) spectrum, which is principally describing, in 
an indirect way, the particle density and their size distribution, is 
capable of investigating complex dispersive media. 

To quantify the pollutant species in real samples of wastewater, 
where the existence of multiple compounds produces interferences, 
mathematical functions are usually adjusted to establish a correlation 
with the measured absorbance spectra. Multiple Linear Regression 
(MLR) and Partial least squares regression (PLSR) are mainly used to 
find linear correlations between absorbance and indicators of interest 
(Torres and Bertrand-Krajewski, 2008; Carré et al., 2017). Carrere-
s-Prieto et al. (2020) first used symbolic regression in 
spectroscopic-based correlations which searched the mathematical for-
mulas that best predicted the output through genetic algorithms. 

Cost-effective spectrophotometer devices that can be readily 
deployed along the sewer network can contribute to achieve a real-time 
control monitoring platform to help in WWTP processes. The use of 
light-emitting diodes (LED) as light emitting sources, the simplification 
of optical lenses and of the charge-coupled device (CCD), while main-
taining quantitative and robust predictive capabilities, are a field of 
innovation in recent years (Van Den Broeke et al., 2006; Carreres-Prieto 
et al., 2019). 

The present work is based on an extensive experimental campaign of 
about 650 influent and effluent samples at 43 different WWTP located in 
the region of Murcia in south-eastern Spain. The physic-chemical con-
ditions of wastewater samples have been used for correlation with 
spectroscopic surrogates by means of symbolic regression fitted from 
genetic algorithms. The equipment used is a cost-effective spectropho-
tometer with a visible spectrum range (380–700 nm), so the physical 
properties of light scattering have been used as the main input. The 
fitting equations obtained include: i) both influent and effluent values, 
15 models and ii) effluent values, 3 models. This work represents a study 
based on GA-defined models capable of providing an accurate response 
for the development and implementation of a massive and real-time 

control platform to improve operations in WWTP. 

2. Materials and methods 

2.1. Experimental campaign 

To achieve representative models that estimate the pollutant load of 
wastewater, it is recommended to have samples from a large number of 
different treatment plants (43 WWTP). This variability in water prop-
erties allows for more robust and generalist models, suitable for a wide 
range of water types and which can therefore become more useful 
models. Table A1 (Appendix A) shows the different WWTP used to carry 
out this study, indicating the number of inhabitants they support, their 
designs and operational flows, the average levels of COD, BOD5, and TSS 
registered at the inlet and outlet of the WWTP, among other aspects. The 
WWTP cover a large part of the Region of Murcia (Spain). Most of them 
include a tertiary treatment to provide reclaimed water for agricultural 
irrigation. Given that the waters have different characteristics depend-
ing on the population they originate from, a sampling of all these waters 
could make it possible to achieve estimation models valid for all types of 
water. Most samples were taken between 11 January and June 22, 2021, 
with the exception of the samples from the Cabezo Beaza WWTP, which 
were taken during the period 2019 to April 2020. 

In order to influence the performance of the WWTP processes 
through the early operation of the plant parameters, samples were taken 
at the following points of the WWTP: influent wastewater at the inlet of 
the WWTP, raw water and treated water, at the outlet of the tertiary 
treatment. Samples were collected homogeneously during 24 h by 
means of an accumulated sample of 500 mL/h. The start time of the 
sampling period varied depending on the wastewater treatment plant, 
being between 9:00 and 14:30, and the samples were analyzed almost 
immediately after collection. 

None of the samples were pre-treated by any filtering process in 
order to replicate the conditions of the future automated sampling of the 
continuous sensors. The tests performed were in accordance with 
Standard Methods (SM) and International Organization for Standardi-
zation (ISO). Mainly these were the dichromate method with UV–VIS 
spectroscopy (ISO 6060:1989) for COD; respirometric method (SM 5210 
D) for BOD5; settleable solids (SM 2540 F) in case of TSS; persulfate 
digestion with UV–VIS spectroscopy (SM 4500–NC) for TN and ascorbic 
acid method complemented with UV–VIS spectroscopy (SM 4500-P B) 
for TP. 

In order to generate the statistical models for estimating the 
pollutant load from the spectrophotometric response of the samples, it is 
necessary to obtain, for any given sample, two sets of data: one corre-
sponding to the spectral response measured in the range 380–700 nm 
(our input), and another containing the results of the analysis carried out 
in the laboratory (our target or output), to find the mathematical ex-
pressions that allow us to correlate both sets, i.e. to estimate one from 
the other. 

2.2. Characteristics of water samples analyzed 

The waters present at the inlet and outlet of the WWTP have different 
properties, which are reflected in their own spectral response. 

Fig. 1 shows the spectral response of four samples taken at random, 
where the first two (Fig. 1A and B) correspond to raw water samples, i.e., 
taken at the entrance of the WWTP. The samples in Fig. 1 C-D corre-
spond to samples of treated water. In order to clarify the properties of 
each of the waters, each sample is accompanied by the analytical pa-
rameters measured in laboratories. 
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Fig. 1. Spectral response of four samples taken at random, accompanied by their laboratory characterization.  
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As can be seen, the raw water samples present an ascending trans-
mittance curve, with absorption values being low in the violet-blue re-
gion of the visible spectrum, and then gradually increasing as we 
approach the red region of the spectrum. 

On the other hand, treated water, having a low concentration of 
pollutant load, especially suspended solids and organic matter, provides 
a more horizontal spectral response (transmittance), with no significant 
variations along the visible spectrum. 

In order to visualize how these parameters evolve over time, Fig. 2 
shows, for the different pollutant parameters analyzed in this research 
work, the daily averaged concentration in a specific WWTP over the 
course of a single month, showing both the values corresponding to raw 
water (blue graph) and treated water (orange line). 

2.3. Spectrophotometric device 

The equipment shown in Fig. 3A was used to carry out the study. This 
consisted of a low-cost spectrophotometer based on LED technology 
capable of performing multispectral analysis between 380 and 700 nm, 

with an accuracy comparable to commercial equipment based on in-
candescent lamps. The calibration of the equipment was performed and 
discussed in previous research carried out by Carreres-Prieto et al. 
(2019). As can be seen in Fig. 3B, it consists of a disk where 5 mm 
diameter LEDs are aligned with the sample under study, which is 
inserted through its upper part by means of a standard spectrophoto-
metric test tube with 2.7 mL of volume. This procedure has enabled us to 
achieve a working range between 380 and 700 nm using just 33 LEDs 
that cover different areas of the visible spectrum. 

2.4. Genetic algorithms 

Genetic algorithms (GA) ( Augusto and Barbosa, 2000; Harik et al., 
1999) have been used as a technique for the study and generation of 
models, where the structure and its parameters are not defined, known 
as symbolic regression (Koza, 1992). The evolutionary nature of GA 
allows them to learn and to extract patterns from the input data and they 
are capable of overcoming certain limitations of multivariate linear 
regression techniques (Schmidt and Finan, 2018), such as the need for 

Fig. 2. Evolution over one month of the following pollutant parameters, both at the WWTP inlet (raw water) and outlet (treated water): (A) COD, (B) BOD5, (C) TSS, 
(D) P, (E) TN. 
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the residuals to follow a normal distribution. As a result, their use is 
beginning to spread within the field of wastewater quality analysis (Cho 
et al., 2004; Huang et al., 2015; Holenda et al., 2007). 

Within genetic algorithms, three different computational techniques 
have been implemented:  

- Classical Genetic Algorithm (CGA) (Rajasekaran and Pai, 2003) 

Part of a population starts from randomly generated mathematical 
functions (individuals) that are crossed with each other to give rise to a 
new generation that has characteristics of the parents plus a random 
component. These individuals are then evaluated according to how well 
they can estimate the response variable (e.g., COD) and those that 
exceed a certain threshold will spawn the next generation and so on, up 
to a finite number of generations.  

- Age-Layered Population Structure (ALPS) (Hornby, 2006) 

Developed by the researcher Gregory S. Hornby, from the NASA 
Ames Research Center, this technique allows the population of in-
dividuals to be segregated into different layers according to their age 
while introducing new randomly generated individuals in the youngest 
layers, which improve the results.  

- Offspring Selection (OS) (Affenzeller and Wagner, 2005) 

This technique solves one of the problems of AGCs, where with the 
passage of generations, individuals could become worse than their 
parents. In this case, new parents are randomly selected and a new 
offspring is generated and tested again to see whether or not it is better 
than its parents. This ensures that the next generation will be at least as 
good as the previous one. 

The working range between 380 and 700 nm using just 33 LEDs is 
divided into 81 bands, where surrogates, absorbance and transmittance, 
are measured at each sample. So, a total of 162 variables were used as 
inputs for the calculation of the models. For the implementation of these 
models, the software HeuristicLab (Wagner et al., 2014), has been used. 
All models have been generated after removing outliers from each 
dataset using Box and Whisker plots. 

Following the criteria of Osowski (1996), which recommends a 
70-30% ratio, we have used a 66-34% ratio, in order to have more data 
to validate the models, by mean HeuristicLab interface. 

2.5. Data storage platform 

The results of the spectrophotometric analysis of the equipment are 

sent automatically to a web server where they will be available to be 
analyzed and compared with the information provided by the physical- 
chemical conditions analyzed in the samples. All this information is 
downloaded in a.CSV file containing both the spectral response of the 
samples analyzed with the equipment in Fig. 3 as well as the contami-
nant parameters characterized in the laboratory. This file is used for the 
generation of the estimation models. 

3. Results and discussion 

3.1. Mathematical models proposed from genetic algorithms 

A series of mathematical models have been developed from the 
spectral response measured by the device to estimate the following 
contaminant parameters: COD, BOD5, TSS, TP, and TN. All the models 
presented in this research work include both, raw wastewater samples 
(taken at the inlet of the WWTP) as well as treated water samples (taken 
at the outlet of the WWTP), without the need to subject the samples to 
chemicals or pre-treatments. 

In order to clarify the presentation of the different models, Table 1 
shows a summary of each one of the studied models, indicating tech-
nique, number of generations, Pearson coefficient achieved, mutation 
rate, number of maximum generations, as well as other distinctive as-
pects of each technique. 

A total of 18 models are studied, in the case of considering all the 
samples – influent and effluent – together, and three further models 
considering just treated wastewater. Some of the algorithms calculated 
based on different techniques and configurations are available in the 
Supplementary Information section (SI). The following nomenclature 
has been used: T for Transmittance and A for Absorbance followed by 
the wavelength at which they have been measured. For instance, T385 
corresponds to the Transmittance measured at 385 nm. 

Stopping criteria of model generation adopted is based on both 
maximizing the fitness as well as controlling the size of the model, to 
avoid bloat and parsimony and overfitting of the data used. In this sense, 
the adopted values of depth and length of the symbolic regression 
models proposed are up to 5 and to 20, respectively, to avoid parsimony 
and overfitting. The depth is the distance from its root node to the 
furthest leaf node accounting for the number of divisions of the model. 
The length is the number of elements in the regression which is equal to 
the total number of nodes. 

It should be noted that the tests performed for the different types of 
genetic algorithms have provided very similar estimation values. How-
ever, some models with a certain configuration (genetic algorithm 
technique, type of mathematical operations used, use of conditionals, 
etc.) have shown, for a specific pollutant parameter, better fits than 

Fig. 3. View of the equipment developed to carry out the spectrophotometric analysis in the different WWTP. (A) External view of the equipment (B) Internal 
structure of the device. 
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others (Table 1). Besides, these don’t always select the exact same 
wavelengths. Therefore, in order to clarify the presentation of the re-
sults, in the main manuscript, only a single model is shown for each 
parameter, corresponding to the one whose configuration (technique, 
mathematical operations, mutation rate, etc.) has provided the best 
result. The rest of the models being calculated can be found in the 
Supplementary Information, in order to show which models, that can 
have selected different wavelengths, allow similar results to be obtained, 
a key aspect in the development of simpler and simpler equipment. 

3.1.1. Chemical oxygen demand (COD) 
For the calculation of models for the estimation of the chemical ox-

ygen demand, a total of 636 data were used, after elimination of outliers. 
Of the total of samples, 420 were used for training, while the remainder 
were used for model evaluation. Equation (1) shows the model calcu-
lated using the CGA, which, of the algorithms calculated, is the one with 
the best relationship between the number of variables and the fit, with a 
Pearson coefficient of 81% for testing and 91% for training. This model 
was calculated for a maximum of 50 generations with a mutation rate of 
15%. 

COD(mg/l)=(c0*T380+c1*A425*c2*A405*c3*T485)*c4+c5
c0=0.18988;c1=0.43341;c2=3.4384;c3=1.7748;c4=3917.6;c5=− 619.49

(1) 

The rest of the searched models, ALPS and OS, are presented in the 
supplementary information. Regardless of the genetic algorithm tech-
nique used, all the models calculated (Equations (S1-S2)) have a very 
similar. 

The fit of the model is seen in Fig. 4, where it is observed that both 
the estimated values during training (orange squares) and during the 
test phase (grey triangles), are close to the values measured in the lab-
oratory, organizing themselves around the fit line, with an interval of ±1 
the standard deviation. This fit is also observed in the other calculated 
models (Figs. S1–S2). 

A model considering only treated water has also been fitted using the 
CGA technique. In comparison to previous models, this allows a better fit 
to be achieved - in terms of the treated wastewater – in order to have a 
real-time monitoring system for predicting values in the effluent from 
tertiary treatment for agricultural irrigation. A total of 287 data were 
used, after elimination of outliers. Of the total of samples, 189 were used 
for training, whilst the remainder were used for model evaluation. 
Equation (2) shows the model calculated, with a Pearson’s coefficient of 
53% for testing and 52% for training. This model was calculated for a 
maximum of 100 generations, with a mutation rate of 15%. The fit of the 
model is seen in Fig. 5.  

Table 1 
Summary of models calculated in the research study.  

Model (Eq.) Param. Type of water* GA Operat.** Pearon’s coefficient Mut. rate Max. gen. 

Test Training 

1 COD C CGA Arth 81% 91% 15% 50 
S1 COD C OS Arth 89% 90% 20% 50 
S2 COD C ALPS Arth 88% 89% 25% 500 
4 BOD5 C OS Arth 81% 85% 20% 25 
S3 BOD5 C CGA Arth 82% 83% 15% 50 
S4 BOD5 C ALPS Arth 79% 85% 25% 500 
5 TSS C OS Arth 86% 83% 15% 100 
S5 TSS C ALPS Arth and Log/Exp 80% 88% 25% 500 
S6 TSS C CGA Arth 84% 84% 15% 50 
S7 TN C CGA Arth 76% 73% 15% 50 
S8 TN C OS Arth 69% 75% 20% 25 
S9 TN C ALPS Arth 72% 75% 25% 500 
S10 TP C ALPS Arth 75% 70% 25% 500 
S11 TP C CGA Arth 72% 71% 15% 50 
S12 TP C OS Arth 67% 74% 20% 25 
2 COD T CGA Arth 53% 52% 15% 100 
S13 BOD5 T CGA Arth 19% 38% 15% 50 
S14 TSS T OS Arth and Po 43% 40% 20% 25 

*C = combined raw and treated; T = treated. 
**Arth = arithmetic; Po = power. 

Fig. 4. Correlation plot between laboratory measured COD values and those 
estimated using the model of Equation (1), based on the CGA, for both training 
(squares) and test (test) data. 

COD(mg/l) =
c0*T395*c1*A430

c2*T656*c3*A660
*
c4*T395*c5*A405

c6*T656*c7*A697
*c8 + c9

c0 = 0.44446; c1 = 2.579; c2 = 1.6263; c3 = 0.67182; c4 = 0.44446; c5 = 2.6203; c6 = 1.6263; c7 = 1.6582; c8 = 37.119; c9 = − 6.3138
(2)   
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In the Supplementary Information, can be found the models and 
adjustment corresponding to the treated wastewater in terms of BOD 
and TSS, Equation (S13-S14) and Figures (S16-S17). 

It should be noted that, although the treated water only model gives 
slightly better fit to the measured values, if we make a comparison with 
the model of Equation (1), which is valid for both treated and raw water, 
we observe that its Pearson’s correlation coefficient is much higher 
(89% for tests and 90% for training) than that obtained for a specific 
model for treated water (Equation (2)). This is due to the variability of 
the data. 

The variability among the data studied influences the estimation of 
Pearson’s coefficient, which is determined by Equation (3) (being 
reference values, x and estimated values, y). 

Pearson′ s coefficient=
σxy

σx*σx
=

∑n
i (xi − x)*(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i ((xi − x))2
√

*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i ((yi − y))2
√ (3) 

In the combined model (Equation (1)), we have used both raw water 
and treated water values for the COD calculation, i.e., we have mixed 
very high values with very low values. This makes the covariance 
(numerator Equation (3)) larger than if we only have treated water data 
(Equation (2)), since all the data are similar to each other. Moreover, in a 
dataset where the pollutant load values are low, as is the case for treated 
water, any small deviation of the estimate with respect to the reference 
values is accentuated. This is why the Pearson coefficient of Equation (2) 
is lower than that of Equation (1). 

3.1.2. Biochemical oxygen demand (BOD5) 
A total of 637 data after outliers were used to calculate BOD5, with a 

66%–34% ratio between training and test data. Equation (4) shows the 
model obtained using the “Offspring Selection”, which only makes use of 
simple arithmetic operations and presents a Pearson coefficient of 81% 
and 85% for the test and training data, respectively.   

The model was calculated after a maximum of 25 generations and a 
mutation rate of 20%. Fig. S3 shows the correlation between the BOD5 
values estimated by the model of Equation (4) and those obtained in the 
WWTP control laboratory, since almost all the values are concentrated 
with respect to the adjustment line with an interval of ±1standard de-
viation. The rest of the models (CGA and ALPS), are shown in Equations 
(S3-S4) within Supplementary Information. 

3.1.3. Total suspended solids (TSS) 
The determination of the models for the estimation of TSS was car-

ried out on 603 data, of which 396 were used for training and the rest for 
validation, maintaining the 66%–34% ratio of the previous cases. The 
model of Equation (5) makes use of simple arithmetic operations 
calculated by the “Offspring Selection”, which has a Pearson coefficient 
of 86% and 83% for test and training, respectively. If we look at the 
model from Equation (S5), for instance, we observe that it has a slightly 
better fit (al less in training data), than the model in Equation (5). This 
improvement in the fit is due to the use of exponential functions, but 
their use makes the model much more sensitive to small variations in the 
input values (transmittance and absorbance).   

Fig. 5. Correlation plot between laboratory measured COD values of the 
treated effluent and those estimated using the model of Equation (2), based on 
the CGA, for both training (squares) and test (test) data. 

Table 2 
Comparison of weights of the wavelengths used in the models: Equations (1), (4) 
and (5) and Equations (S7 and S10).  

Spectrum λ* COD 
Eq (1) 

BOD5 

Eq (4) 
TSS 
Eq (5) 

TN 
Eq (S7) 

TP 
Eq (S10) 

Violet 
380–427 nm 

380 4% (T)    7% (T) 
400  25% (A)     
405 39% (A)      
420  25% (A) 

25% (T) 
5% (T) 
32% (A)  

10% (T) 

425 39% (A)   18% (T)  
Blue 

427–476 nm 
430   16% (A)   
465     15% (T) 
470    24% (T)  

Cyan 
476–497 nm 

485 17% (T)     

Green 
497–570 nm 

500    19% (T)  
510     8% (T) 
515   44% (T)   
520     12% (T) 
522     11% (T) 
532     18% (T) 
560     18% (T) 

Yellow 
570–581 nm 

574    20% (T)  

Red 
618–780 nm 

627  5 (A)  11% (T)  
650  19 (A)    
656   3% (A)   
660    9% (T)  

T: Transmittance, A: Absorbance. 

BOD5(mg/l) =
(c0*A650 − c1*A400) − (c2 + c3*A627)

(c4*T420 − (c5 − c6*A420))
*c7 + c8

c0 = 628.94; c1 = − 578.55; c2 = 153.96; c3 = 665.43; c4 = 1099.7; c5 = 635.49; c6 = 909.53; c7 = 476.58; c8 = 139.74
(4)   
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Fig. S6 shows the correlation between the TSS values estimated by 
the model of Equation (5) and those obtained in the WWTP control 
laboratory. In addition, the Pearson coefficients have remained practi-
cally constant in all models, which is observed in the high similarity of 
the correlation curves in Fig. S6 and Figs. S7–S8, where practically all of 
the estimated TSS values with respect to those measured in the labora-
tory are within the interval of ±1 standard deviation. 

3.1.4. Total nitrogen (TN) and total phosphorus (TP) models 
GA models searching for TN are presented in the SI information 

(Figs. S7–S9). TP is presented in Figs. S10–S12. The Pearson coefficient 
range achieved was 69–73% and 67–75% for the test data in the cases of 
TN and TP, respectively. The standard deviation interval was ±33.23 
mg/L for nitrogen and ±4.29 mg/L for phosphorus. Although the results 
are less accurate than for the three previous pollutants searched, they 
continue to offer valuable information of wastewater characteristics. 
More details are presented in the SI information. 

3.1.5. Comparison between parameters for combined models 
Table 2 shows a comparison between the different models shown in 

Equations (1), (4) and (5), Equation (S7) for TN and Equation (S10) for 
TP, showing the different wavelengths (regressors) used and the weight 
that each of them adopted in their respective models until 100% is 
reached. In the Supplementary Information, in addition to the weight of 
each of the variables, the relative variable frequency for each regressor 
is shown for the optimal model researched. 

As can be seen, all the models for all the pollutant parameters under 
study have certain wavelengths that are key to their characterization. 

In the case of COD and BOD5, a greater weight of wavelengths 
belonging to the violet region of the spectrum is observed (Youquan 
et al., 2010; Thomas et al., 1996), representing around 83% in the case 
of COD (adding the weight of 380 and 425 nm) and around 75% in the 
case of BOD5 (400–420 nm). The different models presented for COD 
and BOD5, make use of similar wavelength groups, although in the case 
of Equation (S1) (COD, OS), it is observed that the near-infrared region 
(Stephens and Walker, 2002), plays an important role, as it is the case of 
625 nm (31%), something similar to what is observed in the model of 
Equation (4) for BOD5, where 650 nm represents a weight around 20%. 
All techniques (Classical Algorithm, ALPS, and Offspring Selection) 
resulted in a selection of similar spectral regions (Tables S1–S2 and 
Tables S3–S4), while in the BOD5 model, from Equation (S4), there is a 
more homogeneous distribution of wavelengths. 

The case of the TSS is slightly different: the wavelengths belonging to 
the green region of the spectrum (515 nm) had the greatest weight in the 
model of Equation (5), with a weight of 44%. This is in contrast to the 
other models calculated in Equation (S6) where a greater weight of the 
wavelengths close to infrared was observed, more specific 645 nm, an 
aspect that is also detailed in the literature (Jha and Garg, 2010). In fact, 
all the models presented in the Supplementary Information section 
(Equations (S5-S6)) make use of similar spectral regions, although the 
influence of the blue region of the spectrum was also observed, such as 
420 nm in Equation (5), 410 nm in Equation (S5), or, 395 and 490 nm in 
Equation (S6), with a very similar distribution of weights. 

This denotes one of the characteristics of genetic algorithms, the fact 
that there are infinite solutions where, although it is true that in some of 
them the best fit is obtained with the use of wavelengths close to the IR, 
this does not exclude that from other wavelengths (from the green re-
gion in this case); it is also possible to estimate the TSS with an accuracy 

comparable to that if the 600 nm wavelengths had been used. This 
feature allows to explore the development of simpler and more 
economical equipment. 

The different models calculated for the estimation of Total Nitrogen 
from the spectral response Equations (S7-S9), which are presented in the 
supplementary information section, presented a greater predisposition 
to make use of shorter wavelengths (Shi et al., 2013; Reeves and Van 
Kessel, 2000), especially in the case Equations (S7 and S9). In fact, their 
impact, also understood as weight, increased as we approached the 
infrared region of the spectrum. In all the models, the wavelengths 
closest to infrared had weights between 12% and 56% Table (S7–S9). 

On the other hand, Total Phosphorus presented a greater weight of 
wavelengths between 400 and 550 nm, as seen in Equations (S10-S12); 
this can be observed in Table (S10–S12). 

In the case of suspended solids the light scatter and shading repre-
sents the major influence in the measurements along the whole studied 
spectrum in a quite homogeneous way (Van Den Broeke et al., 2006). 
Higher wavelengths, like near infra-red, presenting lower variability and 
deviation in the response, are among those preferred and chosen by the 
algorithms. 

In the case of inorganic substances, whose sensitivity in the range of 
the spectrum studied in present work is almost constant (Carré et al., 
2017; Sarraguça et al., 2009), is shown that the wavelengths closer to 
infrared and to the violet-blue region of the spectrum are commonly 
selected by the algorithms for these species. According to this, Sarraguça 
et al. (2009) verified that a NIR based model offered relative standard 
deviation comparable with those obtained using the UV–visible 
techniques. 

Carré et al. (2017) conclude that lower wavelengths – 200 to 400 nm 
– show higher values of absorbance for the organic compounds, where 
the algorithm finally selected the 374 nm wavelength as the most 
representative for COD characterization, also considering the effect of 
supracolloidal and sedimentable matter. Jeong et al. (2007) established 
that the 300 nm wavelength provided more significant spectral values 
for COD wastewater characterization. In fact, this sensitivity increases as 
the wavelength decreases, but also experiences a greater variability in 
transmittance values, therefore, mathematical adjusted models prefer to 
use wavelengths that are close to the violet region of the visible spec-
trum, since in that region, the spectral response is more stable. This 
relationship of light adsorption is determined by the atomic composition 
of matter. When light passes through a compound, the energy of the 
light is used to make an electron in the outermost shells move from a 
bonding orbital to a non-bonding (empty) orbital. Depending on the 
matter through which the light passes, the jump between orbitals will be 
greater or smaller (Kalsi, 2007). Organic matter tends to have large 
jumps, which means that a lot of energy is needed to jump from one 
orbital to another, which results in higher absorbance and lower 

Table 3 
Comparison of error rates of the models of Equations (1), (4) and (5), Equation 
(S8), and Equation (S10).  

Parameter PBias (%) R2  

COD 0.066% 0.876 
BOD5 1.913% 0.837 
TSS − 0.014% 0.842 
TN 2.186% 0.740 
P 0.947% 0.719  

TSS(mg/l) =

(
(c0*A420 + (c1*T515 − c2*T420))

(c3*A430 + (c4*T515 − c5*A656))

)

*c6 + c7

c0 = 2.1402; c1 = 1.5927; c2 = − 0.36435; c3 = 1.0293; c4 = 1.6349; c5 = − 0.35326; c6 = 1224.6; c7 = − 1497.8
(5)   
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transmittance. 
After analysing the different characterization models calculated, a 

comparison was made between the models based on the Percent Bias, 
PBias, which measures the average tendency of estimated values to be 
larger or smaller than reference one. (Equation (6) (Gupta et al., 1999; 
Moriasi et al., 2007), and adjusted R-squared (R2), (Equation (7)). 
Where n is the number of samples; and Xreference and Xestimated are the 
values of the polluting parameters (COD, BOD5, TSS, P, TN and NO3–N) 
obtained by the analytical methods used by the wastewater treatment 
plant and by the calculation models, respectively, and Xreference is the 
average of reference values. 

PBias(%)=

∑n
i

(
Xreferencei − Xestimatedi

)

∑n
i Xreferencei

*100, (6)  

R2 = 1 −

∑n

i (Xreferencei − Xestimatedi )
2

n∑n

i (Xreferencei − Xreference)
2

n

(7) 

In order to clarify the presentation of the results, only those models 
belonging to Equations (1), (4) and (5), and Equation (S7) for TN, and 
Equation (S10), for TP, are shown in Table 3, since they had the best 
accuracy-number of variables relationship. 

As can be seen in Table 3, for all models, the level of fit is high, above 
83% in most cases, with the estimate of nutrients being somewhat lower, 
between 71 and 74%. Furthermore, as we can see, the PBias values are 
almost all positive, which indicates that the models, on average, provide 
slightly higher values than the reference values, although, in all cases, 
the deviation is less than 2.2%. 

3.1.6. Tertiary-treated reclaimed wastewater effluent specific models 
The combined samples models, including both raw and treated, 

previously presented are valid for the estimation of the pollutant load of 
wastewater. Even so, when the intention is to predict the treated 
wastewater physic-chemical parameters, a better fit is achieved when a 
specific model using just treated measures is found, representing a PBias 
between − 0,23 and − 1.178, that is, around 0.89–1.42% lower than the 
error recorded with the combined model, that is, the specific models for 
treated water provide values closer to the reference values than the 
combined models. These are presented above in Equation (2) and Fig. 5 
for treated COD and Equations (S13, S14) and Figs. S15 and S16 for the 
treated BOD5, and TSS models, respectively. In the case of the BOD5 

model, a low correlation coefficient of 27% for the test data of that 
model is explained by the low variability of the measured values, where 
most of the samples have very low values that complicate the adjust-
ment. Even though this specific model for treated reclaimed wastewater 
allows to predict this parameter with an accuracy in the range of ±1 
standard deviation, it adopted a low value of 2.85 mg/L when consid-
ering only treated wastewater. Tables S13 and S14 present the wave-
lengths used by the models. 

In order to illustrate more clearly how a specific model provides 
better results at low contaminant load levels, i.e. in treated water sam-
ples, Fig. 6 shows a comparison between the values obtained by the 
combined models and a specific model for treated water, for COD on 10 
samples taken at random. As can be seen, although all the models pro-
vide very similar values (except ALPS in some cases), the specific model 
of Equation (2) is the one that presents an estimate closest to the 
reference value. 

4. Conclusions 

In the present research work, 18 different models (15 with raw and 
treated wastewater and 3 with only treated wastewater) based on 
symbolic regression have estimated the physical-chemical characteris-
tics of the wastewater (COD, BOD5, TSS, TP, and TN) from spectro-
photometric analysis of samples between 380 and 700 nm, without the 
use of chemicals or pre-treatment of samples. 

A key aspect when it comes to generating estimation models is the 
fact that these can fit all possible types of water, including influent and 
effluent to WWTP. For this reason, the study has focused on 43 different 
WWTP, an extensive sampling campaign of around 650 samples and the 
development of mathematical expressions that can be valid for esti-
mating the pollutant load in both raw water samples (input to the 
wastewater treatment plant) as well as treated water (output from the 
plant). When using samples with such different properties (raw and 
treated water) such variability in the data makes it difficult to apply 
techniques such as multivariate linear regression analysis, as that type of 
analysis requires the data to follow a normal distribution, which is not 
possible when combining different types of water. For this reason, the 
use of genetic algorithms (GA) represents a very suitable option for the 
analysis of the pollutant load of wastewater, given that their evolu-
tionary nature allows said restriction to be bypassed. 

In the present research work, three different techniques based on 
genetic algorithms have been used by mean HeuristicLab software, to 

Fig. 6. Comparison of estimation between combined models and specific model for COD calculation.  
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generate estimation models for each of the pollutant parameters 
considered: Classical Genetic Algorithm (CGA), Age-Layered Population 
Structure (ALPS) and Offspring Selection. All the models, considering 
both influent and effluent, showed a level of correlation in terms of the 
R2 correlation coefficient, above 83% for COD, BOD5 and TSS, and over 
71% on average for TN and P, when considering the 34% of the data 
used to test the models. 

In the event that greater accuracy is needed, for instance to monitor 
tertiary-treated reclaimed wastewater, as is found in an important pro-
portion of the 43 WWTP in the study, GA is also feasible to be used just 
with the treated wastewater, where more accurate models with lower 
intervals of standard deviations are achieved. Three of these models are 
presented for the COD, BOD5, and TSS parameters. A lower correlation 
coefficient for the Pearson correlation coefficient of the test data is due 
to the data characteristics that do not detract from the accuracy and 
validity of the fitted model. 

Each GA technique presents differences in the selection of the 
wavelengths when adjusting each of the different pollutant parameters. 
In the case of COD and BOD5, although the violet wavelengths (380–425 
nm) are of great importance in the characterization of the samples, other 
wavelengths have shown to be relevant for the adjustment and have also 
been selected by the algorithms. This explains, for example, why 
Equation (S4) (BOD5), make use of near-red wavelengths whilst others 
do not. The study of COD usually focuses on analysis in the UV region of 
the spectrum, but this does not prevent useful information from being 
extracted from other wavelengths, such as near-infrared wavelengths 
(Equation (S1)). The proposed models, adjusted from VIS-spectrum 
spectroscopy surrogates, are mainly based in the scatter of the water 
matrix to the VIS wavelengths. In the case TN, around 40% of the weight 
of the adjustment comes from transmittance in the range of red/yellow 
light (570–780 nm) and green (497–570 nm), although violet region 
plays a role as well. In the case of TP, the wavelength distributions are 
very similar to the previous case (TN), where the green region seems to 
be the most significant one, however, in the model of Equation (S12), 
near-infrared region is also important, but to a lesser extent. 

In this research work, a great variety of models with different con-
figurations (number of variables, exponential/logarithmic operations, 
different generation criteria, among others) have been calculated in 
order to show the effect that each of these configurations has on the 
estimation of each pollutant parameter. 

Likewise, one aspect that stands out in the use of GA as a modelling 
technique is that it is possible to describe a parameter from different 
parts of the spectrum. This is clearly observed in the calculation of COD, 
where it is observed that, as indicated by the literature and the research 
carried out in this manuscript, the wavelengths closer to the UV region 
of the spectrum have a greater significance in its calculation, which is 
why their weight in the models is very significant. However, and as 
shown in the model of Equation (S3) of the Supplementary Information, 
it is possible to obtain models that make exclusive use of other regions of 
the spectrum, as is the case of the red/near infrared region, achieving 
levels of adjustment very close to those obtained with the use of the 
violet region of the visible spectrum as was also concluded by Sarraguça 
et al. (2009), due to different variables like are the suspended solids and 
the complexity of the wastewater matrix, own an influence in this pro-
cess of characterisation. 

This is important, since it allows the development of simpler systems 
to characterize water quality from other parts of the spectrum, the 
generation of which is associated with a lower energy cost. 

This research work shows an estimation of the pollutant load of 
wastewater and treated water that can be used to build a real-time pre- 
alert system that helps to visualize the evolution and shifts of the con-
centrations of pollutants. Spectrophotometry is presented as a tool for 
estimating water quality with acceptable levels of accuracy, without the 
need to use chemicals or pre-treatments. 

The present work not only allows for an optimization of the water 
treatment processes by speeding up the analysis processes and enabling 
a faster response, but also for better protection of the environment 
through an early estimation of unauthorized discharges into the envi-
ronment. Moreover, by synthesizing the estimation models into simple 
mathematical expressions, it opens the door to the development of low- 
cost, low-computational-capacity equipment which, based on spectro-
photometric analysis, is capable of carrying out continuous monitoring 
of the sewage network in real time. 
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Appendix A  

Table A1 
Wastewater treatment plants used during the study.   

WWTP Province Population Capacity (m3/a) SST COD BOD5 

Served Equivalent Design 
(m3/a) 

Current 
(m3/a) 

In 
(mg/ 
l) 

Out 
(mg/ 
l) 

Perf 
(%) 

In 
(mg/ 
l) 

Out 
(mg/ 
l) 

Perf 
(%) 

In 
(mg/ 
l) 

Out 
(mg/ 
l) 

Perf 
(%) 

1 Abanilla Murcia 3.626 15.711 547.500 779.051 294 4 98.6 739 18 97.6 442 4 99.1 
2 Abarán Murcia 13.371 12.626 1.642.500 726.065 257 5 98.1 596 28 95.3 381 3 99.2 
3 Albudeite Murcia 1.296 1.043 365.000 45.738 205 8 96.1 756 31 95.9 499 4 99.2 
4 Alcantarilla Murcia 41.447 62.342 4.745.000 2.588.649 301 6 98.0 835 33 96.0 527 4 99.2 
5 Alguazas Murcia 9.102 37.629 5.475.000 1.076.650 371 4 98.9 1.208 22 98.2 765 3 99.6 
6 Archena Murcia 24.413 54.425 2.737.500 1.792.326 459 6 98.7 1.104 27 97.6 665 3 99.5 
7 Baños y 

Mendigo 
Murcia 218 344 173.375 21.521 352 10 97.2 591 36 93.9 350 3 98.9 

8 Barinas Murcia 756 1.982 197.100 73.884 390 4 99.0 906 21 97.7 588 4 99.3 
9 Barqueros Murcia 1.030 1.872 109.500 60.376 443 17 96.2 1.245 58 95.3 679 6 99.1 
10 Beniel Nueva Murcia 11.900 25.818 1.825.000 1.245.618 659 4 99.4 944 26 97.2 454 3 99.3 
11 Blanca Murcia 5.184 5.636 730.000 356.464 271 4 98.5 559 19 96.6 346 3 99.1 
12 Cabezo 

Beaza 
Murcia 176.223 173.924 12.775.000 9.031.284 470 18 96.2 924 52 94.4 422 12 97.2 

13 Cabezo de la 
Plata 

Murcia 104 358 44.165 44.165 248 11 95.6 1.024 30 97.1 702 3 99.6 

14 Calasparra Murcia 9.505 26.938 2.190.000 659.778 408 3 99.3 1.426 23 98.4 894 3 99.7 
15 Campos del 

Río 
Murcia 1.998 1.635 547.500 88.252 212 5 97.6 649 21 96.8 406 3 99.3 

16 Cañada de la 
leña 

Murcia 93 28 21.900 6.166 68 19 72.1 172 56 67.4 99 6 93.9 

17 Cañares/ 
Bronchos 

Murcia 442 195 1.350.500 54.371 805 2 99,7 3.253 2.751 37.5 156 3 98,0 

18 Casas 
Nuevas 

Murcia 152 220 73.000 8.170 847 6 99.3 1.190 28 97.6 590 4 99.3 

19 Ceutí Nueva Murcia 11.774 36.311 2.920.000 1.052.685 448 11 97.5 1.274 33 97.4 755 3 99.6 
20 Cieza Murcia 33.797 63.567 3.650.000 2.485.914 362 5 98.6 872 23 97.4 560 3 99.5 
21 Corvera Murcia 2.443 2.464 109.500 133.534 284 2 99.3 682 24 96.5 404 3 99.3 
22 El Cantón Murcia 66 506 18.250 18.250 324 18 94.4 1.058 34 96.8 608 5 99.2 
23 El Raal Murcia 15.940 23.706 2.737.500 3.950.557 151 7 95.4 240 21 91.3 131 4 96.9 
24 El Valle Murcia 194 464 511.000 58.089 378 5 98.7 343 17 95.0 175 3 98.3 
25 Fortuna Murcia 7.557 11.544 912.500 423.126 445 9 98.0 975 34 96.5 598 4 99.3 
26 Fuente 

Librilla 
Murcia 579 1.418 146.000 44.776 266 19 92.9 1.122 38 96.6 694 4 99.4 

27 Hacienda 
Riquelme 

Murcia 224 658 574.875 64.366 145 5 96.6 313 24 92.3 159 3 98.1 

28 Jumilla 
Nueva 

Murcia 24.588 70.595 4.380.000 1.739.564 825 3 99.6 1.761 24 98.6 889 3 99.7 

29 La Murta Murcia 91 545 44.165 15.378 353 4 98.9 1.271 28 97.8 776 3 99.6 
30 Lorqui Murcia 6.622 26.108 1.825.000 1.221.497 376 4 98.9 835 19 97.7 468 3 99.4 
31 Macisvenda Murcia 504 557 41.975 26.219 242 5 97.9 730 30 95.9 465 3 99.4 
32 Molina Norte Murcia 68.296 218.823 9.125.000 6.093.740 490 6 98.8 1.456 36 97.5 786 3 99.6 
33 Mosa 

Trajectum 
Murcia 144 285 642.400 42.568 177 3 98.3 270 15 94.4 147 3 98.0 

34 Mula Nueva Murcia 15.496 17.210 2.190.000 672.031 335 2 99.4 892 18 98.0 561 3 99.5 
35 Murcia Este Murcia 375.775 553.451 36.500.000 36.952.999 277 9 96.8 577 32 94.5 328 5 98.5 
36 Pliego Murcia 3.631 4.490 547.500 162.769 583 3 99.5 1.150 23 98.0 604 3 99.5 
37 Pol. Ind. 

Fortuna 
Murcia 0 584 65.700 22.945 797 30 96.2 855 68 92.0 557 13 97.7 

38 Santomera 
Norte 

Murcia 14.956 16.139 2.190.000 1.137.404 242 5 97.9 526 33 93.7 311 4 98.7 

39 Sucina 
Nueva 

Murcia 1.924 3.634 1.825.000 173.650 212 3 98.6 681 22 96.8 458 3 99.3 

40 Torres de 
Cotillas N. 

Murcia 19.996 53.597 4.380.000 1.602.051 641 9 98.6 1.281 21 98.4 733 3 99.6 

41 El Trampolín Murcia 149 158 73.000 13.930 329 37 88.8 396 33 91.7 248 4 98.4 
42 Yecla Murcia 31.876 43.586 2.920.000 1.648.354 490 7 98.6 1.015 20 98.0 579 3 99.5 
43 Yecla Raspay Murcia 97 109 18.250 8.385 147 5 96.6 477 18 96.2 286 4 98.6  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2022.133610. 
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